1*24595Szliu /* 2*24595Szliu * Copyright (c) 1985 Regents of the University of California. 3*24595Szliu * 4*24595Szliu * Use and reproduction of this software are granted in accordance with 5*24595Szliu * the terms and conditions specified in the Berkeley Software License 6*24595Szliu * Agreement (in particular, this entails acknowledgement of the programs' 7*24595Szliu * source, and inclusion of this notice) with the additional understanding 8*24595Szliu * that all recipients should regard themselves as participants in an 9*24595Szliu * ongoing research project and hence should feel obligated to report 10*24595Szliu * their experiences (good or bad) with these elementary function codes, 11*24595Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12*24595Szliu */ 13*24595Szliu 14*24595Szliu #ifndef lint 15*24595Szliu static char sccsid[] = "@(#)expm1.c 1.1 (ELEFUNT) 09/06/85"; 16*24595Szliu #endif not lint 17*24595Szliu 18*24595Szliu /* EXPM1(X) 19*24595Szliu * RETURN THE EXPONENTIAL OF X MINUS ONE 20*24595Szliu * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS) 21*24595Szliu * CODED IN C BY K.C. NG, 1/19/85; 22*24595Szliu * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85. 23*24595Szliu * 24*24595Szliu * Required system supported functions: 25*24595Szliu * scalb(x,n) 26*24595Szliu * copysign(x,y) 27*24595Szliu * finite(x) 28*24595Szliu * 29*24595Szliu * Kernel function: 30*24595Szliu * exp__E(x,c) 31*24595Szliu * 32*24595Szliu * Method: 33*24595Szliu * 1. Argument Reduction: given the input x, find r and integer k such 34*24595Szliu * that 35*24595Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 36*24595Szliu * r will be represented as r := z+c for better accuracy. 37*24595Szliu * 38*24595Szliu * 2. Compute EXPM1(r)=exp(r)-1 by 39*24595Szliu * 40*24595Szliu * EXPM1(r=z+c) := z + exp__E(z,c) 41*24595Szliu * 42*24595Szliu * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). 43*24595Szliu * 44*24595Szliu * Remarks: 45*24595Szliu * 1. When k=1 and z < -0.25, we use the following formula for 46*24595Szliu * better accuracy: 47*24595Szliu * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) 48*24595Szliu * 2. To avoid rounding error in 1-2^-k where k is large, we use 49*24595Szliu * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } 50*24595Szliu * when k>56. 51*24595Szliu * 52*24595Szliu * Special cases: 53*24595Szliu * EXPM1(INF) is INF, EXPM1(NaN) is NaN; 54*24595Szliu * EXPM1(-INF)= -1; 55*24595Szliu * for finite argument, only EXPM1(0)=0 is exact. 56*24595Szliu * 57*24595Szliu * Accuracy: 58*24595Szliu * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with 59*24595Szliu * 1,166,000 random arguments on a VAX, the maximum observed error was 60*24595Szliu * .872 ulps (units of the last place). 61*24595Szliu * 62*24595Szliu * Constants: 63*24595Szliu * The hexadecimal values are the intended ones for the following constants. 64*24595Szliu * The decimal values may be used, provided that the compiler will convert 65*24595Szliu * from decimal to binary accurately enough to produce the hexadecimal values 66*24595Szliu * shown. 67*24595Szliu */ 68*24595Szliu 69*24595Szliu #ifdef VAX /* VAX D format */ 70*24595Szliu /* double static */ 71*24595Szliu /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 72*24595Szliu /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 73*24595Szliu /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ 74*24595Szliu /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ 75*24595Szliu static long ln2hix[] = { 0x72174031, 0x0000f7d0}; 76*24595Szliu static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; 77*24595Szliu static long lnhugex[] = { 0xec1d43bd, 0x9010a73e}; 78*24595Szliu static long invln2x[] = { 0xaa3b40b8, 0x17f1295c}; 79*24595Szliu #define ln2hi (*(double*)ln2hix) 80*24595Szliu #define ln2lo (*(double*)ln2lox) 81*24595Szliu #define lnhuge (*(double*)lnhugex) 82*24595Szliu #define invln2 (*(double*)invln2x) 83*24595Szliu #else /* IEEE double */ 84*24595Szliu double static 85*24595Szliu ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 86*24595Szliu ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 87*24595Szliu lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ 88*24595Szliu invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ 89*24595Szliu #endif 90*24595Szliu 91*24595Szliu double expm1(x) 92*24595Szliu double x; 93*24595Szliu { 94*24595Szliu double static one=1.0, half=1.0/2.0; 95*24595Szliu double scalb(), copysign(), exp__E(), z,hi,lo,c; 96*24595Szliu int k,finite(); 97*24595Szliu #ifdef VAX 98*24595Szliu static prec=56; 99*24595Szliu #else /* IEEE double */ 100*24595Szliu static prec=53; 101*24595Szliu #endif 102*24595Szliu #ifndef VAX 103*24595Szliu if(x!=x) return(x); /* x is NaN */ 104*24595Szliu #endif 105*24595Szliu 106*24595Szliu if( x <= lnhuge ) { 107*24595Szliu if( x >= -40.0 ) { 108*24595Szliu 109*24595Szliu /* argument reduction : x - k*ln2 */ 110*24595Szliu k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ 111*24595Szliu hi=x-k*ln2hi ; 112*24595Szliu z=hi-(lo=k*ln2lo); 113*24595Szliu c=(hi-z)-lo; 114*24595Szliu 115*24595Szliu if(k==0) return(z+exp__E(z,c)); 116*24595Szliu if(k==1) 117*24595Szliu if(z< -0.25) 118*24595Szliu {x=z+half;x +=exp__E(z,c); return(x+x);} 119*24595Szliu else 120*24595Szliu {z+=exp__E(z,c); x=half+z; return(x+x);} 121*24595Szliu /* end of k=1 */ 122*24595Szliu 123*24595Szliu else { 124*24595Szliu if(k<=prec) 125*24595Szliu { x=one-scalb(one,-k); z += exp__E(z,c);} 126*24595Szliu else if(k<100) 127*24595Szliu { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;} 128*24595Szliu else 129*24595Szliu { x = exp__E(z,c)+z; z=one;} 130*24595Szliu 131*24595Szliu return (scalb(x+z,k)); 132*24595Szliu } 133*24595Szliu } 134*24595Szliu /* end of x > lnunfl */ 135*24595Szliu 136*24595Szliu else 137*24595Szliu /* expm1(-big#) rounded to -1 (inexact) */ 138*24595Szliu if(finite(x)) 139*24595Szliu { ln2hi+ln2lo; return(-one);} 140*24595Szliu 141*24595Szliu /* expm1(-INF) is -1 */ 142*24595Szliu else return(-one); 143*24595Szliu } 144*24595Szliu /* end of x < lnhuge */ 145*24595Szliu 146*24595Szliu else 147*24595Szliu /* expm1(INF) is INF, expm1(+big#) overflows to INF */ 148*24595Szliu return( finite(x) ? scalb(one,5000) : x); 149*24595Szliu } 150