xref: /csrg-svn/lib/libm/common_source/expm1.c (revision 31812)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)expm1.c	1.2 (Berkeley) 8/21/85; 1.5 (ucb.elefunt) 07/10/87";
17 #endif not lint
18 
19 /* EXPM1(X)
20  * RETURN THE EXPONENTIAL OF X MINUS ONE
21  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
22  * CODED IN C BY K.C. NG, 1/19/85;
23  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
24  *
25  * Required system supported functions:
26  *	scalb(x,n)
27  *	copysign(x,y)
28  *	finite(x)
29  *
30  * Kernel function:
31  *	exp__E(x,c)
32  *
33  * Method:
34  *	1. Argument Reduction: given the input x, find r and integer k such
35  *	   that
36  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
37  *	   r will be represented as r := z+c for better accuracy.
38  *
39  *	2. Compute EXPM1(r)=exp(r)-1 by
40  *
41  *			EXPM1(r=z+c) := z + exp__E(z,c)
42  *
43  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
44  *
45  * 	Remarks:
46  *	   1. When k=1 and z < -0.25, we use the following formula for
47  *	      better accuracy:
48  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
49  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
50  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
51  *	      when k>56.
52  *
53  * Special cases:
54  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
55  *	EXPM1(-INF)= -1;
56  *	for finite argument, only EXPM1(0)=0 is exact.
57  *
58  * Accuracy:
59  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
60  *	1,166,000 random arguments on a VAX, the maximum observed error was
61  *	.872 ulps (units of the last place).
62  *
63  * Constants:
64  * The hexadecimal values are the intended ones for the following constants.
65  * The decimal values may be used, provided that the compiler will convert
66  * from decimal to binary accurately enough to produce the hexadecimal values
67  * shown.
68  */
69 
70 #if (defined(VAX)||defined(TAHOE))	/* VAX D format */
71 #ifdef VAX
72 #define _0x(A,B)	0x/**/A/**/B
73 #else	/* VAX */
74 #define _0x(A,B)	0x/**/B/**/A
75 #endif	/* VAX */
76 /* static double */
77 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
78 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
79 /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
80 /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
81 static long     ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
82 static long     ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
83 static long    lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};
84 static long    invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
85 #define    ln2hi    (*(double*)ln2hix)
86 #define    ln2lo    (*(double*)ln2lox)
87 #define   lnhuge    (*(double*)lnhugex)
88 #define   invln2    (*(double*)invln2x)
89 #else	/* IEEE double */
90 static double
91 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
92 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
93 lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
94 invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
95 #endif
96 
97 double expm1(x)
98 double x;
99 {
100 	static double one=1.0, half=1.0/2.0;
101 	double scalb(), copysign(), exp__E(), z,hi,lo,c;
102 	int k,finite();
103 #if (defined(VAX)||defined(TAHOE))
104 	static prec=56;
105 #else	/* IEEE double */
106 	static prec=53;
107 #endif
108 #if (!defined(VAX)&&!defined(TAHOE))
109 	if(x!=x) return(x);	/* x is NaN */
110 #endif
111 
112 	if( x <= lnhuge ) {
113 		if( x >= -40.0 ) {
114 
115 		    /* argument reduction : x - k*ln2 */
116 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
117 			hi=x-k*ln2hi ;
118 			z=hi-(lo=k*ln2lo);
119 			c=(hi-z)-lo;
120 
121 			if(k==0) return(z+exp__E(z,c));
122 			if(k==1)
123 			    if(z< -0.25)
124 				{x=z+half;x +=exp__E(z,c); return(x+x);}
125 			    else
126 				{z+=exp__E(z,c); x=half+z; return(x+x);}
127 		    /* end of k=1 */
128 
129 			else {
130 			    if(k<=prec)
131 			      { x=one-scalb(one,-k); z += exp__E(z,c);}
132 			    else if(k<100)
133 			      { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
134 			    else
135 			      { x = exp__E(z,c)+z; z=one;}
136 
137 			    return (scalb(x+z,k));
138 			}
139 		}
140 		/* end of x > lnunfl */
141 
142 		else
143 		     /* expm1(-big#) rounded to -1 (inexact) */
144 		     if(finite(x))
145 			 { ln2hi+ln2lo; return(-one);}
146 
147 		     /* expm1(-INF) is -1 */
148 		     else return(-one);
149 	}
150 	/* end of x < lnhuge */
151 
152 	else
153 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
154 	    return( finite(x) ?  scalb(one,5000) : x);
155 }
156