1*34124Sbostic /* 224595Szliu * Copyright (c) 1985 Regents of the University of California. 3*34124Sbostic * All rights reserved. 4*34124Sbostic * 5*34124Sbostic * Redistribution and use in source and binary forms are permitted 6*34124Sbostic * provided that this notice is preserved and that due credit is given 7*34124Sbostic * to the University of California at Berkeley. The name of the University 8*34124Sbostic * may not be used to endorse or promote products derived from this 9*34124Sbostic * software without specific prior written permission. This software 10*34124Sbostic * is provided ``as is'' without express or implied warranty. 11*34124Sbostic * 12*34124Sbostic * All recipients should regard themselves as participants in an ongoing 13*34124Sbostic * research project and hence should feel obligated to report their 14*34124Sbostic * experiences (good or bad) with these elementary function codes, using 15*34124Sbostic * the sendbug(8) program, to the authors. 1624595Szliu */ 1724595Szliu 1824595Szliu #ifndef lint 19*34124Sbostic static char sccsid[] = "@(#)expm1.c 5.2 (Berkeley) 04/29/88"; 20*34124Sbostic #endif /* not lint */ 2124595Szliu 2224595Szliu /* EXPM1(X) 2324595Szliu * RETURN THE EXPONENTIAL OF X MINUS ONE 2424595Szliu * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS) 2524595Szliu * CODED IN C BY K.C. NG, 1/19/85; 2624595Szliu * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85. 2724595Szliu * 2824595Szliu * Required system supported functions: 2924595Szliu * scalb(x,n) 3024595Szliu * copysign(x,y) 3124595Szliu * finite(x) 3224595Szliu * 3324595Szliu * Kernel function: 3424595Szliu * exp__E(x,c) 3524595Szliu * 3624595Szliu * Method: 3724595Szliu * 1. Argument Reduction: given the input x, find r and integer k such 3824595Szliu * that 3924595Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 4024595Szliu * r will be represented as r := z+c for better accuracy. 4124595Szliu * 4224595Szliu * 2. Compute EXPM1(r)=exp(r)-1 by 4324595Szliu * 4424595Szliu * EXPM1(r=z+c) := z + exp__E(z,c) 4524595Szliu * 4624595Szliu * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). 4724595Szliu * 4824595Szliu * Remarks: 4924595Szliu * 1. When k=1 and z < -0.25, we use the following formula for 5024595Szliu * better accuracy: 5124595Szliu * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) 5224595Szliu * 2. To avoid rounding error in 1-2^-k where k is large, we use 5324595Szliu * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } 5424595Szliu * when k>56. 5524595Szliu * 5624595Szliu * Special cases: 5724595Szliu * EXPM1(INF) is INF, EXPM1(NaN) is NaN; 5824595Szliu * EXPM1(-INF)= -1; 5924595Szliu * for finite argument, only EXPM1(0)=0 is exact. 6024595Szliu * 6124595Szliu * Accuracy: 6224595Szliu * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with 6324595Szliu * 1,166,000 random arguments on a VAX, the maximum observed error was 6424595Szliu * .872 ulps (units of the last place). 6524595Szliu * 6624595Szliu * Constants: 6724595Szliu * The hexadecimal values are the intended ones for the following constants. 6824595Szliu * The decimal values may be used, provided that the compiler will convert 6924595Szliu * from decimal to binary accurately enough to produce the hexadecimal values 7024595Szliu * shown. 7124595Szliu */ 7224595Szliu 7331853Szliu #if defined(vax)||defined(tahoe) /* VAX D format */ 7431853Szliu #ifdef vax 7531812Szliu #define _0x(A,B) 0x/**/A/**/B 7631853Szliu #else /* vax */ 7731812Szliu #define _0x(A,B) 0x/**/B/**/A 7831853Szliu #endif /* vax */ 7926893Selefunt /* static double */ 8024595Szliu /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 8124595Szliu /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 8224595Szliu /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ 8324595Szliu /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ 8431812Szliu static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)}; 8531812Szliu static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)}; 8631812Szliu static long lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)}; 8731812Szliu static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)}; 8824595Szliu #define ln2hi (*(double*)ln2hix) 8924595Szliu #define ln2lo (*(double*)ln2lox) 9024595Szliu #define lnhuge (*(double*)lnhugex) 9124595Szliu #define invln2 (*(double*)invln2x) 9231853Szliu #else /* defined(vax)||defined(tahoe) */ 9326893Selefunt static double 9424595Szliu ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 9524595Szliu ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 9624595Szliu lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ 9724595Szliu invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ 9831853Szliu #endif /* defined(vax)||defined(tahoe) */ 9924595Szliu 10024595Szliu double expm1(x) 10124595Szliu double x; 10224595Szliu { 10326893Selefunt static double one=1.0, half=1.0/2.0; 10424595Szliu double scalb(), copysign(), exp__E(), z,hi,lo,c; 10524595Szliu int k,finite(); 10631853Szliu #if defined(vax)||defined(tahoe) 10724595Szliu static prec=56; 10831853Szliu #else /* defined(vax)||defined(tahoe) */ 10924595Szliu static prec=53; 11031853Szliu #endif /* defined(vax)||defined(tahoe) */ 11131853Szliu #if !defined(vax)&&!defined(tahoe) 11224595Szliu if(x!=x) return(x); /* x is NaN */ 11331853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 11424595Szliu 11524595Szliu if( x <= lnhuge ) { 11624595Szliu if( x >= -40.0 ) { 11724595Szliu 11824595Szliu /* argument reduction : x - k*ln2 */ 11924595Szliu k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ 12024595Szliu hi=x-k*ln2hi ; 12124595Szliu z=hi-(lo=k*ln2lo); 12224595Szliu c=(hi-z)-lo; 12324595Szliu 12424595Szliu if(k==0) return(z+exp__E(z,c)); 12524595Szliu if(k==1) 12624595Szliu if(z< -0.25) 12724595Szliu {x=z+half;x +=exp__E(z,c); return(x+x);} 12824595Szliu else 12924595Szliu {z+=exp__E(z,c); x=half+z; return(x+x);} 13024595Szliu /* end of k=1 */ 13124595Szliu 13224595Szliu else { 13324595Szliu if(k<=prec) 13424595Szliu { x=one-scalb(one,-k); z += exp__E(z,c);} 13524595Szliu else if(k<100) 13624595Szliu { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;} 13724595Szliu else 13824595Szliu { x = exp__E(z,c)+z; z=one;} 13924595Szliu 14024595Szliu return (scalb(x+z,k)); 14124595Szliu } 14224595Szliu } 14324595Szliu /* end of x > lnunfl */ 14424595Szliu 14524595Szliu else 14624595Szliu /* expm1(-big#) rounded to -1 (inexact) */ 14724595Szliu if(finite(x)) 14824595Szliu { ln2hi+ln2lo; return(-one);} 14924595Szliu 15024595Szliu /* expm1(-INF) is -1 */ 15124595Szliu else return(-one); 15224595Szliu } 15324595Szliu /* end of x < lnhuge */ 15424595Szliu 15524595Szliu else 15624595Szliu /* expm1(INF) is INF, expm1(+big#) overflows to INF */ 15724595Szliu return( finite(x) ? scalb(one,5000) : x); 15824595Szliu } 159