134124Sbostic /* 224595Szliu * Copyright (c) 1985 Regents of the University of California. 334124Sbostic * All rights reserved. 434124Sbostic * 5*42657Sbostic * %sccs.include.redist.c% 634124Sbostic * 734124Sbostic * All recipients should regard themselves as participants in an ongoing 834124Sbostic * research project and hence should feel obligated to report their 934124Sbostic * experiences (good or bad) with these elementary function codes, using 1034124Sbostic * the sendbug(8) program, to the authors. 1124595Szliu */ 1224595Szliu 1324595Szliu #ifndef lint 14*42657Sbostic static char sccsid[] = "@(#)expm1.c 5.5 (Berkeley) 06/01/90"; 1534124Sbostic #endif /* not lint */ 1624595Szliu 1724595Szliu /* EXPM1(X) 1824595Szliu * RETURN THE EXPONENTIAL OF X MINUS ONE 1924595Szliu * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS) 2024595Szliu * CODED IN C BY K.C. NG, 1/19/85; 2124595Szliu * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85. 2224595Szliu * 2324595Szliu * Required system supported functions: 2424595Szliu * scalb(x,n) 2524595Szliu * copysign(x,y) 2624595Szliu * finite(x) 2724595Szliu * 2824595Szliu * Kernel function: 2924595Szliu * exp__E(x,c) 3024595Szliu * 3124595Szliu * Method: 3224595Szliu * 1. Argument Reduction: given the input x, find r and integer k such 3324595Szliu * that 3424595Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 3524595Szliu * r will be represented as r := z+c for better accuracy. 3624595Szliu * 3724595Szliu * 2. Compute EXPM1(r)=exp(r)-1 by 3824595Szliu * 3924595Szliu * EXPM1(r=z+c) := z + exp__E(z,c) 4024595Szliu * 4124595Szliu * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). 4224595Szliu * 4324595Szliu * Remarks: 4424595Szliu * 1. When k=1 and z < -0.25, we use the following formula for 4524595Szliu * better accuracy: 4624595Szliu * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) 4724595Szliu * 2. To avoid rounding error in 1-2^-k where k is large, we use 4824595Szliu * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } 4924595Szliu * when k>56. 5024595Szliu * 5124595Szliu * Special cases: 5224595Szliu * EXPM1(INF) is INF, EXPM1(NaN) is NaN; 5324595Szliu * EXPM1(-INF)= -1; 5424595Szliu * for finite argument, only EXPM1(0)=0 is exact. 5524595Szliu * 5624595Szliu * Accuracy: 5724595Szliu * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with 5824595Szliu * 1,166,000 random arguments on a VAX, the maximum observed error was 5924595Szliu * .872 ulps (units of the last place). 6024595Szliu * 6124595Szliu * Constants: 6224595Szliu * The hexadecimal values are the intended ones for the following constants. 6324595Szliu * The decimal values may be used, provided that the compiler will convert 6424595Szliu * from decimal to binary accurately enough to produce the hexadecimal values 6524595Szliu * shown. 6624595Szliu */ 6724595Szliu 6835679Sbostic #include "mathimpl.h" 6924595Szliu 7035679Sbostic vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 7135679Sbostic vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 7235679Sbostic vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010) 7335679Sbostic vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1) 7435679Sbostic 7535679Sbostic ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 7635679Sbostic ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76) 7735679Sbostic ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2) 7835679Sbostic ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE) 7935679Sbostic 8035679Sbostic #ifdef vccast 8135679Sbostic #define ln2hi vccast(ln2hi) 8235679Sbostic #define ln2lo vccast(ln2lo) 8335679Sbostic #define lnhuge vccast(lnhuge) 8435679Sbostic #define invln2 vccast(invln2) 8535679Sbostic #endif 8635679Sbostic 8724595Szliu double expm1(x) 8824595Szliu double x; 8924595Szliu { 9035679Sbostic const static double one=1.0, half=1.0/2.0; 9135679Sbostic double z,hi,lo,c; 9235679Sbostic int k; 9331853Szliu #if defined(vax)||defined(tahoe) 9424595Szliu static prec=56; 9531853Szliu #else /* defined(vax)||defined(tahoe) */ 9624595Szliu static prec=53; 9731853Szliu #endif /* defined(vax)||defined(tahoe) */ 9835679Sbostic 9931853Szliu #if !defined(vax)&&!defined(tahoe) 10024595Szliu if(x!=x) return(x); /* x is NaN */ 10131853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 10224595Szliu 10324595Szliu if( x <= lnhuge ) { 10424595Szliu if( x >= -40.0 ) { 10524595Szliu 10624595Szliu /* argument reduction : x - k*ln2 */ 10724595Szliu k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ 10824595Szliu hi=x-k*ln2hi ; 10924595Szliu z=hi-(lo=k*ln2lo); 11024595Szliu c=(hi-z)-lo; 11124595Szliu 11224595Szliu if(k==0) return(z+exp__E(z,c)); 11324595Szliu if(k==1) 11424595Szliu if(z< -0.25) 11524595Szliu {x=z+half;x +=exp__E(z,c); return(x+x);} 11624595Szliu else 11724595Szliu {z+=exp__E(z,c); x=half+z; return(x+x);} 11824595Szliu /* end of k=1 */ 11924595Szliu 12024595Szliu else { 12124595Szliu if(k<=prec) 12224595Szliu { x=one-scalb(one,-k); z += exp__E(z,c);} 12324595Szliu else if(k<100) 12424595Szliu { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;} 12524595Szliu else 12624595Szliu { x = exp__E(z,c)+z; z=one;} 12724595Szliu 12824595Szliu return (scalb(x+z,k)); 12924595Szliu } 13024595Szliu } 13124595Szliu /* end of x > lnunfl */ 13224595Szliu 13324595Szliu else 13424595Szliu /* expm1(-big#) rounded to -1 (inexact) */ 13524595Szliu if(finite(x)) 13624595Szliu { ln2hi+ln2lo; return(-one);} 13724595Szliu 13824595Szliu /* expm1(-INF) is -1 */ 13924595Szliu else return(-one); 14024595Szliu } 14124595Szliu /* end of x < lnhuge */ 14224595Szliu 14324595Szliu else 14424595Szliu /* expm1(INF) is INF, expm1(+big#) overflows to INF */ 14524595Szliu return( finite(x) ? scalb(one,5000) : x); 14624595Szliu } 147