xref: /csrg-svn/lib/libm/common_source/exp.c (revision 24593)
1*24593Szliu /*
2*24593Szliu  * Copyright (c) 1985 Regents of the University of California.
3*24593Szliu  *
4*24593Szliu  * Use and reproduction of this software are granted  in  accordance  with
5*24593Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
6*24593Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
7*24593Szliu  * source, and inclusion of this notice) with the additional understanding
8*24593Szliu  * that  all  recipients  should regard themselves as participants  in  an
9*24593Szliu  * ongoing  research  project and hence should  feel  obligated  to report
10*24593Szliu  * their  experiences (good or bad) with these elementary function  codes,
11*24593Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12*24593Szliu  */
13*24593Szliu 
14*24593Szliu #ifndef lint
15*24593Szliu static char sccsid[] = "@(#)exp.c	1.1 (ELEFUNT) 09/06/85";
16*24593Szliu #endif not lint
17*24593Szliu 
18*24593Szliu /* EXP(X)
19*24593Szliu  * RETURN THE EXPONENTIAL OF X
20*24593Szliu  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
21*24593Szliu  * CODED IN C BY K.C. NG, 1/19/85;
22*24593Szliu  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85.
23*24593Szliu  *
24*24593Szliu  * Required system supported functions:
25*24593Szliu  *	scalb(x,n)
26*24593Szliu  *	copysign(x,y)
27*24593Szliu  *	finite(x)
28*24593Szliu  *
29*24593Szliu  * Kernel function:
30*24593Szliu  *	exp__E(x,c)
31*24593Szliu  *
32*24593Szliu  * Method:
33*24593Szliu  *	1. Argument Reduction: given the input x, find r and integer k such
34*24593Szliu  *	   that
35*24593Szliu  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
36*24593Szliu  *	   r will be represented as r := z+c for better accuracy.
37*24593Szliu  *
38*24593Szliu  *	2. Compute expm1(r)=exp(r)-1 by
39*24593Szliu  *
40*24593Szliu  *			expm1(r=z+c) := z + exp__E(z,r)
41*24593Szliu  *
42*24593Szliu  *	3. exp(x) = 2^k * ( expm1(r) + 1 ).
43*24593Szliu  *
44*24593Szliu  * Special cases:
45*24593Szliu  *	exp(INF) is INF, exp(NaN) is NaN;
46*24593Szliu  *	exp(-INF)=  0;
47*24593Szliu  *	for finite argument, only exp(0)=1 is exact.
48*24593Szliu  *
49*24593Szliu  * Accuracy:
50*24593Szliu  *	exp(x) returns the exponential of x nearly rounded. In a test run
51*24593Szliu  *	with 1,156,000 random arguments on a VAX, the maximum observed
52*24593Szliu  *	error was .768 ulps (units in the last place).
53*24593Szliu  *
54*24593Szliu  * Constants:
55*24593Szliu  * The hexadecimal values are the intended ones for the following constants.
56*24593Szliu  * The decimal values may be used, provided that the compiler will convert
57*24593Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
58*24593Szliu  * shown.
59*24593Szliu  */
60*24593Szliu 
61*24593Szliu #ifdef VAX	/* VAX D format */
62*24593Szliu /* double static */
63*24593Szliu /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
64*24593Szliu /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
65*24593Szliu /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
66*24593Szliu /* lntiny = -9.5654310917272452386E1     , Hex  2^  7   * -.BF4F01D72E33AF */
67*24593Szliu /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
68*24593Szliu static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
69*24593Szliu static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
70*24593Szliu static long    lnhugex[] = { 0xec1d43bd, 0x9010a73e};
71*24593Szliu static long    lntinyx[] = { 0x4f01c3bf, 0x33afd72e};
72*24593Szliu static long    invln2x[] = { 0xaa3b40b8, 0x17f1295c};
73*24593Szliu #define    ln2hi    (*(double*)ln2hix)
74*24593Szliu #define    ln2lo    (*(double*)ln2lox)
75*24593Szliu #define   lnhuge    (*(double*)lnhugex)
76*24593Szliu #define   lntiny    (*(double*)lntinyx)
77*24593Szliu #define   invln2    (*(double*)invln2x)
78*24593Szliu #else	/* IEEE double */
79*24593Szliu double static
80*24593Szliu ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
81*24593Szliu ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
82*24593Szliu lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
83*24593Szliu lntiny = -7.5137154372698068983E2     , /*Hex  2^  9   * -1.77AF8EBEAE354 */
84*24593Szliu invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
85*24593Szliu #endif
86*24593Szliu 
87*24593Szliu double exp(x)
88*24593Szliu double x;
89*24593Szliu {
90*24593Szliu 	double scalb(), copysign(), exp__E(), z,hi,lo,c;
91*24593Szliu 	int k,finite();
92*24593Szliu 
93*24593Szliu #ifndef VAX
94*24593Szliu 	if(x!=x) return(x);	/* x is NaN */
95*24593Szliu #endif
96*24593Szliu 	if( x <= lnhuge ) {
97*24593Szliu 		if( x >= lntiny ) {
98*24593Szliu 
99*24593Szliu 		    /* argument reduction : x --> x - k*ln2 */
100*24593Szliu 
101*24593Szliu 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
102*24593Szliu 
103*24593Szliu 			/* express x-k*ln2 as z+c */
104*24593Szliu 			hi=x-k*ln2hi;
105*24593Szliu 			z=hi-(lo=k*ln2lo);
106*24593Szliu 			c=(hi-z)-lo;
107*24593Szliu 
108*24593Szliu 		    /* return 2^k*[expm1(x) + 1]  */
109*24593Szliu 			z += exp__E(z,c);
110*24593Szliu 			return (scalb(z+1.0,k));
111*24593Szliu 		}
112*24593Szliu 		/* end of x > lntiny */
113*24593Szliu 
114*24593Szliu 		else
115*24593Szliu 		     /* exp(-big#) underflows to zero */
116*24593Szliu 		     if(finite(x))  return(scalb(1.0,-5000));
117*24593Szliu 
118*24593Szliu 		     /* exp(-INF) is zero */
119*24593Szliu 		     else return(0.0);
120*24593Szliu 	}
121*24593Szliu 	/* end of x < lnhuge */
122*24593Szliu 
123*24593Szliu 	else
124*24593Szliu 	/* exp(INF) is INF, exp(+big#) overflows to INF */
125*24593Szliu 	    return( finite(x) ?  scalb(1.0,5000)  : x);
126*24593Szliu }
127