1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)exp__E.c	1.2 (Berkeley) 8/21/85; 5.1 (ucb.elefunt) 11/30/87";
17 #endif	/* not lint */
18 
19 /* exp__E(x,c)
20  * ASSUMPTION: c << x  SO THAT  fl(x+c)=x.
21  * (c is the correction term for x)
22  * exp__E RETURNS
23  *
24  *			 /  exp(x+c) - 1 - x ,  1E-19 < |x| < .3465736
25  *       exp__E(x,c) = 	|
26  *			 \  0 ,  |x| < 1E-19.
27  *
28  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
29  * KERNEL FUNCTION OF EXP, EXPM1, POW FUNCTIONS
30  * CODED IN C BY K.C. NG, 1/31/85;
31  * REVISED BY K.C. NG on 3/16/85, 4/16/85.
32  *
33  * Required system supported function:
34  *	copysign(x,y)
35  *
36  * Method:
37  *	1. Rational approximation. Let r=x+c.
38  *	   Based on
39  *                                   2 * sinh(r/2)
40  *                exp(r) - 1 =   ----------------------   ,
41  *                               cosh(r/2) - sinh(r/2)
42  *	   exp__E(r) is computed using
43  *                   x*x            (x/2)*W - ( Q - ( 2*P  + x*P ) )
44  *                   --- + (c + x*[---------------------------------- + c ])
45  *                    2                          1 - W
46  * 	   where  P := p1*x^2 + p2*x^4,
47  *	          Q := q1*x^2 + q2*x^4 (for 56 bits precision, add q3*x^6)
48  *	          W := x/2-(Q-x*P),
49  *
50  *	   (See the listing below for the values of p1,p2,q1,q2,q3. The poly-
51  *	    nomials P and Q may be regarded as the approximations to sinh
52  *	    and cosh :
53  *		sinh(r/2) =  r/2 + r * P  ,  cosh(r/2) =  1 + Q . )
54  *
55  *         The coefficients were obtained by a special Remez algorithm.
56  *
57  * Approximation error:
58  *
59  *   |	exp(x) - 1			   |        2**(-57),  (IEEE double)
60  *   | ------------  -  (exp__E(x,0)+x)/x  |  <=
61  *   |	     x			           |	    2**(-69).  (VAX D)
62  *
63  * Constants:
64  * The hexadecimal values are the intended ones for the following constants.
65  * The decimal values may be used, provided that the compiler will convert
66  * from decimal to binary accurately enough to produce the hexadecimal values
67  * shown.
68  */
69 
70 #if defined(vax)||defined(tahoe)	/* VAX D format */
71 #ifdef vax
72 #define _0x(A,B)	0x/**/A/**/B
73 #else	/* vax */
74 #define _0x(A,B)	0x/**/B/**/A
75 #endif	/* vax */
76 /* static double */
77 /* p1     =  1.5150724356786683059E-2    , Hex  2^ -6   *  .F83ABE67E1066A */
78 /* p2     =  6.3112487873718332688E-5    , Hex  2^-13   *  .845B4248CD0173 */
79 /* q1     =  1.1363478204690669916E-1    , Hex  2^ -3   *  .E8B95A44A2EC45 */
80 /* q2     =  1.2624568129896839182E-3    , Hex  2^ -9   *  .A5790572E4F5E7 */
81 /* q3     =  1.5021856115869022674E-6    ; Hex  2^-19   *  .C99EB4604AC395 */
82 static long        p1x[] = { _0x(3abe,3d78), _0x(066a,67e1)};
83 static long        p2x[] = { _0x(5b42,3984), _0x(0173,48cd)};
84 static long        q1x[] = { _0x(b95a,3ee8), _0x(ec45,44a2)};
85 static long        q2x[] = { _0x(7905,3ba5), _0x(f5e7,72e4)};
86 static long        q3x[] = { _0x(9eb4,36c9), _0x(c395,604a)};
87 #define       p1    (*(double*)p1x)
88 #define       p2    (*(double*)p2x)
89 #define       q1    (*(double*)q1x)
90 #define       q2    (*(double*)q2x)
91 #define       q3    (*(double*)q3x)
92 #else	/* defined(vax)||defined(tahoe)	*/
93 static double
94 p1     =  1.3887401997267371720E-2    , /*Hex  2^ -7   *  1.C70FF8B3CC2CF */
95 p2     =  3.3044019718331897649E-5    , /*Hex  2^-15   *  1.15317DF4526C4 */
96 q1     =  1.1110813732786649355E-1    , /*Hex  2^ -4   *  1.C719538248597 */
97 q2     =  9.9176615021572857300E-4    ; /*Hex  2^-10   *  1.03FC4CB8C98E8 */
98 #endif	/* defined(vax)||defined(tahoe)	*/
99 
100 double exp__E(x,c)
101 double x,c;
102 {
103 	static double zero=0.0, one=1.0, half=1.0/2.0, small=1.0E-19;
104 	double copysign(),z,p,q,xp,xh,w;
105 	if(copysign(x,one)>small) {
106            z = x*x  ;
107 	   p = z*( p1 +z* p2 );
108 #if defined(vax)||defined(tahoe)
109            q = z*( q1 +z*( q2 +z* q3 ));
110 #else	/* defined(vax)||defined(tahoe) */
111            q = z*( q1 +z*  q2 );
112 #endif	/* defined(vax)||defined(tahoe) */
113            xp= x*p     ;
114 	   xh= x*half  ;
115            w = xh-(q-xp)  ;
116 	   p = p+p;
117 	   c += x*((xh*w-(q-(p+xp)))/(one-w)+c);
118 	   return(z*half+c);
119 	}
120 	/* end of |x| > small */
121 
122 	else {
123 	    if(x!=zero) one+small;	/* raise the inexact flag */
124 	    return(copysign(zero,x));
125 	}
126 }
127