xref: /csrg-svn/lib/libm/common_source/exp.c (revision 29410)
124593Szliu /*
224593Szliu  * Copyright (c) 1985 Regents of the University of California.
324593Szliu  *
424593Szliu  * Use and reproduction of this software are granted  in  accordance  with
524593Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
624593Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
724593Szliu  * source, and inclusion of this notice) with the additional understanding
824593Szliu  * that  all  recipients  should regard themselves as participants  in  an
924593Szliu  * ongoing  research  project and hence should  feel  obligated  to report
1024593Szliu  * their  experiences (good or bad) with these elementary function  codes,
1124593Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
1224593Szliu  */
1324593Szliu 
1424593Szliu #ifndef lint
1524706Selefunt static char sccsid[] =
16*29410Selefunt "@(#)exp.c	4.3 (Berkeley) 8/21/85; 1.4 (ucb.elefunt) 06/14/86";
1724593Szliu #endif not lint
1824593Szliu 
1924593Szliu /* EXP(X)
2024593Szliu  * RETURN THE EXPONENTIAL OF X
2124593Szliu  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
2224593Szliu  * CODED IN C BY K.C. NG, 1/19/85;
23*29410Selefunt  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
2424593Szliu  *
2524593Szliu  * Required system supported functions:
2624593Szliu  *	scalb(x,n)
2724593Szliu  *	copysign(x,y)
2824593Szliu  *	finite(x)
2924593Szliu  *
3024593Szliu  * Method:
3124593Szliu  *	1. Argument Reduction: given the input x, find r and integer k such
3224593Szliu  *	   that
3324593Szliu  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
3424593Szliu  *	   r will be represented as r := z+c for better accuracy.
3524593Szliu  *
36*29410Selefunt  *	2. Compute exp(r) by
3724593Szliu  *
38*29410Selefunt  *		exp(r) = 1 + r + r*R1/(2-R1),
39*29410Selefunt  *	   where
40*29410Selefunt  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
4124593Szliu  *
42*29410Selefunt  *	3. exp(x) = 2^k * exp(r) .
4324593Szliu  *
4424593Szliu  * Special cases:
4524593Szliu  *	exp(INF) is INF, exp(NaN) is NaN;
4624593Szliu  *	exp(-INF)=  0;
4724593Szliu  *	for finite argument, only exp(0)=1 is exact.
4824593Szliu  *
4924593Szliu  * Accuracy:
5024593Szliu  *	exp(x) returns the exponential of x nearly rounded. In a test run
5124593Szliu  *	with 1,156,000 random arguments on a VAX, the maximum observed
52*29410Selefunt  *	error was 0.869 ulps (units in the last place).
5324593Szliu  *
5424593Szliu  * Constants:
5524593Szliu  * The hexadecimal values are the intended ones for the following constants.
5624593Szliu  * The decimal values may be used, provided that the compiler will convert
5724593Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
5824593Szliu  * shown.
5924593Szliu  */
6024593Szliu 
6124593Szliu #ifdef VAX	/* VAX D format */
6226893Selefunt /* static double */
6324593Szliu /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
6424593Szliu /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
6524593Szliu /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
6624593Szliu /* lntiny = -9.5654310917272452386E1     , Hex  2^  7   * -.BF4F01D72E33AF */
6724593Szliu /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
68*29410Selefunt /* p1     =  1.6666666666666602251E-1    , Hex  2^-2    *  .AAAAAAAAAAA9F1 */
69*29410Selefunt /* p2     = -2.7777777777015591216E-3    , Hex  2^-8    * -.B60B60B5F5EC94 */
70*29410Selefunt /* p3     =  6.6137563214379341918E-5    , Hex  2^-13   *  .8AB355792EF15F */
71*29410Selefunt /* p4     = -1.6533902205465250480E-6    , Hex  2^-19   * -.DDEA0E2E935F84 */
72*29410Selefunt /* p5     =  4.1381367970572387085E-8    , Hex  2^-24   *  .B1BB4B95F52683 */
7324593Szliu static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
7424593Szliu static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
7524593Szliu static long    lnhugex[] = { 0xec1d43bd, 0x9010a73e};
7624593Szliu static long    lntinyx[] = { 0x4f01c3bf, 0x33afd72e};
7724593Szliu static long    invln2x[] = { 0xaa3b40b8, 0x17f1295c};
78*29410Selefunt static long        p1x[] = { 0xaaaa3f2a, 0xa9f1aaaa};
79*29410Selefunt static long        p2x[] = { 0x0b60bc36, 0xec94b5f5};
80*29410Selefunt static long        p3x[] = { 0xb355398a, 0xf15f792e};
81*29410Selefunt static long        p4x[] = { 0xea0eb6dd, 0x5f842e93};
82*29410Selefunt static long        p5x[] = { 0xbb4b3431, 0x268395f5};
8324593Szliu #define    ln2hi    (*(double*)ln2hix)
8424593Szliu #define    ln2lo    (*(double*)ln2lox)
8524593Szliu #define   lnhuge    (*(double*)lnhugex)
8624593Szliu #define   lntiny    (*(double*)lntinyx)
8724593Szliu #define   invln2    (*(double*)invln2x)
88*29410Selefunt #define       p1    (*(double*)p1x)
89*29410Selefunt #define       p2    (*(double*)p2x)
90*29410Selefunt #define       p3    (*(double*)p3x)
91*29410Selefunt #define       p4    (*(double*)p4x)
92*29410Selefunt #define       p5    (*(double*)p5x)
93*29410Selefunt 
9424593Szliu #else	/* IEEE double */
9526893Selefunt static double
96*29410Selefunt p1     =  1.6666666666666601904E-1    , /*Hex  2^-3    *  1.555555555553E */
97*29410Selefunt p2     = -2.7777777777015593384E-3    , /*Hex  2^-9    * -1.6C16C16BEBD93 */
98*29410Selefunt p3     =  6.6137563214379343612E-5    , /*Hex  2^-14   *  1.1566AAF25DE2C */
99*29410Selefunt p4     = -1.6533902205465251539E-6    , /*Hex  2^-20   * -1.BBD41C5D26BF1 */
100*29410Selefunt p5     =  4.1381367970572384604E-8    , /*Hex  2^-25   *  1.6376972BEA4D0 */
10124593Szliu ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
10224593Szliu ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
10324593Szliu lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
10424593Szliu lntiny = -7.5137154372698068983E2     , /*Hex  2^  9   * -1.77AF8EBEAE354 */
10524593Szliu invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
10624593Szliu #endif
10724593Szliu 
10824593Szliu double exp(x)
10924593Szliu double x;
11024593Szliu {
111*29410Selefunt 	double scalb(), copysign(), z,hi,lo,c;
11224593Szliu 	int k,finite();
11324593Szliu 
11424593Szliu #ifndef VAX
11524593Szliu 	if(x!=x) return(x);	/* x is NaN */
11624593Szliu #endif
11724593Szliu 	if( x <= lnhuge ) {
11824593Szliu 		if( x >= lntiny ) {
11924593Szliu 
12024593Szliu 		    /* argument reduction : x --> x - k*ln2 */
12124593Szliu 
12224593Szliu 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
12324593Szliu 
124*29410Selefunt 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
125*29410Selefunt 
12624593Szliu 			hi=x-k*ln2hi;
127*29410Selefunt 			x=hi-(lo=k*ln2lo);
12824593Szliu 
129*29410Selefunt 		    /* return 2^k*[1+x+x*c/(2+c)]  */
130*29410Selefunt 			z=x*x;
131*29410Selefunt 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
132*29410Selefunt 			return  scalb(1.0+(hi-(lo-x*c/(2.0-c))),k);
133*29410Selefunt 
13424593Szliu 		}
13524593Szliu 		/* end of x > lntiny */
13624593Szliu 
13724593Szliu 		else
13824593Szliu 		     /* exp(-big#) underflows to zero */
13924593Szliu 		     if(finite(x))  return(scalb(1.0,-5000));
14024593Szliu 
14124593Szliu 		     /* exp(-INF) is zero */
14224593Szliu 		     else return(0.0);
14324593Szliu 	}
14424593Szliu 	/* end of x < lnhuge */
14524593Szliu 
14624593Szliu 	else
14724593Szliu 	/* exp(INF) is INF, exp(+big#) overflows to INF */
14824593Szliu 	    return( finite(x) ?  scalb(1.0,5000)  : x);
14924593Szliu }
150