134124Sbostic /*
2*61285Sbostic * Copyright (c) 1985, 1993
3*61285Sbostic * The Regents of the University of California. All rights reserved.
434124Sbostic *
542657Sbostic * %sccs.include.redist.c%
624593Szliu */
724593Szliu
824593Szliu #ifndef lint
9*61285Sbostic static char sccsid[] = "@(#)exp.c 8.1 (Berkeley) 06/04/93";
1034124Sbostic #endif /* not lint */
1124593Szliu
1224593Szliu /* EXP(X)
1324593Szliu * RETURN THE EXPONENTIAL OF X
1424593Szliu * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
1524593Szliu * CODED IN C BY K.C. NG, 1/19/85;
1629410Selefunt * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
1724593Szliu *
1824593Szliu * Required system supported functions:
1924593Szliu * scalb(x,n)
2024593Szliu * copysign(x,y)
2124593Szliu * finite(x)
2224593Szliu *
2324593Szliu * Method:
2424593Szliu * 1. Argument Reduction: given the input x, find r and integer k such
2524593Szliu * that
2624593Szliu * x = k*ln2 + r, |r| <= 0.5*ln2 .
2724593Szliu * r will be represented as r := z+c for better accuracy.
2824593Szliu *
2929410Selefunt * 2. Compute exp(r) by
3024593Szliu *
3129410Selefunt * exp(r) = 1 + r + r*R1/(2-R1),
3229410Selefunt * where
3329410Selefunt * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
3424593Szliu *
3529410Selefunt * 3. exp(x) = 2^k * exp(r) .
3624593Szliu *
3724593Szliu * Special cases:
3824593Szliu * exp(INF) is INF, exp(NaN) is NaN;
3924593Szliu * exp(-INF)= 0;
4024593Szliu * for finite argument, only exp(0)=1 is exact.
4124593Szliu *
4224593Szliu * Accuracy:
4324593Szliu * exp(x) returns the exponential of x nearly rounded. In a test run
4424593Szliu * with 1,156,000 random arguments on a VAX, the maximum observed
4529410Selefunt * error was 0.869 ulps (units in the last place).
4624593Szliu *
4724593Szliu * Constants:
4824593Szliu * The hexadecimal values are the intended ones for the following constants.
4924593Szliu * The decimal values may be used, provided that the compiler will convert
5024593Szliu * from decimal to binary accurately enough to produce the hexadecimal values
5124593Szliu * shown.
5224593Szliu */
5324593Szliu
5435679Sbostic #include "mathimpl.h"
5529410Selefunt
5635679Sbostic vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000)
5735679Sbostic vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
5835679Sbostic vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010)
5935679Sbostic vc(lntiny,-9.5654310917272452386E1 ,4f01,c3bf,33af,d72e, 7,-.BF4F01D72E33AF)
6035679Sbostic vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1)
6135679Sbostic vc(p1, 1.6666666666666602251E-1 ,aaaa,3f2a,a9f1,aaaa, -2, .AAAAAAAAAAA9F1)
6235679Sbostic vc(p2, -2.7777777777015591216E-3 ,0b60,bc36,ec94,b5f5, -8,-.B60B60B5F5EC94)
6335679Sbostic vc(p3, 6.6137563214379341918E-5 ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
6435679Sbostic vc(p4, -1.6533902205465250480E-6 ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
6535679Sbostic vc(p5, 4.1381367970572387085E-8 ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
6624593Szliu
6735679Sbostic #ifdef vccast
6835679Sbostic #define ln2hi vccast(ln2hi)
6935679Sbostic #define ln2lo vccast(ln2lo)
7035679Sbostic #define lnhuge vccast(lnhuge)
7135679Sbostic #define lntiny vccast(lntiny)
7235679Sbostic #define invln2 vccast(invln2)
7335679Sbostic #define p1 vccast(p1)
7435679Sbostic #define p2 vccast(p2)
7535679Sbostic #define p3 vccast(p3)
7635679Sbostic #define p4 vccast(p4)
7735679Sbostic #define p5 vccast(p5)
7835679Sbostic #endif
7935679Sbostic
8035679Sbostic ic(p1, 1.6666666666666601904E-1, -3, 1.555555555553E)
8135679Sbostic ic(p2, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93)
8235679Sbostic ic(p3, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C)
8335679Sbostic ic(p4, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
8435679Sbostic ic(p5, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0)
8535679Sbostic ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000)
8635679Sbostic ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
8735679Sbostic ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2)
8835679Sbostic ic(lntiny,-7.5137154372698068983E2, 9, -1.77AF8EBEAE354)
8935679Sbostic ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE)
9035679Sbostic
9124593Szliu double exp(x)
9224593Szliu double x;
9324593Szliu {
9435679Sbostic double z,hi,lo,c;
9535679Sbostic int k;
9624593Szliu
9731853Szliu #if !defined(vax)&&!defined(tahoe)
9824593Szliu if(x!=x) return(x); /* x is NaN */
9931853Szliu #endif /* !defined(vax)&&!defined(tahoe) */
10024593Szliu if( x <= lnhuge ) {
10124593Szliu if( x >= lntiny ) {
10224593Szliu
10324593Szliu /* argument reduction : x --> x - k*ln2 */
10424593Szliu
10524593Szliu k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
10624593Szliu
10729410Selefunt /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
10829410Selefunt
10924593Szliu hi=x-k*ln2hi;
11029410Selefunt x=hi-(lo=k*ln2lo);
11124593Szliu
11229410Selefunt /* return 2^k*[1+x+x*c/(2+c)] */
11329410Selefunt z=x*x;
11429410Selefunt c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
11529890Selefunt return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
11629410Selefunt
11724593Szliu }
11824593Szliu /* end of x > lntiny */
11924593Szliu
12024593Szliu else
12124593Szliu /* exp(-big#) underflows to zero */
12224593Szliu if(finite(x)) return(scalb(1.0,-5000));
12324593Szliu
12424593Szliu /* exp(-INF) is zero */
12524593Szliu else return(0.0);
12624593Szliu }
12724593Szliu /* end of x < lnhuge */
12824593Szliu
12924593Szliu else
13024593Szliu /* exp(INF) is INF, exp(+big#) overflows to INF */
13124593Szliu return( finite(x) ? scalb(1.0,5000) : x);
13224593Szliu }
13356956Sbostic
13456956Sbostic /* returns exp(r = x + c) for |c| < |x| with no overlap. */
13556956Sbostic
__exp__D(x,c)13657468Sbostic double __exp__D(x, c)
13756956Sbostic double x, c;
13856956Sbostic {
13956956Sbostic double z,hi,lo, t;
14056956Sbostic int k;
14156956Sbostic
14256956Sbostic #if !defined(vax)&&!defined(tahoe)
14356956Sbostic if (x!=x) return(x); /* x is NaN */
14456956Sbostic #endif /* !defined(vax)&&!defined(tahoe) */
14556956Sbostic if ( x <= lnhuge ) {
14656956Sbostic if ( x >= lntiny ) {
14756956Sbostic
14856956Sbostic /* argument reduction : x --> x - k*ln2 */
14956956Sbostic z = invln2*x;
15056956Sbostic k = z + copysign(.5, x);
15156956Sbostic
15256956Sbostic /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
15356956Sbostic
15456956Sbostic hi=(x-k*ln2hi); /* Exact. */
15556956Sbostic x= hi - (lo = k*ln2lo-c);
15656956Sbostic /* return 2^k*[1+x+x*c/(2+c)] */
15756956Sbostic z=x*x;
15856956Sbostic c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
15956956Sbostic c = (x*c)/(2.0-c);
16056956Sbostic
16156956Sbostic return scalb(1.+(hi-(lo - c)), k);
16256956Sbostic }
16356956Sbostic /* end of x > lntiny */
16456956Sbostic
16556956Sbostic else
16656956Sbostic /* exp(-big#) underflows to zero */
16756956Sbostic if(finite(x)) return(scalb(1.0,-5000));
16856956Sbostic
16956956Sbostic /* exp(-INF) is zero */
17056956Sbostic else return(0.0);
17156956Sbostic }
17256956Sbostic /* end of x < lnhuge */
17356956Sbostic
17456956Sbostic else
17556956Sbostic /* exp(INF) is INF, exp(+big#) overflows to INF */
17656956Sbostic return( finite(x) ? scalb(1.0,5000) : x);
17756956Sbostic }
178