134124Sbostic /* 224593Szliu * Copyright (c) 1985 Regents of the University of California. 334124Sbostic * All rights reserved. 434124Sbostic * 534124Sbostic * Redistribution and use in source and binary forms are permitted 634931Sbostic * provided that the above copyright notice and this paragraph are 734931Sbostic * duplicated in all such forms and that any documentation, 834931Sbostic * advertising materials, and other materials related to such 934931Sbostic * distribution and use acknowledge that the software was developed 1034931Sbostic * by the University of California, Berkeley. The name of the 1134931Sbostic * University may not be used to endorse or promote products derived 1234931Sbostic * from this software without specific prior written permission. 1334931Sbostic * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 1434931Sbostic * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 1534931Sbostic * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 1634124Sbostic * 1734124Sbostic * All recipients should regard themselves as participants in an ongoing 1834124Sbostic * research project and hence should feel obligated to report their 1934124Sbostic * experiences (good or bad) with these elementary function codes, using 2034124Sbostic * the sendbug(8) program, to the authors. 2124593Szliu */ 2224593Szliu 2324593Szliu #ifndef lint 24*35679Sbostic static char sccsid[] = "@(#)exp.c 5.4 (Berkeley) 09/22/88"; 2534124Sbostic #endif /* not lint */ 2624593Szliu 2724593Szliu /* EXP(X) 2824593Szliu * RETURN THE EXPONENTIAL OF X 2924593Szliu * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 3024593Szliu * CODED IN C BY K.C. NG, 1/19/85; 3129410Selefunt * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. 3224593Szliu * 3324593Szliu * Required system supported functions: 3424593Szliu * scalb(x,n) 3524593Szliu * copysign(x,y) 3624593Szliu * finite(x) 3724593Szliu * 3824593Szliu * Method: 3924593Szliu * 1. Argument Reduction: given the input x, find r and integer k such 4024593Szliu * that 4124593Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 4224593Szliu * r will be represented as r := z+c for better accuracy. 4324593Szliu * 4429410Selefunt * 2. Compute exp(r) by 4524593Szliu * 4629410Selefunt * exp(r) = 1 + r + r*R1/(2-R1), 4729410Selefunt * where 4829410Selefunt * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). 4924593Szliu * 5029410Selefunt * 3. exp(x) = 2^k * exp(r) . 5124593Szliu * 5224593Szliu * Special cases: 5324593Szliu * exp(INF) is INF, exp(NaN) is NaN; 5424593Szliu * exp(-INF)= 0; 5524593Szliu * for finite argument, only exp(0)=1 is exact. 5624593Szliu * 5724593Szliu * Accuracy: 5824593Szliu * exp(x) returns the exponential of x nearly rounded. In a test run 5924593Szliu * with 1,156,000 random arguments on a VAX, the maximum observed 6029410Selefunt * error was 0.869 ulps (units in the last place). 6124593Szliu * 6224593Szliu * Constants: 6324593Szliu * The hexadecimal values are the intended ones for the following constants. 6424593Szliu * The decimal values may be used, provided that the compiler will convert 6524593Szliu * from decimal to binary accurately enough to produce the hexadecimal values 6624593Szliu * shown. 6724593Szliu */ 6824593Szliu 69*35679Sbostic #include "mathimpl.h" 7029410Selefunt 71*35679Sbostic vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 72*35679Sbostic vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 73*35679Sbostic vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010) 74*35679Sbostic vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF) 75*35679Sbostic vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1) 76*35679Sbostic vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1) 77*35679Sbostic vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94) 78*35679Sbostic vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F) 79*35679Sbostic vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84) 80*35679Sbostic vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683) 8124593Szliu 82*35679Sbostic #ifdef vccast 83*35679Sbostic #define ln2hi vccast(ln2hi) 84*35679Sbostic #define ln2lo vccast(ln2lo) 85*35679Sbostic #define lnhuge vccast(lnhuge) 86*35679Sbostic #define lntiny vccast(lntiny) 87*35679Sbostic #define invln2 vccast(invln2) 88*35679Sbostic #define p1 vccast(p1) 89*35679Sbostic #define p2 vccast(p2) 90*35679Sbostic #define p3 vccast(p3) 91*35679Sbostic #define p4 vccast(p4) 92*35679Sbostic #define p5 vccast(p5) 93*35679Sbostic #endif 94*35679Sbostic 95*35679Sbostic ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E) 96*35679Sbostic ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93) 97*35679Sbostic ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C) 98*35679Sbostic ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1) 99*35679Sbostic ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0) 100*35679Sbostic ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 101*35679Sbostic ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76) 102*35679Sbostic ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2) 103*35679Sbostic ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354) 104*35679Sbostic ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE) 105*35679Sbostic 10624593Szliu double exp(x) 10724593Szliu double x; 10824593Szliu { 109*35679Sbostic double z,hi,lo,c; 110*35679Sbostic int k; 11124593Szliu 11231853Szliu #if !defined(vax)&&!defined(tahoe) 11324593Szliu if(x!=x) return(x); /* x is NaN */ 11431853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 11524593Szliu if( x <= lnhuge ) { 11624593Szliu if( x >= lntiny ) { 11724593Szliu 11824593Szliu /* argument reduction : x --> x - k*ln2 */ 11924593Szliu 12024593Szliu k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ 12124593Szliu 12229410Selefunt /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ 12329410Selefunt 12424593Szliu hi=x-k*ln2hi; 12529410Selefunt x=hi-(lo=k*ln2lo); 12624593Szliu 12729410Selefunt /* return 2^k*[1+x+x*c/(2+c)] */ 12829410Selefunt z=x*x; 12929410Selefunt c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); 13029890Selefunt return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k); 13129410Selefunt 13224593Szliu } 13324593Szliu /* end of x > lntiny */ 13424593Szliu 13524593Szliu else 13624593Szliu /* exp(-big#) underflows to zero */ 13724593Szliu if(finite(x)) return(scalb(1.0,-5000)); 13824593Szliu 13924593Szliu /* exp(-INF) is zero */ 14024593Szliu else return(0.0); 14124593Szliu } 14224593Szliu /* end of x < lnhuge */ 14324593Szliu 14424593Szliu else 14524593Szliu /* exp(INF) is INF, exp(+big#) overflows to INF */ 14624593Szliu return( finite(x) ? scalb(1.0,5000) : x); 14724593Szliu } 148