xref: /csrg-svn/lib/libm/common_source/erf.c (revision 34121)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  */
6 
7 #ifndef lint
8 static char sccsid[] = "@(#)erf.c	5.2 (Berkeley) 04/29/88";
9 #endif /* not lint */
10 
11 /*
12 	C program for floating point error function
13 
14 	erf(x) returns the error function of its argument
15 	erfc(x) returns 1.0-erf(x)
16 
17 	erf(x) is defined by
18 	${2 over sqrt(pi)} int from 0 to x e sup {-t sup 2} dt$
19 
20 	the entry for erfc is provided because of the
21 	extreme loss of relative accuracy if erf(x) is
22 	called for large x and the result subtracted
23 	from 1. (e.g. for x= 10, 12 places are lost).
24 
25 	There are no error returns.
26 
27 	Calls exp.
28 
29 	Coefficients for large x are #5667 from Hart & Cheney (18.72D).
30 */
31 
32 #define M 7
33 #define N 9
34 static double torp = 1.1283791670955125738961589031;
35 static double p1[] = {
36 	0.804373630960840172832162e5,
37 	0.740407142710151470082064e4,
38 	0.301782788536507577809226e4,
39 	0.380140318123903008244444e2,
40 	0.143383842191748205576712e2,
41 	-.288805137207594084924010e0,
42 	0.007547728033418631287834e0,
43 };
44 static double q1[]  = {
45 	0.804373630960840172826266e5,
46 	0.342165257924628539769006e5,
47 	0.637960017324428279487120e4,
48 	0.658070155459240506326937e3,
49 	0.380190713951939403753468e2,
50 	0.100000000000000000000000e1,
51 	0.0,
52 };
53 static double p2[]  = {
54 	0.18263348842295112592168999e4,
55 	0.28980293292167655611275846e4,
56 	0.2320439590251635247384768711e4,
57 	0.1143262070703886173606073338e4,
58 	0.3685196154710010637133875746e3,
59 	0.7708161730368428609781633646e2,
60 	0.9675807882987265400604202961e1,
61 	0.5641877825507397413087057563e0,
62 	0.0,
63 };
64 static double q2[]  = {
65 	0.18263348842295112595576438e4,
66 	0.495882756472114071495438422e4,
67 	0.60895424232724435504633068e4,
68 	0.4429612803883682726711528526e4,
69 	0.2094384367789539593790281779e4,
70 	0.6617361207107653469211984771e3,
71 	0.1371255960500622202878443578e3,
72 	0.1714980943627607849376131193e2,
73 	1.0,
74 };
75 
76 double
77 erf(arg) double arg;{
78 	double erfc();
79 	int sign;
80 	double argsq;
81 	double d, n;
82 	int i;
83 
84 	sign = 1;
85 	if(arg < 0.){
86 		arg = -arg;
87 		sign = -1;
88 	}
89 	if(arg < 0.5){
90 		argsq = arg*arg;
91 		for(n=0,d=0,i=M-1; i>=0; i--){
92 			n = n*argsq + p1[i];
93 			d = d*argsq + q1[i];
94 		}
95 		return(sign*torp*arg*n/d);
96 	}
97 	if(arg >= 10.)
98 		return(sign*1.);
99 	return(sign*(1. - erfc(arg)));
100 }
101 
102 double
103 erfc(arg) double arg;{
104 	double erf();
105 	double exp();
106 	double n, d;
107 	int i;
108 
109 	if(arg < 0.)
110 		return(2. - erfc(-arg));
111 /*
112 	if(arg < 0.5)
113 		return(1. - erf(arg));
114 */
115 	if(arg >= 10.)
116 		return(0.);
117 
118 	for(n=0,d=0,i=N-1; i>=0; i--){
119 		n = n*arg + p2[i];
120 		d = d*arg + q2[i];
121 	}
122 	return(exp(-arg*arg)*n/d);
123 }
124