124593Szliu /* 224593Szliu * Copyright (c) 1985 Regents of the University of California. 324593Szliu * 424593Szliu * Use and reproduction of this software are granted in accordance with 524593Szliu * the terms and conditions specified in the Berkeley Software License 624593Szliu * Agreement (in particular, this entails acknowledgement of the programs' 724593Szliu * source, and inclusion of this notice) with the additional understanding 824593Szliu * that all recipients should regard themselves as participants in an 924593Szliu * ongoing research project and hence should feel obligated to report 1024593Szliu * their experiences (good or bad) with these elementary function codes, 1124593Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 1224593Szliu */ 1324593Szliu 1424593Szliu #ifndef lint 15*24706Selefunt static char sccsid[] = 16*24706Selefunt "@(#)exp.c 4.3 (Berkeley) 8/21/85; 1.2 (ucb.elefunt) 09/11/85"; 1724593Szliu #endif not lint 1824593Szliu 1924593Szliu /* EXP(X) 2024593Szliu * RETURN THE EXPONENTIAL OF X 2124593Szliu * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) 2224593Szliu * CODED IN C BY K.C. NG, 1/19/85; 2324593Szliu * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85. 2424593Szliu * 2524593Szliu * Required system supported functions: 2624593Szliu * scalb(x,n) 2724593Szliu * copysign(x,y) 2824593Szliu * finite(x) 2924593Szliu * 3024593Szliu * Kernel function: 3124593Szliu * exp__E(x,c) 3224593Szliu * 3324593Szliu * Method: 3424593Szliu * 1. Argument Reduction: given the input x, find r and integer k such 3524593Szliu * that 3624593Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 . 3724593Szliu * r will be represented as r := z+c for better accuracy. 3824593Szliu * 3924593Szliu * 2. Compute expm1(r)=exp(r)-1 by 4024593Szliu * 4124593Szliu * expm1(r=z+c) := z + exp__E(z,r) 4224593Szliu * 4324593Szliu * 3. exp(x) = 2^k * ( expm1(r) + 1 ). 4424593Szliu * 4524593Szliu * Special cases: 4624593Szliu * exp(INF) is INF, exp(NaN) is NaN; 4724593Szliu * exp(-INF)= 0; 4824593Szliu * for finite argument, only exp(0)=1 is exact. 4924593Szliu * 5024593Szliu * Accuracy: 5124593Szliu * exp(x) returns the exponential of x nearly rounded. In a test run 5224593Szliu * with 1,156,000 random arguments on a VAX, the maximum observed 5324593Szliu * error was .768 ulps (units in the last place). 5424593Szliu * 5524593Szliu * Constants: 5624593Szliu * The hexadecimal values are the intended ones for the following constants. 5724593Szliu * The decimal values may be used, provided that the compiler will convert 5824593Szliu * from decimal to binary accurately enough to produce the hexadecimal values 5924593Szliu * shown. 6024593Szliu */ 6124593Szliu 6224593Szliu #ifdef VAX /* VAX D format */ 6324593Szliu /* double static */ 6424593Szliu /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ 6524593Szliu /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ 6624593Szliu /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ 6724593Szliu /* lntiny = -9.5654310917272452386E1 , Hex 2^ 7 * -.BF4F01D72E33AF */ 6824593Szliu /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ 6924593Szliu static long ln2hix[] = { 0x72174031, 0x0000f7d0}; 7024593Szliu static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; 7124593Szliu static long lnhugex[] = { 0xec1d43bd, 0x9010a73e}; 7224593Szliu static long lntinyx[] = { 0x4f01c3bf, 0x33afd72e}; 7324593Szliu static long invln2x[] = { 0xaa3b40b8, 0x17f1295c}; 7424593Szliu #define ln2hi (*(double*)ln2hix) 7524593Szliu #define ln2lo (*(double*)ln2lox) 7624593Szliu #define lnhuge (*(double*)lnhugex) 7724593Szliu #define lntiny (*(double*)lntinyx) 7824593Szliu #define invln2 (*(double*)invln2x) 7924593Szliu #else /* IEEE double */ 8024593Szliu double static 8124593Szliu ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ 8224593Szliu ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ 8324593Szliu lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ 8424593Szliu lntiny = -7.5137154372698068983E2 , /*Hex 2^ 9 * -1.77AF8EBEAE354 */ 8524593Szliu invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ 8624593Szliu #endif 8724593Szliu 8824593Szliu double exp(x) 8924593Szliu double x; 9024593Szliu { 9124593Szliu double scalb(), copysign(), exp__E(), z,hi,lo,c; 9224593Szliu int k,finite(); 9324593Szliu 9424593Szliu #ifndef VAX 9524593Szliu if(x!=x) return(x); /* x is NaN */ 9624593Szliu #endif 9724593Szliu if( x <= lnhuge ) { 9824593Szliu if( x >= lntiny ) { 9924593Szliu 10024593Szliu /* argument reduction : x --> x - k*ln2 */ 10124593Szliu 10224593Szliu k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ 10324593Szliu 10424593Szliu /* express x-k*ln2 as z+c */ 10524593Szliu hi=x-k*ln2hi; 10624593Szliu z=hi-(lo=k*ln2lo); 10724593Szliu c=(hi-z)-lo; 10824593Szliu 10924593Szliu /* return 2^k*[expm1(x) + 1] */ 11024593Szliu z += exp__E(z,c); 11124593Szliu return (scalb(z+1.0,k)); 11224593Szliu } 11324593Szliu /* end of x > lntiny */ 11424593Szliu 11524593Szliu else 11624593Szliu /* exp(-big#) underflows to zero */ 11724593Szliu if(finite(x)) return(scalb(1.0,-5000)); 11824593Szliu 11924593Szliu /* exp(-INF) is zero */ 12024593Szliu else return(0.0); 12124593Szliu } 12224593Szliu /* end of x < lnhuge */ 12324593Szliu 12424593Szliu else 12524593Szliu /* exp(INF) is INF, exp(+big#) overflows to INF */ 12624593Szliu return( finite(x) ? scalb(1.0,5000) : x); 12724593Szliu } 128