xref: /csrg-svn/lib/libm/common_source/exp.c (revision 35679)
134124Sbostic /*
224593Szliu  * Copyright (c) 1985 Regents of the University of California.
334124Sbostic  * All rights reserved.
434124Sbostic  *
534124Sbostic  * Redistribution and use in source and binary forms are permitted
634931Sbostic  * provided that the above copyright notice and this paragraph are
734931Sbostic  * duplicated in all such forms and that any documentation,
834931Sbostic  * advertising materials, and other materials related to such
934931Sbostic  * distribution and use acknowledge that the software was developed
1034931Sbostic  * by the University of California, Berkeley.  The name of the
1134931Sbostic  * University may not be used to endorse or promote products derived
1234931Sbostic  * from this software without specific prior written permission.
1334931Sbostic  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
1434931Sbostic  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
1534931Sbostic  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
1634124Sbostic  *
1734124Sbostic  * All recipients should regard themselves as participants in an ongoing
1834124Sbostic  * research project and hence should feel obligated to report their
1934124Sbostic  * experiences (good or bad) with these elementary function codes, using
2034124Sbostic  * the sendbug(8) program, to the authors.
2124593Szliu  */
2224593Szliu 
2324593Szliu #ifndef lint
24*35679Sbostic static char sccsid[] = "@(#)exp.c	5.4 (Berkeley) 09/22/88";
2534124Sbostic #endif /* not lint */
2624593Szliu 
2724593Szliu /* EXP(X)
2824593Szliu  * RETURN THE EXPONENTIAL OF X
2924593Szliu  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
3024593Szliu  * CODED IN C BY K.C. NG, 1/19/85;
3129410Selefunt  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
3224593Szliu  *
3324593Szliu  * Required system supported functions:
3424593Szliu  *	scalb(x,n)
3524593Szliu  *	copysign(x,y)
3624593Szliu  *	finite(x)
3724593Szliu  *
3824593Szliu  * Method:
3924593Szliu  *	1. Argument Reduction: given the input x, find r and integer k such
4024593Szliu  *	   that
4124593Szliu  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
4224593Szliu  *	   r will be represented as r := z+c for better accuracy.
4324593Szliu  *
4429410Selefunt  *	2. Compute exp(r) by
4524593Szliu  *
4629410Selefunt  *		exp(r) = 1 + r + r*R1/(2-R1),
4729410Selefunt  *	   where
4829410Selefunt  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
4924593Szliu  *
5029410Selefunt  *	3. exp(x) = 2^k * exp(r) .
5124593Szliu  *
5224593Szliu  * Special cases:
5324593Szliu  *	exp(INF) is INF, exp(NaN) is NaN;
5424593Szliu  *	exp(-INF)=  0;
5524593Szliu  *	for finite argument, only exp(0)=1 is exact.
5624593Szliu  *
5724593Szliu  * Accuracy:
5824593Szliu  *	exp(x) returns the exponential of x nearly rounded. In a test run
5924593Szliu  *	with 1,156,000 random arguments on a VAX, the maximum observed
6029410Selefunt  *	error was 0.869 ulps (units in the last place).
6124593Szliu  *
6224593Szliu  * Constants:
6324593Szliu  * The hexadecimal values are the intended ones for the following constants.
6424593Szliu  * The decimal values may be used, provided that the compiler will convert
6524593Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
6624593Szliu  * shown.
6724593Szliu  */
6824593Szliu 
69*35679Sbostic #include "mathimpl.h"
7029410Selefunt 
71*35679Sbostic vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
72*35679Sbostic vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
73*35679Sbostic vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
74*35679Sbostic vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
75*35679Sbostic vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
76*35679Sbostic vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
77*35679Sbostic vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
78*35679Sbostic vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
79*35679Sbostic vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
80*35679Sbostic vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
8124593Szliu 
82*35679Sbostic #ifdef vccast
83*35679Sbostic #define    ln2hi    vccast(ln2hi)
84*35679Sbostic #define    ln2lo    vccast(ln2lo)
85*35679Sbostic #define   lnhuge    vccast(lnhuge)
86*35679Sbostic #define   lntiny    vccast(lntiny)
87*35679Sbostic #define   invln2    vccast(invln2)
88*35679Sbostic #define       p1    vccast(p1)
89*35679Sbostic #define       p2    vccast(p2)
90*35679Sbostic #define       p3    vccast(p3)
91*35679Sbostic #define       p4    vccast(p4)
92*35679Sbostic #define       p5    vccast(p5)
93*35679Sbostic #endif
94*35679Sbostic 
95*35679Sbostic ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
96*35679Sbostic ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
97*35679Sbostic ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
98*35679Sbostic ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
99*35679Sbostic ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
100*35679Sbostic ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
101*35679Sbostic ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
102*35679Sbostic ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
103*35679Sbostic ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
104*35679Sbostic ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
105*35679Sbostic 
10624593Szliu double exp(x)
10724593Szliu double x;
10824593Szliu {
109*35679Sbostic 	double  z,hi,lo,c;
110*35679Sbostic 	int k;
11124593Szliu 
11231853Szliu #if !defined(vax)&&!defined(tahoe)
11324593Szliu 	if(x!=x) return(x);	/* x is NaN */
11431853Szliu #endif	/* !defined(vax)&&!defined(tahoe) */
11524593Szliu 	if( x <= lnhuge ) {
11624593Szliu 		if( x >= lntiny ) {
11724593Szliu 
11824593Szliu 		    /* argument reduction : x --> x - k*ln2 */
11924593Szliu 
12024593Szliu 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
12124593Szliu 
12229410Selefunt 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
12329410Selefunt 
12424593Szliu 			hi=x-k*ln2hi;
12529410Selefunt 			x=hi-(lo=k*ln2lo);
12624593Szliu 
12729410Selefunt 		    /* return 2^k*[1+x+x*c/(2+c)]  */
12829410Selefunt 			z=x*x;
12929410Selefunt 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
13029890Selefunt 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
13129410Selefunt 
13224593Szliu 		}
13324593Szliu 		/* end of x > lntiny */
13424593Szliu 
13524593Szliu 		else
13624593Szliu 		     /* exp(-big#) underflows to zero */
13724593Szliu 		     if(finite(x))  return(scalb(1.0,-5000));
13824593Szliu 
13924593Szliu 		     /* exp(-INF) is zero */
14024593Szliu 		     else return(0.0);
14124593Szliu 	}
14224593Szliu 	/* end of x < lnhuge */
14324593Szliu 
14424593Szliu 	else
14524593Szliu 	/* exp(INF) is INF, exp(+big#) overflows to INF */
14624593Szliu 	    return( finite(x) ?  scalb(1.0,5000)  : x);
14724593Szliu }
148