xref: /csrg-svn/lib/libm/common_source/exp.c (revision 35679)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * All recipients should regard themselves as participants in an ongoing
18  * research project and hence should feel obligated to report their
19  * experiences (good or bad) with these elementary function codes, using
20  * the sendbug(8) program, to the authors.
21  */
22 
23 #ifndef lint
24 static char sccsid[] = "@(#)exp.c	5.4 (Berkeley) 09/22/88";
25 #endif /* not lint */
26 
27 /* EXP(X)
28  * RETURN THE EXPONENTIAL OF X
29  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
30  * CODED IN C BY K.C. NG, 1/19/85;
31  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
32  *
33  * Required system supported functions:
34  *	scalb(x,n)
35  *	copysign(x,y)
36  *	finite(x)
37  *
38  * Method:
39  *	1. Argument Reduction: given the input x, find r and integer k such
40  *	   that
41  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
42  *	   r will be represented as r := z+c for better accuracy.
43  *
44  *	2. Compute exp(r) by
45  *
46  *		exp(r) = 1 + r + r*R1/(2-R1),
47  *	   where
48  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
49  *
50  *	3. exp(x) = 2^k * exp(r) .
51  *
52  * Special cases:
53  *	exp(INF) is INF, exp(NaN) is NaN;
54  *	exp(-INF)=  0;
55  *	for finite argument, only exp(0)=1 is exact.
56  *
57  * Accuracy:
58  *	exp(x) returns the exponential of x nearly rounded. In a test run
59  *	with 1,156,000 random arguments on a VAX, the maximum observed
60  *	error was 0.869 ulps (units in the last place).
61  *
62  * Constants:
63  * The hexadecimal values are the intended ones for the following constants.
64  * The decimal values may be used, provided that the compiler will convert
65  * from decimal to binary accurately enough to produce the hexadecimal values
66  * shown.
67  */
68 
69 #include "mathimpl.h"
70 
71 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
72 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
73 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
74 vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
75 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
76 vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
77 vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
78 vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
79 vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
80 vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
81 
82 #ifdef vccast
83 #define    ln2hi    vccast(ln2hi)
84 #define    ln2lo    vccast(ln2lo)
85 #define   lnhuge    vccast(lnhuge)
86 #define   lntiny    vccast(lntiny)
87 #define   invln2    vccast(invln2)
88 #define       p1    vccast(p1)
89 #define       p2    vccast(p2)
90 #define       p3    vccast(p3)
91 #define       p4    vccast(p4)
92 #define       p5    vccast(p5)
93 #endif
94 
95 ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
96 ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
97 ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
98 ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
99 ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
100 ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
101 ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
102 ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
103 ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
104 ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
105 
106 double exp(x)
107 double x;
108 {
109 	double  z,hi,lo,c;
110 	int k;
111 
112 #if !defined(vax)&&!defined(tahoe)
113 	if(x!=x) return(x);	/* x is NaN */
114 #endif	/* !defined(vax)&&!defined(tahoe) */
115 	if( x <= lnhuge ) {
116 		if( x >= lntiny ) {
117 
118 		    /* argument reduction : x --> x - k*ln2 */
119 
120 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
121 
122 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
123 
124 			hi=x-k*ln2hi;
125 			x=hi-(lo=k*ln2lo);
126 
127 		    /* return 2^k*[1+x+x*c/(2+c)]  */
128 			z=x*x;
129 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
130 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
131 
132 		}
133 		/* end of x > lntiny */
134 
135 		else
136 		     /* exp(-big#) underflows to zero */
137 		     if(finite(x))  return(scalb(1.0,-5000));
138 
139 		     /* exp(-INF) is zero */
140 		     else return(0.0);
141 	}
142 	/* end of x < lnhuge */
143 
144 	else
145 	/* exp(INF) is INF, exp(+big#) overflows to INF */
146 	    return( finite(x) ?  scalb(1.0,5000)  : x);
147 }
148