134124Sbostic /* 224593Szliu * Copyright (c) 1985 Regents of the University of California. 334124Sbostic * All rights reserved. 434124Sbostic * 534124Sbostic * Redistribution and use in source and binary forms are permitted 6*34931Sbostic * provided that the above copyright notice and this paragraph are 7*34931Sbostic * duplicated in all such forms and that any documentation, 8*34931Sbostic * advertising materials, and other materials related to such 9*34931Sbostic * distribution and use acknowledge that the software was developed 10*34931Sbostic * by the University of California, Berkeley. The name of the 11*34931Sbostic * University may not be used to endorse or promote products derived 12*34931Sbostic * from this software without specific prior written permission. 13*34931Sbostic * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 14*34931Sbostic * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 15*34931Sbostic * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 1634124Sbostic * 1734124Sbostic * All recipients should regard themselves as participants in an ongoing 1834124Sbostic * research project and hence should feel obligated to report their 1934124Sbostic * experiences (good or bad) with these elementary function codes, using 2034124Sbostic * the sendbug(8) program, to the authors. 2124593Szliu */ 2224593Szliu 2324593Szliu #ifndef lint 24*34931Sbostic static char sccsid[] = "@(#)exp.c 5.3 (Berkeley) 06/30/88"; 2534124Sbostic #endif /* not lint */ 2624593Szliu 2724593Szliu /* EXP(X) 2824593Szliu * RETURN THE EXPONENTIAL OF X 2924593Szliu * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 3024593Szliu * CODED IN C BY K.C. NG, 1/19/85; 3129410Selefunt * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. 3224593Szliu * 3324593Szliu * Required system supported functions: 3424593Szliu * scalb(x,n) 3524593Szliu * copysign(x,y) 3624593Szliu * finite(x) 3724593Szliu * 3824593Szliu * Method: 3924593Szliu * 1. Argument Reduction: given the input x, find r and integer k such 4024593Szliu * that 4124593Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 4224593Szliu * r will be represented as r := z+c for better accuracy. 4324593Szliu * 4429410Selefunt * 2. Compute exp(r) by 4524593Szliu * 4629410Selefunt * exp(r) = 1 + r + r*R1/(2-R1), 4729410Selefunt * where 4829410Selefunt * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). 4924593Szliu * 5029410Selefunt * 3. exp(x) = 2^k * exp(r) . 5124593Szliu * 5224593Szliu * Special cases: 5324593Szliu * exp(INF) is INF, exp(NaN) is NaN; 5424593Szliu * exp(-INF)= 0; 5524593Szliu * for finite argument, only exp(0)=1 is exact. 5624593Szliu * 5724593Szliu * Accuracy: 5824593Szliu * exp(x) returns the exponential of x nearly rounded. In a test run 5924593Szliu * with 1,156,000 random arguments on a VAX, the maximum observed 6029410Selefunt * error was 0.869 ulps (units in the last place). 6124593Szliu * 6224593Szliu * Constants: 6324593Szliu * The hexadecimal values are the intended ones for the following constants. 6424593Szliu * The decimal values may be used, provided that the compiler will convert 6524593Szliu * from decimal to binary accurately enough to produce the hexadecimal values 6624593Szliu * shown. 6724593Szliu */ 6824593Szliu 6931853Szliu #if defined(vax)||defined(tahoe) /* VAX D format */ 7031853Szliu #ifdef vax 7131812Szliu #define _0x(A,B) 0x/**/A/**/B 7231853Szliu #else /* vax */ 7331812Szliu #define _0x(A,B) 0x/**/B/**/A 7431853Szliu #endif /* vax */ 7526893Selefunt /* static double */ 7624593Szliu /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 7724593Szliu /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 7824593Szliu /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ 7924593Szliu /* lntiny = -9.5654310917272452386E1 , Hex 2^ 7 * -.BF4F01D72E33AF */ 8024593Szliu /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ 8129410Selefunt /* p1 = 1.6666666666666602251E-1 , Hex 2^-2 * .AAAAAAAAAAA9F1 */ 8229410Selefunt /* p2 = -2.7777777777015591216E-3 , Hex 2^-8 * -.B60B60B5F5EC94 */ 8329410Selefunt /* p3 = 6.6137563214379341918E-5 , Hex 2^-13 * .8AB355792EF15F */ 8429410Selefunt /* p4 = -1.6533902205465250480E-6 , Hex 2^-19 * -.DDEA0E2E935F84 */ 8529410Selefunt /* p5 = 4.1381367970572387085E-8 , Hex 2^-24 * .B1BB4B95F52683 */ 8631812Szliu static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)}; 8731812Szliu static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)}; 8831812Szliu static long lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)}; 8931812Szliu static long lntinyx[] = { _0x(4f01,c3bf), _0x(33af,d72e)}; 9031812Szliu static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)}; 9131812Szliu static long p1x[] = { _0x(aaaa,3f2a), _0x(a9f1,aaaa)}; 9231812Szliu static long p2x[] = { _0x(0b60,bc36), _0x(ec94,b5f5)}; 9331812Szliu static long p3x[] = { _0x(b355,398a), _0x(f15f,792e)}; 9431812Szliu static long p4x[] = { _0x(ea0e,b6dd), _0x(5f84,2e93)}; 9531812Szliu static long p5x[] = { _0x(bb4b,3431), _0x(2683,95f5)}; 9624593Szliu #define ln2hi (*(double*)ln2hix) 9724593Szliu #define ln2lo (*(double*)ln2lox) 9824593Szliu #define lnhuge (*(double*)lnhugex) 9924593Szliu #define lntiny (*(double*)lntinyx) 10024593Szliu #define invln2 (*(double*)invln2x) 10129410Selefunt #define p1 (*(double*)p1x) 10229410Selefunt #define p2 (*(double*)p2x) 10329410Selefunt #define p3 (*(double*)p3x) 10429410Selefunt #define p4 (*(double*)p4x) 10529410Selefunt #define p5 (*(double*)p5x) 10629410Selefunt 10731853Szliu #else /* defined(vax)||defined(tahoe) */ 10826893Selefunt static double 10929410Selefunt p1 = 1.6666666666666601904E-1 , /*Hex 2^-3 * 1.555555555553E */ 11029410Selefunt p2 = -2.7777777777015593384E-3 , /*Hex 2^-9 * -1.6C16C16BEBD93 */ 11129410Selefunt p3 = 6.6137563214379343612E-5 , /*Hex 2^-14 * 1.1566AAF25DE2C */ 11229410Selefunt p4 = -1.6533902205465251539E-6 , /*Hex 2^-20 * -1.BBD41C5D26BF1 */ 11329410Selefunt p5 = 4.1381367970572384604E-8 , /*Hex 2^-25 * 1.6376972BEA4D0 */ 11424593Szliu ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 11524593Szliu ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 11624593Szliu lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ 11724593Szliu lntiny = -7.5137154372698068983E2 , /*Hex 2^ 9 * -1.77AF8EBEAE354 */ 11824593Szliu invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ 11931853Szliu #endif /* defined(vax)||defined(tahoe) */ 12024593Szliu 12124593Szliu double exp(x) 12224593Szliu double x; 12324593Szliu { 12429410Selefunt double scalb(), copysign(), z,hi,lo,c; 12524593Szliu int k,finite(); 12624593Szliu 12731853Szliu #if !defined(vax)&&!defined(tahoe) 12824593Szliu if(x!=x) return(x); /* x is NaN */ 12931853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 13024593Szliu if( x <= lnhuge ) { 13124593Szliu if( x >= lntiny ) { 13224593Szliu 13324593Szliu /* argument reduction : x --> x - k*ln2 */ 13424593Szliu 13524593Szliu k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ 13624593Szliu 13729410Selefunt /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ 13829410Selefunt 13924593Szliu hi=x-k*ln2hi; 14029410Selefunt x=hi-(lo=k*ln2lo); 14124593Szliu 14229410Selefunt /* return 2^k*[1+x+x*c/(2+c)] */ 14329410Selefunt z=x*x; 14429410Selefunt c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); 14529890Selefunt return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k); 14629410Selefunt 14724593Szliu } 14824593Szliu /* end of x > lntiny */ 14924593Szliu 15024593Szliu else 15124593Szliu /* exp(-big#) underflows to zero */ 15224593Szliu if(finite(x)) return(scalb(1.0,-5000)); 15324593Szliu 15424593Szliu /* exp(-INF) is zero */ 15524593Szliu else return(0.0); 15624593Szliu } 15724593Szliu /* end of x < lnhuge */ 15824593Szliu 15924593Szliu else 16024593Szliu /* exp(INF) is INF, exp(+big#) overflows to INF */ 16124593Szliu return( finite(x) ? scalb(1.0,5000) : x); 16224593Szliu } 163