xref: /csrg-svn/lib/libm/common_source/expm1.c (revision 24706)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)expm1.c	1.2 (Berkeley) 8/21/85; 1.2 (ucb.elefunt) 09/11/85";
17 #endif not lint
18 
19 /* EXPM1(X)
20  * RETURN THE EXPONENTIAL OF X MINUS ONE
21  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
22  * CODED IN C BY K.C. NG, 1/19/85;
23  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
24  *
25  * Required system supported functions:
26  *	scalb(x,n)
27  *	copysign(x,y)
28  *	finite(x)
29  *
30  * Kernel function:
31  *	exp__E(x,c)
32  *
33  * Method:
34  *	1. Argument Reduction: given the input x, find r and integer k such
35  *	   that
36  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
37  *	   r will be represented as r := z+c for better accuracy.
38  *
39  *	2. Compute EXPM1(r)=exp(r)-1 by
40  *
41  *			EXPM1(r=z+c) := z + exp__E(z,c)
42  *
43  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
44  *
45  * 	Remarks:
46  *	   1. When k=1 and z < -0.25, we use the following formula for
47  *	      better accuracy:
48  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
49  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
50  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
51  *	      when k>56.
52  *
53  * Special cases:
54  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
55  *	EXPM1(-INF)= -1;
56  *	for finite argument, only EXPM1(0)=0 is exact.
57  *
58  * Accuracy:
59  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
60  *	1,166,000 random arguments on a VAX, the maximum observed error was
61  *	.872 ulps (units of the last place).
62  *
63  * Constants:
64  * The hexadecimal values are the intended ones for the following constants.
65  * The decimal values may be used, provided that the compiler will convert
66  * from decimal to binary accurately enough to produce the hexadecimal values
67  * shown.
68  */
69 
70 #ifdef VAX	/* VAX D format */
71 /* double static */
72 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
73 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
74 /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
75 /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
76 static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
77 static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
78 static long    lnhugex[] = { 0xec1d43bd, 0x9010a73e};
79 static long    invln2x[] = { 0xaa3b40b8, 0x17f1295c};
80 #define    ln2hi    (*(double*)ln2hix)
81 #define    ln2lo    (*(double*)ln2lox)
82 #define   lnhuge    (*(double*)lnhugex)
83 #define   invln2    (*(double*)invln2x)
84 #else	/* IEEE double */
85 double static
86 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
87 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
88 lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
89 invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
90 #endif
91 
92 double expm1(x)
93 double x;
94 {
95 	double static one=1.0, half=1.0/2.0;
96 	double scalb(), copysign(), exp__E(), z,hi,lo,c;
97 	int k,finite();
98 #ifdef VAX
99 	static prec=56;
100 #else	/* IEEE double */
101 	static prec=53;
102 #endif
103 #ifndef VAX
104 	if(x!=x) return(x);	/* x is NaN */
105 #endif
106 
107 	if( x <= lnhuge ) {
108 		if( x >= -40.0 ) {
109 
110 		    /* argument reduction : x - k*ln2 */
111 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
112 			hi=x-k*ln2hi ;
113 			z=hi-(lo=k*ln2lo);
114 			c=(hi-z)-lo;
115 
116 			if(k==0) return(z+exp__E(z,c));
117 			if(k==1)
118 			    if(z< -0.25)
119 				{x=z+half;x +=exp__E(z,c); return(x+x);}
120 			    else
121 				{z+=exp__E(z,c); x=half+z; return(x+x);}
122 		    /* end of k=1 */
123 
124 			else {
125 			    if(k<=prec)
126 			      { x=one-scalb(one,-k); z += exp__E(z,c);}
127 			    else if(k<100)
128 			      { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
129 			    else
130 			      { x = exp__E(z,c)+z; z=one;}
131 
132 			    return (scalb(x+z,k));
133 			}
134 		}
135 		/* end of x > lnunfl */
136 
137 		else
138 		     /* expm1(-big#) rounded to -1 (inexact) */
139 		     if(finite(x))
140 			 { ln2hi+ln2lo; return(-one);}
141 
142 		     /* expm1(-INF) is -1 */
143 		     else return(-one);
144 	}
145 	/* end of x < lnhuge */
146 
147 	else
148 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
149 	    return( finite(x) ?  scalb(one,5000) : x);
150 }
151