124594Szliu /* 224594Szliu * Copyright (c) 1985 Regents of the University of California. 324594Szliu * 424594Szliu * Use and reproduction of this software are granted in accordance with 524594Szliu * the terms and conditions specified in the Berkeley Software License 624594Szliu * Agreement (in particular, this entails acknowledgement of the programs' 724594Szliu * source, and inclusion of this notice) with the additional understanding 824594Szliu * that all recipients should regard themselves as participants in an 924594Szliu * ongoing research project and hence should feel obligated to report 1024594Szliu * their experiences (good or bad) with these elementary function codes, 1124594Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 1224594Szliu */ 1324594Szliu 1424594Szliu #ifndef lint 1524706Selefunt static char sccsid[] = 16*31853Szliu "@(#)exp__E.c 1.2 (Berkeley) 8/21/85; 1.6 (ucb.elefunt) 07/13/87"; 17*31853Szliu #endif /* not lint */ 1824594Szliu 1924594Szliu /* exp__E(x,c) 2024594Szliu * ASSUMPTION: c << x SO THAT fl(x+c)=x. 2124594Szliu * (c is the correction term for x) 2224594Szliu * exp__E RETURNS 2324594Szliu * 2424594Szliu * / exp(x+c) - 1 - x , 1E-19 < |x| < .3465736 2524594Szliu * exp__E(x,c) = | 2624594Szliu * \ 0 , |x| < 1E-19. 2724594Szliu * 2824594Szliu * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 2924594Szliu * KERNEL FUNCTION OF EXP, EXPM1, POW FUNCTIONS 3024594Szliu * CODED IN C BY K.C. NG, 1/31/85; 3124594Szliu * REVISED BY K.C. NG on 3/16/85, 4/16/85. 3224594Szliu * 3324594Szliu * Required system supported function: 3424594Szliu * copysign(x,y) 3524594Szliu * 3624594Szliu * Method: 3724594Szliu * 1. Rational approximation. Let r=x+c. 3824594Szliu * Based on 3924594Szliu * 2 * sinh(r/2) 4024594Szliu * exp(r) - 1 = ---------------------- , 4124594Szliu * cosh(r/2) - sinh(r/2) 4224594Szliu * exp__E(r) is computed using 4324594Szliu * x*x (x/2)*W - ( Q - ( 2*P + x*P ) ) 4424594Szliu * --- + (c + x*[---------------------------------- + c ]) 4524594Szliu * 2 1 - W 4624594Szliu * where P := p1*x^2 + p2*x^4, 4724594Szliu * Q := q1*x^2 + q2*x^4 (for 56 bits precision, add q3*x^6) 4824594Szliu * W := x/2-(Q-x*P), 4924594Szliu * 5024594Szliu * (See the listing below for the values of p1,p2,q1,q2,q3. The poly- 5124594Szliu * nomials P and Q may be regarded as the approximations to sinh 5224594Szliu * and cosh : 5324594Szliu * sinh(r/2) = r/2 + r * P , cosh(r/2) = 1 + Q . ) 5424594Szliu * 5524594Szliu * The coefficients were obtained by a special Remez algorithm. 5624594Szliu * 5724594Szliu * Approximation error: 5824594Szliu * 5924594Szliu * | exp(x) - 1 | 2**(-57), (IEEE double) 6024594Szliu * | ------------ - (exp__E(x,0)+x)/x | <= 6124594Szliu * | x | 2**(-69). (VAX D) 6224594Szliu * 6324594Szliu * Constants: 6424594Szliu * The hexadecimal values are the intended ones for the following constants. 6524594Szliu * The decimal values may be used, provided that the compiler will convert 6624594Szliu * from decimal to binary accurately enough to produce the hexadecimal values 6724594Szliu * shown. 6824594Szliu */ 6924594Szliu 70*31853Szliu #if defined(vax)||defined(tahoe) /* VAX D format */ 71*31853Szliu #ifdef vax 7231812Szliu #define _0x(A,B) 0x/**/A/**/B 73*31853Szliu #else /* vax */ 7431812Szliu #define _0x(A,B) 0x/**/B/**/A 75*31853Szliu #endif /* vax */ 7624594Szliu /* static double */ 7724594Szliu /* p1 = 1.5150724356786683059E-2 , Hex 2^ -6 * .F83ABE67E1066A */ 7824594Szliu /* p2 = 6.3112487873718332688E-5 , Hex 2^-13 * .845B4248CD0173 */ 7924594Szliu /* q1 = 1.1363478204690669916E-1 , Hex 2^ -3 * .E8B95A44A2EC45 */ 8024594Szliu /* q2 = 1.2624568129896839182E-3 , Hex 2^ -9 * .A5790572E4F5E7 */ 8124594Szliu /* q3 = 1.5021856115869022674E-6 ; Hex 2^-19 * .C99EB4604AC395 */ 8231812Szliu static long p1x[] = { _0x(3abe,3d78), _0x(066a,67e1)}; 8331812Szliu static long p2x[] = { _0x(5b42,3984), _0x(0173,48cd)}; 8431812Szliu static long q1x[] = { _0x(b95a,3ee8), _0x(ec45,44a2)}; 8531812Szliu static long q2x[] = { _0x(7905,3ba5), _0x(f5e7,72e4)}; 8631812Szliu static long q3x[] = { _0x(9eb4,36c9), _0x(c395,604a)}; 8724594Szliu #define p1 (*(double*)p1x) 8824594Szliu #define p2 (*(double*)p2x) 8924594Szliu #define q1 (*(double*)q1x) 9024594Szliu #define q2 (*(double*)q2x) 9124594Szliu #define q3 (*(double*)q3x) 92*31853Szliu #else /* defined(vax)||defined(tahoe) */ 9324594Szliu static double 9424594Szliu p1 = 1.3887401997267371720E-2 , /*Hex 2^ -7 * 1.C70FF8B3CC2CF */ 9524594Szliu p2 = 3.3044019718331897649E-5 , /*Hex 2^-15 * 1.15317DF4526C4 */ 9624594Szliu q1 = 1.1110813732786649355E-1 , /*Hex 2^ -4 * 1.C719538248597 */ 9724594Szliu q2 = 9.9176615021572857300E-4 ; /*Hex 2^-10 * 1.03FC4CB8C98E8 */ 98*31853Szliu #endif /* defined(vax)||defined(tahoe) */ 9924594Szliu 10024594Szliu double exp__E(x,c) 10124594Szliu double x,c; 10224594Szliu { 10326893Selefunt static double zero=0.0, one=1.0, half=1.0/2.0, small=1.0E-19; 10424594Szliu double copysign(),z,p,q,xp,xh,w; 10524594Szliu if(copysign(x,one)>small) { 10624594Szliu z = x*x ; 10724594Szliu p = z*( p1 +z* p2 ); 108*31853Szliu #if defined(vax)||defined(tahoe) 10924594Szliu q = z*( q1 +z*( q2 +z* q3 )); 110*31853Szliu #else /* defined(vax)||defined(tahoe) */ 11124594Szliu q = z*( q1 +z* q2 ); 112*31853Szliu #endif /* defined(vax)||defined(tahoe) */ 11324594Szliu xp= x*p ; 11424594Szliu xh= x*half ; 11524594Szliu w = xh-(q-xp) ; 11624594Szliu p = p+p; 11724594Szliu c += x*((xh*w-(q-(p+xp)))/(one-w)+c); 11824594Szliu return(z*half+c); 11924594Szliu } 12024594Szliu /* end of |x| > small */ 12124594Szliu 12224594Szliu else { 12324594Szliu if(x!=zero) one+small; /* raise the inexact flag */ 12424594Szliu return(copysign(zero,x)); 12524594Szliu } 12624594Szliu } 127