xref: /csrg-svn/lib/libm/common_source/exp.c (revision 24706)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)exp.c	4.3 (Berkeley) 8/21/85; 1.2 (ucb.elefunt) 09/11/85";
17 #endif not lint
18 
19 /* EXP(X)
20  * RETURN THE EXPONENTIAL OF X
21  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
22  * CODED IN C BY K.C. NG, 1/19/85;
23  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85.
24  *
25  * Required system supported functions:
26  *	scalb(x,n)
27  *	copysign(x,y)
28  *	finite(x)
29  *
30  * Kernel function:
31  *	exp__E(x,c)
32  *
33  * Method:
34  *	1. Argument Reduction: given the input x, find r and integer k such
35  *	   that
36  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
37  *	   r will be represented as r := z+c for better accuracy.
38  *
39  *	2. Compute expm1(r)=exp(r)-1 by
40  *
41  *			expm1(r=z+c) := z + exp__E(z,r)
42  *
43  *	3. exp(x) = 2^k * ( expm1(r) + 1 ).
44  *
45  * Special cases:
46  *	exp(INF) is INF, exp(NaN) is NaN;
47  *	exp(-INF)=  0;
48  *	for finite argument, only exp(0)=1 is exact.
49  *
50  * Accuracy:
51  *	exp(x) returns the exponential of x nearly rounded. In a test run
52  *	with 1,156,000 random arguments on a VAX, the maximum observed
53  *	error was .768 ulps (units in the last place).
54  *
55  * Constants:
56  * The hexadecimal values are the intended ones for the following constants.
57  * The decimal values may be used, provided that the compiler will convert
58  * from decimal to binary accurately enough to produce the hexadecimal values
59  * shown.
60  */
61 
62 #ifdef VAX	/* VAX D format */
63 /* double static */
64 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
65 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
66 /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
67 /* lntiny = -9.5654310917272452386E1     , Hex  2^  7   * -.BF4F01D72E33AF */
68 /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
69 static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
70 static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
71 static long    lnhugex[] = { 0xec1d43bd, 0x9010a73e};
72 static long    lntinyx[] = { 0x4f01c3bf, 0x33afd72e};
73 static long    invln2x[] = { 0xaa3b40b8, 0x17f1295c};
74 #define    ln2hi    (*(double*)ln2hix)
75 #define    ln2lo    (*(double*)ln2lox)
76 #define   lnhuge    (*(double*)lnhugex)
77 #define   lntiny    (*(double*)lntinyx)
78 #define   invln2    (*(double*)invln2x)
79 #else	/* IEEE double */
80 double static
81 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
82 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
83 lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
84 lntiny = -7.5137154372698068983E2     , /*Hex  2^  9   * -1.77AF8EBEAE354 */
85 invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
86 #endif
87 
88 double exp(x)
89 double x;
90 {
91 	double scalb(), copysign(), exp__E(), z,hi,lo,c;
92 	int k,finite();
93 
94 #ifndef VAX
95 	if(x!=x) return(x);	/* x is NaN */
96 #endif
97 	if( x <= lnhuge ) {
98 		if( x >= lntiny ) {
99 
100 		    /* argument reduction : x --> x - k*ln2 */
101 
102 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
103 
104 			/* express x-k*ln2 as z+c */
105 			hi=x-k*ln2hi;
106 			z=hi-(lo=k*ln2lo);
107 			c=(hi-z)-lo;
108 
109 		    /* return 2^k*[expm1(x) + 1]  */
110 			z += exp__E(z,c);
111 			return (scalb(z+1.0,k));
112 		}
113 		/* end of x > lntiny */
114 
115 		else
116 		     /* exp(-big#) underflows to zero */
117 		     if(finite(x))  return(scalb(1.0,-5000));
118 
119 		     /* exp(-INF) is zero */
120 		     else return(0.0);
121 	}
122 	/* end of x < lnhuge */
123 
124 	else
125 	/* exp(INF) is INF, exp(+big#) overflows to INF */
126 	    return( finite(x) ?  scalb(1.0,5000)  : x);
127 }
128