124593Szliu /* 224593Szliu * Copyright (c) 1985 Regents of the University of California. 324593Szliu * 424593Szliu * Use and reproduction of this software are granted in accordance with 524593Szliu * the terms and conditions specified in the Berkeley Software License 624593Szliu * Agreement (in particular, this entails acknowledgement of the programs' 724593Szliu * source, and inclusion of this notice) with the additional understanding 824593Szliu * that all recipients should regard themselves as participants in an 924593Szliu * ongoing research project and hence should feel obligated to report 1024593Szliu * their experiences (good or bad) with these elementary function codes, 1124593Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 1224593Szliu */ 1324593Szliu 1424593Szliu #ifndef lint 1524706Selefunt static char sccsid[] = 16*29410Selefunt "@(#)exp.c 4.3 (Berkeley) 8/21/85; 1.4 (ucb.elefunt) 06/14/86"; 1724593Szliu #endif not lint 1824593Szliu 1924593Szliu /* EXP(X) 2024593Szliu * RETURN THE EXPONENTIAL OF X 2124593Szliu * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 2224593Szliu * CODED IN C BY K.C. NG, 1/19/85; 23*29410Selefunt * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86. 2424593Szliu * 2524593Szliu * Required system supported functions: 2624593Szliu * scalb(x,n) 2724593Szliu * copysign(x,y) 2824593Szliu * finite(x) 2924593Szliu * 3024593Szliu * Method: 3124593Szliu * 1. Argument Reduction: given the input x, find r and integer k such 3224593Szliu * that 3324593Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 3424593Szliu * r will be represented as r := z+c for better accuracy. 3524593Szliu * 36*29410Selefunt * 2. Compute exp(r) by 3724593Szliu * 38*29410Selefunt * exp(r) = 1 + r + r*R1/(2-R1), 39*29410Selefunt * where 40*29410Selefunt * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))). 4124593Szliu * 42*29410Selefunt * 3. exp(x) = 2^k * exp(r) . 4324593Szliu * 4424593Szliu * Special cases: 4524593Szliu * exp(INF) is INF, exp(NaN) is NaN; 4624593Szliu * exp(-INF)= 0; 4724593Szliu * for finite argument, only exp(0)=1 is exact. 4824593Szliu * 4924593Szliu * Accuracy: 5024593Szliu * exp(x) returns the exponential of x nearly rounded. In a test run 5124593Szliu * with 1,156,000 random arguments on a VAX, the maximum observed 52*29410Selefunt * error was 0.869 ulps (units in the last place). 5324593Szliu * 5424593Szliu * Constants: 5524593Szliu * The hexadecimal values are the intended ones for the following constants. 5624593Szliu * The decimal values may be used, provided that the compiler will convert 5724593Szliu * from decimal to binary accurately enough to produce the hexadecimal values 5824593Szliu * shown. 5924593Szliu */ 6024593Szliu 6124593Szliu #ifdef VAX /* VAX D format */ 6226893Selefunt /* static double */ 6324593Szliu /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 6424593Szliu /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 6524593Szliu /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ 6624593Szliu /* lntiny = -9.5654310917272452386E1 , Hex 2^ 7 * -.BF4F01D72E33AF */ 6724593Szliu /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ 68*29410Selefunt /* p1 = 1.6666666666666602251E-1 , Hex 2^-2 * .AAAAAAAAAAA9F1 */ 69*29410Selefunt /* p2 = -2.7777777777015591216E-3 , Hex 2^-8 * -.B60B60B5F5EC94 */ 70*29410Selefunt /* p3 = 6.6137563214379341918E-5 , Hex 2^-13 * .8AB355792EF15F */ 71*29410Selefunt /* p4 = -1.6533902205465250480E-6 , Hex 2^-19 * -.DDEA0E2E935F84 */ 72*29410Selefunt /* p5 = 4.1381367970572387085E-8 , Hex 2^-24 * .B1BB4B95F52683 */ 7324593Szliu static long ln2hix[] = { 0x72174031, 0x0000f7d0}; 7424593Szliu static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; 7524593Szliu static long lnhugex[] = { 0xec1d43bd, 0x9010a73e}; 7624593Szliu static long lntinyx[] = { 0x4f01c3bf, 0x33afd72e}; 7724593Szliu static long invln2x[] = { 0xaa3b40b8, 0x17f1295c}; 78*29410Selefunt static long p1x[] = { 0xaaaa3f2a, 0xa9f1aaaa}; 79*29410Selefunt static long p2x[] = { 0x0b60bc36, 0xec94b5f5}; 80*29410Selefunt static long p3x[] = { 0xb355398a, 0xf15f792e}; 81*29410Selefunt static long p4x[] = { 0xea0eb6dd, 0x5f842e93}; 82*29410Selefunt static long p5x[] = { 0xbb4b3431, 0x268395f5}; 8324593Szliu #define ln2hi (*(double*)ln2hix) 8424593Szliu #define ln2lo (*(double*)ln2lox) 8524593Szliu #define lnhuge (*(double*)lnhugex) 8624593Szliu #define lntiny (*(double*)lntinyx) 8724593Szliu #define invln2 (*(double*)invln2x) 88*29410Selefunt #define p1 (*(double*)p1x) 89*29410Selefunt #define p2 (*(double*)p2x) 90*29410Selefunt #define p3 (*(double*)p3x) 91*29410Selefunt #define p4 (*(double*)p4x) 92*29410Selefunt #define p5 (*(double*)p5x) 93*29410Selefunt 9424593Szliu #else /* IEEE double */ 9526893Selefunt static double 96*29410Selefunt p1 = 1.6666666666666601904E-1 , /*Hex 2^-3 * 1.555555555553E */ 97*29410Selefunt p2 = -2.7777777777015593384E-3 , /*Hex 2^-9 * -1.6C16C16BEBD93 */ 98*29410Selefunt p3 = 6.6137563214379343612E-5 , /*Hex 2^-14 * 1.1566AAF25DE2C */ 99*29410Selefunt p4 = -1.6533902205465251539E-6 , /*Hex 2^-20 * -1.BBD41C5D26BF1 */ 100*29410Selefunt p5 = 4.1381367970572384604E-8 , /*Hex 2^-25 * 1.6376972BEA4D0 */ 10124593Szliu ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 10224593Szliu ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 10324593Szliu lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ 10424593Szliu lntiny = -7.5137154372698068983E2 , /*Hex 2^ 9 * -1.77AF8EBEAE354 */ 10524593Szliu invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ 10624593Szliu #endif 10724593Szliu 10824593Szliu double exp(x) 10924593Szliu double x; 11024593Szliu { 111*29410Selefunt double scalb(), copysign(), z,hi,lo,c; 11224593Szliu int k,finite(); 11324593Szliu 11424593Szliu #ifndef VAX 11524593Szliu if(x!=x) return(x); /* x is NaN */ 11624593Szliu #endif 11724593Szliu if( x <= lnhuge ) { 11824593Szliu if( x >= lntiny ) { 11924593Szliu 12024593Szliu /* argument reduction : x --> x - k*ln2 */ 12124593Szliu 12224593Szliu k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ 12324593Szliu 124*29410Selefunt /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */ 125*29410Selefunt 12624593Szliu hi=x-k*ln2hi; 127*29410Selefunt x=hi-(lo=k*ln2lo); 12824593Szliu 129*29410Selefunt /* return 2^k*[1+x+x*c/(2+c)] */ 130*29410Selefunt z=x*x; 131*29410Selefunt c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5)))); 132*29410Selefunt return scalb(1.0+(hi-(lo-x*c/(2.0-c))),k); 133*29410Selefunt 13424593Szliu } 13524593Szliu /* end of x > lntiny */ 13624593Szliu 13724593Szliu else 13824593Szliu /* exp(-big#) underflows to zero */ 13924593Szliu if(finite(x)) return(scalb(1.0,-5000)); 14024593Szliu 14124593Szliu /* exp(-INF) is zero */ 14224593Szliu else return(0.0); 14324593Szliu } 14424593Szliu /* end of x < lnhuge */ 14524593Szliu 14624593Szliu else 14724593Szliu /* exp(INF) is INF, exp(+big#) overflows to INF */ 14824593Szliu return( finite(x) ? scalb(1.0,5000) : x); 14924593Szliu } 150