134124Sbostic /* 224593Szliu * Copyright (c) 1985 Regents of the University of California. 334124Sbostic * All rights reserved. 434124Sbostic * 542657Sbostic * %sccs.include.redist.c% 624593Szliu */ 724593Szliu 824593Szliu #ifndef lint 9*57468Sbostic static char sccsid[] = "@(#)exp.c 5.8 (Berkeley) 01/10/93"; 1034124Sbostic #endif /* not lint */ 1124593Szliu 1224593Szliu /* EXP(X) 1324593Szliu * RETURN THE EXPONENTIAL OF X 1424593Szliu * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 1524593Szliu * CODED IN C BY K.C. NG, 1/19/85; 1629410Selefunt * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. 1724593Szliu * 1824593Szliu * Required system supported functions: 1924593Szliu * scalb(x,n) 2024593Szliu * copysign(x,y) 2124593Szliu * finite(x) 2224593Szliu * 2324593Szliu * Method: 2424593Szliu * 1. Argument Reduction: given the input x, find r and integer k such 2524593Szliu * that 2624593Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 2724593Szliu * r will be represented as r := z+c for better accuracy. 2824593Szliu * 2929410Selefunt * 2. Compute exp(r) by 3024593Szliu * 3129410Selefunt * exp(r) = 1 + r + r*R1/(2-R1), 3229410Selefunt * where 3329410Selefunt * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). 3424593Szliu * 3529410Selefunt * 3. exp(x) = 2^k * exp(r) . 3624593Szliu * 3724593Szliu * Special cases: 3824593Szliu * exp(INF) is INF, exp(NaN) is NaN; 3924593Szliu * exp(-INF)= 0; 4024593Szliu * for finite argument, only exp(0)=1 is exact. 4124593Szliu * 4224593Szliu * Accuracy: 4324593Szliu * exp(x) returns the exponential of x nearly rounded. In a test run 4424593Szliu * with 1,156,000 random arguments on a VAX, the maximum observed 4529410Selefunt * error was 0.869 ulps (units in the last place). 4624593Szliu * 4724593Szliu * Constants: 4824593Szliu * The hexadecimal values are the intended ones for the following constants. 4924593Szliu * The decimal values may be used, provided that the compiler will convert 5024593Szliu * from decimal to binary accurately enough to produce the hexadecimal values 5124593Szliu * shown. 5224593Szliu */ 5324593Szliu 5435679Sbostic #include "mathimpl.h" 5529410Selefunt 5635679Sbostic vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 5735679Sbostic vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 5835679Sbostic vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010) 5935679Sbostic vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF) 6035679Sbostic vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1) 6135679Sbostic vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1) 6235679Sbostic vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94) 6335679Sbostic vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F) 6435679Sbostic vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84) 6535679Sbostic vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683) 6624593Szliu 6735679Sbostic #ifdef vccast 6835679Sbostic #define ln2hi vccast(ln2hi) 6935679Sbostic #define ln2lo vccast(ln2lo) 7035679Sbostic #define lnhuge vccast(lnhuge) 7135679Sbostic #define lntiny vccast(lntiny) 7235679Sbostic #define invln2 vccast(invln2) 7335679Sbostic #define p1 vccast(p1) 7435679Sbostic #define p2 vccast(p2) 7535679Sbostic #define p3 vccast(p3) 7635679Sbostic #define p4 vccast(p4) 7735679Sbostic #define p5 vccast(p5) 7835679Sbostic #endif 7935679Sbostic 8035679Sbostic ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E) 8135679Sbostic ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93) 8235679Sbostic ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C) 8335679Sbostic ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1) 8435679Sbostic ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0) 8535679Sbostic ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 8635679Sbostic ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76) 8735679Sbostic ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2) 8835679Sbostic ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354) 8935679Sbostic ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE) 9035679Sbostic 9124593Szliu double exp(x) 9224593Szliu double x; 9324593Szliu { 9435679Sbostic double z,hi,lo,c; 9535679Sbostic int k; 9624593Szliu 9731853Szliu #if !defined(vax)&&!defined(tahoe) 9824593Szliu if(x!=x) return(x); /* x is NaN */ 9931853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 10024593Szliu if( x <= lnhuge ) { 10124593Szliu if( x >= lntiny ) { 10224593Szliu 10324593Szliu /* argument reduction : x --> x - k*ln2 */ 10424593Szliu 10524593Szliu k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ 10624593Szliu 10729410Selefunt /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ 10829410Selefunt 10924593Szliu hi=x-k*ln2hi; 11029410Selefunt x=hi-(lo=k*ln2lo); 11124593Szliu 11229410Selefunt /* return 2^k*[1+x+x*c/(2+c)] */ 11329410Selefunt z=x*x; 11429410Selefunt c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); 11529890Selefunt return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k); 11629410Selefunt 11724593Szliu } 11824593Szliu /* end of x > lntiny */ 11924593Szliu 12024593Szliu else 12124593Szliu /* exp(-big#) underflows to zero */ 12224593Szliu if(finite(x)) return(scalb(1.0,-5000)); 12324593Szliu 12424593Szliu /* exp(-INF) is zero */ 12524593Szliu else return(0.0); 12624593Szliu } 12724593Szliu /* end of x < lnhuge */ 12824593Szliu 12924593Szliu else 13024593Szliu /* exp(INF) is INF, exp(+big#) overflows to INF */ 13124593Szliu return( finite(x) ? scalb(1.0,5000) : x); 13224593Szliu } 13356956Sbostic 13456956Sbostic /* returns exp(r = x + c) for |c| < |x| with no overlap. */ 13556956Sbostic 136*57468Sbostic double __exp__D(x, c) 13756956Sbostic double x, c; 13856956Sbostic { 13956956Sbostic double z,hi,lo, t; 14056956Sbostic int k; 14156956Sbostic 14256956Sbostic #if !defined(vax)&&!defined(tahoe) 14356956Sbostic if (x!=x) return(x); /* x is NaN */ 14456956Sbostic #endif /* !defined(vax)&&!defined(tahoe) */ 14556956Sbostic if ( x <= lnhuge ) { 14656956Sbostic if ( x >= lntiny ) { 14756956Sbostic 14856956Sbostic /* argument reduction : x --> x - k*ln2 */ 14956956Sbostic z = invln2*x; 15056956Sbostic k = z + copysign(.5, x); 15156956Sbostic 15256956Sbostic /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */ 15356956Sbostic 15456956Sbostic hi=(x-k*ln2hi); /* Exact. */ 15556956Sbostic x= hi - (lo = k*ln2lo-c); 15656956Sbostic /* return 2^k*[1+x+x*c/(2+c)] */ 15756956Sbostic z=x*x; 15856956Sbostic c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); 15956956Sbostic c = (x*c)/(2.0-c); 16056956Sbostic 16156956Sbostic return scalb(1.+(hi-(lo - c)), k); 16256956Sbostic } 16356956Sbostic /* end of x > lntiny */ 16456956Sbostic 16556956Sbostic else 16656956Sbostic /* exp(-big#) underflows to zero */ 16756956Sbostic if(finite(x)) return(scalb(1.0,-5000)); 16856956Sbostic 16956956Sbostic /* exp(-INF) is zero */ 17056956Sbostic else return(0.0); 17156956Sbostic } 17256956Sbostic /* end of x < lnhuge */ 17356956Sbostic 17456956Sbostic else 17556956Sbostic /* exp(INF) is INF, exp(+big#) overflows to INF */ 17656956Sbostic return( finite(x) ? scalb(1.0,5000) : x); 17756956Sbostic } 178