134124Sbostic /* 2*61285Sbostic * Copyright (c) 1985, 1993 3*61285Sbostic * The Regents of the University of California. All rights reserved. 434124Sbostic * 542657Sbostic * %sccs.include.redist.c% 624595Szliu */ 724595Szliu 824595Szliu #ifndef lint 9*61285Sbostic static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 06/04/93"; 1034124Sbostic #endif /* not lint */ 1124595Szliu 1224595Szliu /* EXPM1(X) 1324595Szliu * RETURN THE EXPONENTIAL OF X MINUS ONE 1424595Szliu * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS) 1524595Szliu * CODED IN C BY K.C. NG, 1/19/85; 1624595Szliu * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85. 1724595Szliu * 1824595Szliu * Required system supported functions: 1924595Szliu * scalb(x,n) 2024595Szliu * copysign(x,y) 2124595Szliu * finite(x) 2224595Szliu * 2324595Szliu * Kernel function: 2424595Szliu * exp__E(x,c) 2524595Szliu * 2624595Szliu * Method: 2724595Szliu * 1. Argument Reduction: given the input x, find r and integer k such 2824595Szliu * that 2924595Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 3024595Szliu * r will be represented as r := z+c for better accuracy. 3124595Szliu * 3224595Szliu * 2. Compute EXPM1(r)=exp(r)-1 by 3324595Szliu * 3424595Szliu * EXPM1(r=z+c) := z + exp__E(z,c) 3524595Szliu * 3624595Szliu * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). 3724595Szliu * 3824595Szliu * Remarks: 3924595Szliu * 1. When k=1 and z < -0.25, we use the following formula for 4024595Szliu * better accuracy: 4124595Szliu * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) 4224595Szliu * 2. To avoid rounding error in 1-2^-k where k is large, we use 4324595Szliu * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } 4424595Szliu * when k>56. 4524595Szliu * 4624595Szliu * Special cases: 4724595Szliu * EXPM1(INF) is INF, EXPM1(NaN) is NaN; 4824595Szliu * EXPM1(-INF)= -1; 4924595Szliu * for finite argument, only EXPM1(0)=0 is exact. 5024595Szliu * 5124595Szliu * Accuracy: 5224595Szliu * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with 5324595Szliu * 1,166,000 random arguments on a VAX, the maximum observed error was 5424595Szliu * .872 ulps (units of the last place). 5524595Szliu * 5624595Szliu * Constants: 5724595Szliu * The hexadecimal values are the intended ones for the following constants. 5824595Szliu * The decimal values may be used, provided that the compiler will convert 5924595Szliu * from decimal to binary accurately enough to produce the hexadecimal values 6024595Szliu * shown. 6124595Szliu */ 6224595Szliu 6335679Sbostic #include "mathimpl.h" 6424595Szliu 6535679Sbostic vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 6635679Sbostic vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 6735679Sbostic vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010) 6835679Sbostic vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1) 6935679Sbostic 7035679Sbostic ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 7135679Sbostic ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76) 7235679Sbostic ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2) 7335679Sbostic ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE) 7435679Sbostic 7535679Sbostic #ifdef vccast 7635679Sbostic #define ln2hi vccast(ln2hi) 7735679Sbostic #define ln2lo vccast(ln2lo) 7835679Sbostic #define lnhuge vccast(lnhuge) 7935679Sbostic #define invln2 vccast(invln2) 8035679Sbostic #endif 8135679Sbostic 8224595Szliu double expm1(x) 8324595Szliu double x; 8424595Szliu { 8535679Sbostic const static double one=1.0, half=1.0/2.0; 8635679Sbostic double z,hi,lo,c; 8735679Sbostic int k; 8831853Szliu #if defined(vax)||defined(tahoe) 8924595Szliu static prec=56; 9031853Szliu #else /* defined(vax)||defined(tahoe) */ 9124595Szliu static prec=53; 9231853Szliu #endif /* defined(vax)||defined(tahoe) */ 9335679Sbostic 9431853Szliu #if !defined(vax)&&!defined(tahoe) 9524595Szliu if(x!=x) return(x); /* x is NaN */ 9631853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 9724595Szliu 9824595Szliu if( x <= lnhuge ) { 9924595Szliu if( x >= -40.0 ) { 10024595Szliu 10124595Szliu /* argument reduction : x - k*ln2 */ 10224595Szliu k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ 10324595Szliu hi=x-k*ln2hi ; 10424595Szliu z=hi-(lo=k*ln2lo); 10524595Szliu c=(hi-z)-lo; 10624595Szliu 10757452Sbostic if(k==0) return(z+__exp__E(z,c)); 10824595Szliu if(k==1) 10924595Szliu if(z< -0.25) 11057452Sbostic {x=z+half;x +=__exp__E(z,c); return(x+x);} 11124595Szliu else 11257452Sbostic {z+=__exp__E(z,c); x=half+z; return(x+x);} 11324595Szliu /* end of k=1 */ 11424595Szliu 11524595Szliu else { 11624595Szliu if(k<=prec) 11757452Sbostic { x=one-scalb(one,-k); z += __exp__E(z,c);} 11824595Szliu else if(k<100) 11957452Sbostic { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;} 12024595Szliu else 12157452Sbostic { x = __exp__E(z,c)+z; z=one;} 12224595Szliu 12324595Szliu return (scalb(x+z,k)); 12424595Szliu } 12524595Szliu } 12624595Szliu /* end of x > lnunfl */ 12724595Szliu 12824595Szliu else 12924595Szliu /* expm1(-big#) rounded to -1 (inexact) */ 13024595Szliu if(finite(x)) 13124595Szliu { ln2hi+ln2lo; return(-one);} 13224595Szliu 13324595Szliu /* expm1(-INF) is -1 */ 13424595Szliu else return(-one); 13524595Szliu } 13624595Szliu /* end of x < lnhuge */ 13724595Szliu 13824595Szliu else 13924595Szliu /* expm1(INF) is INF, expm1(+big#) overflows to INF */ 14024595Szliu return( finite(x) ? scalb(one,5000) : x); 14124595Szliu } 142