xref: /csrg-svn/lib/libm/common_source/erf.c (revision 56950)
148402Sbostic /*-
2*56950Sbostic  * Copyright (c) 1992 The Regents of the University of California.
348402Sbostic  * All rights reserved.
448402Sbostic  *
5*56950Sbostic  * %sccs.include.redist.c%
634121Sbostic  */
724592Szliu 
834121Sbostic #ifndef lint
9*56950Sbostic static char sccsid[] = "@(#)erf.c	5.4 (Berkeley) 12/02/92";
1034121Sbostic #endif /* not lint */
1134121Sbostic 
1224592Szliu /*
13*56950Sbostic  * ====================================================
14*56950Sbostic  * Copyright (C) 1992 by Sun Microsystems, Inc.
15*56950Sbostic  *
16*56950Sbostic  * Developed at SunPro, a Sun Microsystems, Inc. business.
17*56950Sbostic  * Permission to use, copy, modify, and distribute this
18*56950Sbostic  * software is freely granted, provided that this notice
19*56950Sbostic  * is preserved.
20*56950Sbostic  * ====================================================
21*56950Sbostic  *
22*56950Sbostic  * ******************* WARNING ********************
23*56950Sbostic  * This is an alpha version of SunPro's FDLIBM (Freely
24*56950Sbostic  * Distributable Math Library) for IEEE double precision
25*56950Sbostic  * arithmetic. FDLIBM is a basic math library written
26*56950Sbostic  * in C that runs on machines that conform to IEEE
27*56950Sbostic  * Standard 754/854. This alpha version is distributed
28*56950Sbostic  * for testing purpose. Those who use this software
29*56950Sbostic  * should report any bugs to
30*56950Sbostic  *
31*56950Sbostic  *		fdlibm-comments@sunpro.eng.sun.com
32*56950Sbostic  *
33*56950Sbostic  * -- K.C. Ng, Oct 12, 1992
34*56950Sbostic  * ************************************************
35*56950Sbostic  */
3624592Szliu 
37*56950Sbostic /* Modified Nov 30, 1992 P. McILROY:
38*56950Sbostic  *	Replaced expansion for x > 6
39*56950Sbostic  *	Add #ifdef's for vax/tahoe.
40*56950Sbostic  */
4124592Szliu 
42*56950Sbostic /* double erf(double x)
43*56950Sbostic  * double erfc(double x)
44*56950Sbostic  *			     x
45*56950Sbostic  *		      2      |\
46*56950Sbostic  *     erf(x)  =  ---------  | exp(-t*t)dt
47*56950Sbostic  *		   sqrt(pi) \|
48*56950Sbostic  *			     0
49*56950Sbostic  *
50*56950Sbostic  *     erfc(x) =  1-erf(x)
51*56950Sbostic  *
52*56950Sbostic  * Method:
53*56950Sbostic  *      1. Reduce x to |x| by erf(-x) = -erf(x)
54*56950Sbostic  *	2. For x in [0, 0.84375]
55*56950Sbostic  *	    erf(x)  = x + x*P(x^2)
56*56950Sbostic  *          erfc(x) = 1 - erf(x)           if x<=0.25
57*56950Sbostic  *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
58*56950Sbostic  *	   where
59*56950Sbostic  *			2		 2	  4		  20
60*56950Sbostic  *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
61*56950Sbostic  * 	   is an approximation to (erf(x)-x)/x with precision
62*56950Sbostic  *
63*56950Sbostic  *						 -56.45
64*56950Sbostic  *			| P - (erf(x)-x)/x | <= 2
65*56950Sbostic  *
66*56950Sbostic  *
67*56950Sbostic  *	   Remark. The formula is derived by noting
68*56950Sbostic  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
69*56950Sbostic  *	   and that
70*56950Sbostic  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
71*56950Sbostic  *	   is close to one. The interval is chosen because the fixed
72*56950Sbostic  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
73*56950Sbostic  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
74*56950Sbostic  * 	   guarantee the error is less than one ulp for erf.
75*56950Sbostic  *
76*56950Sbostic  *      3. For x in [0.84375,1.25], let s = x - 1, and
77*56950Sbostic  *         c = 0.84506291151 rounded to single (24 bits)
78*56950Sbostic  *         	erf(x)  = c  + P1(s)/Q1(s)
79*56950Sbostic  *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
80*56950Sbostic  *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
81*56950Sbostic  *	   Remark: here we use the taylor series expansion at x=1.
82*56950Sbostic  *		erf(1+s) = erf(1) + s*Poly(s)
83*56950Sbostic  *			 = 0.845.. + P1(s)/Q1(s)
84*56950Sbostic  *	   That is, we use rational approximation to approximate
85*56950Sbostic  *			erf(1+s) - (c = (single)0.84506291151)
86*56950Sbostic  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
87*56950Sbostic  *	   where
88*56950Sbostic  *		P1(s) = degree 7 poly in s
89*56950Sbostic  *
90*56950Sbostic  *      4. For x in [1.25,6],
91*56950Sbostic  *         	erf(x)  = 1 - erfc(x)
92*56950Sbostic  *		erfc(x) = exp(-x*x)*(1/x)*R1(1/x)/S1(1/x)
93*56950Sbostic  *	where
94*56950Sbostic  *		R1(y) = degree 7 poly in y, (y=1/x)
95*56950Sbostic  *		S1(y) = degree 8 poly in y
96*56950Sbostic  *
97*56950Sbostic  *      5. For x in [6,28]
98*56950Sbostic  *         	erf(x)  = 1.0 - tiny
99*56950Sbostic  *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps) + zP(z))
100*56950Sbostic  *
101*56950Sbostic  *	Where P is degree 9 polynomial in z = 1/(x*x)
102*56950Sbostic  *
103*56950Sbostic  *      Notes:
104*56950Sbostic  *	   Here 4 and 5 make use of the asymptotic series
105*56950Sbostic  *			  exp(-x*x)
106*56950Sbostic  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
107*56950Sbostic  *			  x*sqrt(pi)
108*56950Sbostic  *
109*56950Sbostic  *		where for z = 1/(x*x)
110*56950Sbostic  *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
111*56950Sbostic  *
112*56950Sbostic  *	   Thus we use rational approximation to approximate
113*56950Sbostic  *              erfc*x*exp(x*x) ~ 1/sqrt(pi)
114*56950Sbostic  *
115*56950Sbostic  *		The error bound for the target function, G(z) for
116*56950Sbostic  *		case 5 is
117*56950Sbostic  * 		|eps + 1/(x*x)P(1/x*x) - G(x)|	< 2**(-58.34)
118*56950Sbostic  *		For case 4,
119*56950Sbostic  *      	|R2/S2 - erfc*x*exp(x*x)|	< 2**(-61.52)
120*56950Sbostic  *
121*56950Sbostic  *      6. For inf > x >= 28
122*56950Sbostic  *         	erf(x)  = 1 - tiny  (raise inexact)
123*56950Sbostic  *         	erfc(x) = tiny*tiny (raise underflow)
124*56950Sbostic  *
125*56950Sbostic  *      7. Special cases:
126*56950Sbostic  *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
127*56950Sbostic  *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
128*56950Sbostic  *	   	erfc/erf(NaN) is NaN
129*56950Sbostic  */
13024592Szliu 
131*56950Sbostic #if defined(vax) || defined(tahoe)
132*56950Sbostic #define _IEEE	0
133*56950Sbostic #define TRUNC(x) (double) (float) (x)
134*56950Sbostic #else
135*56950Sbostic #define _IEEE	1
136*56950Sbostic #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
137*56950Sbostic #define infnan(x) 0.0
138*56950Sbostic #endif
13924592Szliu 
140*56950Sbostic #ifdef _IEEE_LIBM
141*56950Sbostic /*
142*56950Sbostic  * redefining "___function" to "function" in _IEEE_LIBM mode
143*56950Sbostic  */
144*56950Sbostic #include "ieee_libm.h"
145*56950Sbostic #endif
14624592Szliu 
147*56950Sbostic static double
148*56950Sbostic tiny	    = 1e-300,
149*56950Sbostic half	    = 0.5,
150*56950Sbostic one	    = 1.0,
151*56950Sbostic two	    = 2.0,
152*56950Sbostic c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
153*56950Sbostic /*
154*56950Sbostic  * Coefficients for approximation to  erf on [0,0.84375]
155*56950Sbostic  */
156*56950Sbostic p0t8 = 1.02703333676410051049867154944018394163280,
157*56950Sbostic p0 =   1.283791670955125638123339436800229927041e-0001,
158*56950Sbostic p1 =  -3.761263890318340796574473028946097022260e-0001,
159*56950Sbostic p2 =   1.128379167093567004871858633779992337238e-0001,
160*56950Sbostic p3 =  -2.686617064084433642889526516177508374437e-0002,
161*56950Sbostic p4 =   5.223977576966219409445780927846432273191e-0003,
162*56950Sbostic p5 =  -8.548323822001639515038738961618255438422e-0004,
163*56950Sbostic p6 =   1.205520092530505090384383082516403772317e-0004,
164*56950Sbostic p7 =  -1.492214100762529635365672665955239554276e-0005,
165*56950Sbostic p8 =   1.640186161764254363152286358441771740838e-0006,
166*56950Sbostic p9 =  -1.571599331700515057841960987689515895479e-0007,
167*56950Sbostic p10=   1.073087585213621540635426191486561494058e-0008,
168*56950Sbostic /*
169*56950Sbostic  * Coefficients for approximation to  erf  in [0.84375,1.25]
170*56950Sbostic  */
171*56950Sbostic pa0 =  -2.362118560752659485957248365514511540287e-0003,
172*56950Sbostic pa1 =   4.148561186837483359654781492060070469522e-0001,
173*56950Sbostic pa2 =  -3.722078760357013107593507594535478633044e-0001,
174*56950Sbostic pa3 =   3.183466199011617316853636418691420262160e-0001,
175*56950Sbostic pa4 =  -1.108946942823966771253985510891237782544e-0001,
176*56950Sbostic pa5 =   3.547830432561823343969797140537411825179e-0002,
177*56950Sbostic pa6 =  -2.166375594868790886906539848893221184820e-0003,
178*56950Sbostic qa1 =   1.064208804008442270765369280952419863524e-0001,
179*56950Sbostic qa2 =   5.403979177021710663441167681878575087235e-0001,
180*56950Sbostic qa3 =   7.182865441419627066207655332170665812023e-0002,
181*56950Sbostic qa4 =   1.261712198087616469108438860983447773726e-0001,
182*56950Sbostic qa5 =   1.363708391202905087876983523620537833157e-0002,
183*56950Sbostic qa6 =   1.198449984679910764099772682882189711364e-0002,
184*56950Sbostic /*
185*56950Sbostic  * Coefficients for approximation to  erfc in [1.25,6]
186*56950Sbostic  */
187*56950Sbostic ra0 =   5.641895806197543833169694096883621225329e-0001,
188*56950Sbostic ra1 =   7.239004794325021293310782759791744583987e+0000,
189*56950Sbostic ra2 =   4.615482605646378370356340497765510677914e+0001,
190*56950Sbostic ra3 =   1.831130716384318567879039478746072928548e+0002,
191*56950Sbostic ra4 =   4.827304689401256945023566678442020977744e+0002,
192*56950Sbostic ra5 =   8.443683805001379929687313735294340282751e+0002,
193*56950Sbostic ra6 =   9.151771804289399937165800774604677980269e+0002,
194*56950Sbostic ra7 =   4.884236881266866025539987843147838061930e+0002,
195*56950Sbostic sa1 =   1.283080158932067675016971332625972882793e+0001,
196*56950Sbostic sa2 =   8.230730944985601552133528541648529041935e+0001,
197*56950Sbostic sa3 =   3.309746710535947168967275132570416337810e+0002,
198*56950Sbostic sa4 =   8.960238586988354676031385802384985611536e+0002,
199*56950Sbostic sa5 =   1.652440076836585407285764071805622271834e+0003,
200*56950Sbostic sa6 =   2.010492426273281289533320672757992672142e+0003,
201*56950Sbostic sa7 =   1.466304171232599681829476641652969136592e+0003,
202*56950Sbostic sa8 =   4.884237022526160104676542187698268809111e+0002;
203*56950Sbostic /*
204*56950Sbostic  * Coefficients for approximation to  erfc in [6,28]
205*56950Sbostic  */
206*56950Sbostic #define a0_hi	-0.5723649429247001929610405568		/* ~-.5log(pi) */
207*56950Sbostic #define a0_lo	-0.0000000000000000189783711362898601
20824592Szliu 
209*56950Sbostic #define P0	-4.99999999999749700219098258458e-0001	/* -1	   /2 	*/
210*56950Sbostic #define P1	 6.24999999807451578348604925850e-0001	/* 5/2	   /4	*/
211*56950Sbostic #define P2	-1.54166659013994022942029005208e+0001	/* -37/3   /8	*/
212*56950Sbostic #define P3	 5.51560710872094706047619183664e+0001	/* 353/4   /16	*/
213*56950Sbostic #define P4	-2.55036053070125880992691236315e+0002	/* -4081/5 /32	*/
214*56950Sbostic #define P5	 1.43505282730286381820405949838e+0002	/* 55205/6 /64	*/
215*56950Sbostic #define P6	-9.36421869861889035746571607888e+0002	/* ....etc....	*/
216*56950Sbostic #define P7	 6.51030087738772090233396738768e+0003
217*56950Sbostic #define P8	-3.98835620275180117459967732430e+0004
218*56950Sbostic #define P9	 1.44460450428346201078966259956e+0005
21924592Szliu 
22024592Szliu 
221*56950Sbostic double erf(x)
222*56950Sbostic 	double x;
223*56950Sbostic {
224*56950Sbostic 	double R,S,P,Q,ax,s,y,z,odd,even,r,fabs(),exp();
225*56950Sbostic 	if(!finite(x)) {		/* erf(nan)=nan */
226*56950Sbostic 	    if (isnan(x))
227*56950Sbostic 		return(x);
228*56950Sbostic 	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
22924592Szliu 	}
230*56950Sbostic 	if ((ax = x) < 0)
231*56950Sbostic 		ax = - ax;
232*56950Sbostic 	if (ax < .84375) {
233*56950Sbostic 	    if (ax < 3.7e-09) {
234*56950Sbostic 		if (ax < 1.0e-308)
235*56950Sbostic 		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
236*56950Sbostic 		return x + p0*x;
237*56950Sbostic 	    }
238*56950Sbostic 	    y = x*x;
239*56950Sbostic 	    z = y*y;
240*56950Sbostic 	    even = z*(p2+z*(p4+z*(p6+z*(p8+z*p10))));
241*56950Sbostic 	    odd  = p1+z*(p3+z*(p5+z*(p7+z*p9)));
242*56950Sbostic 	    r = y*odd+even;
243*56950Sbostic 	    return x + x*(p0+r);
24424592Szliu 	}
245*56950Sbostic 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
246*56950Sbostic 	    s = fabs(x)-one;
247*56950Sbostic 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
248*56950Sbostic 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
249*56950Sbostic 	    if (x>=0)
250*56950Sbostic 		return (c + P/Q);
251*56950Sbostic 	    else
252*56950Sbostic 		return (-c - P/Q);
253*56950Sbostic 	}
254*56950Sbostic 	if (ax >= 6.0) {		/* inf>|x|>=6 */
255*56950Sbostic 	    if (x >= 0.0)
256*56950Sbostic 		return (one-tiny);
257*56950Sbostic 	    else
258*56950Sbostic 		return (tiny-one);
259*56950Sbostic 	}
260*56950Sbostic     /* 1.25 <= |x| < 6 */
261*56950Sbostic  	s = one/fabs(x);
262*56950Sbostic 	R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))));
263*56950Sbostic 	S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
264*56950Sbostic 	z = exp(-x*x)*(R/S)*s;
265*56950Sbostic 	if (x >= 0)
266*56950Sbostic 		return (one-z);
267*56950Sbostic 	else
268*56950Sbostic 		return (z-one);
26924592Szliu }
27024592Szliu 
271*56950Sbostic double erfc(x)
272*56950Sbostic 	double x;
273*56950Sbostic {
274*56950Sbostic 	double R,S,P,Q,s,ax,y,odd,even,z,r,fabs(),exp__D();
275*56950Sbostic 	if (!finite(x)) {
276*56950Sbostic 		if (isnan(x))		/* erfc(NaN) = NaN */
277*56950Sbostic 			return(x);
278*56950Sbostic 		else if (x > 0)		/* erfc(+-inf)=0,2 */
279*56950Sbostic 			return 0.0;
280*56950Sbostic 		else
281*56950Sbostic 			return 2.0;
28224592Szliu 	}
283*56950Sbostic 	if ((ax = x) < 0)
284*56950Sbostic 		ax = -ax;
285*56950Sbostic 	if (ax < .84375) {			/* |x|<0.84375 */
286*56950Sbostic 	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
287*56950Sbostic 		return one-x;
288*56950Sbostic 	    y = x*x;
289*56950Sbostic 	    z = y*y;
290*56950Sbostic 	    even = z*(p2+z*(p4+z*(p6+z*(p8+z*p10))));
291*56950Sbostic 	    odd  = p1+z*(p3+z*(p5+z*(p7+z*p9)));
292*56950Sbostic 	    r = y*odd+even;
293*56950Sbostic 	    if (ax < .0625) {  	/* |x|<2**-4 */
294*56950Sbostic 		return (one-(x+x*(p0+r)));
295*56950Sbostic 	    } else {
296*56950Sbostic 		r = x*(p0+r);
297*56950Sbostic 		r += (x-half);
298*56950Sbostic 	        return (half - r);
299*56950Sbostic 	    }
300*56950Sbostic 	}
301*56950Sbostic 	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
302*56950Sbostic 	    s = ax-one;
303*56950Sbostic 	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
304*56950Sbostic 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
305*56950Sbostic 	    if (x>=0) {
306*56950Sbostic 	        z  = one-c; return z - P/Q;
307*56950Sbostic 	    } else {
308*56950Sbostic 		z = c+P/Q; return one+z;
309*56950Sbostic 	    }
310*56950Sbostic 	}
311*56950Sbostic 	if (ax >= 28)	/* Out of range */
312*56950Sbostic  		if (x>0)
313*56950Sbostic 			return (tiny*tiny);
314*56950Sbostic 		else
315*56950Sbostic 			return (two-tiny);
316*56950Sbostic 	z = ax;
317*56950Sbostic 	TRUNC(z);
318*56950Sbostic 	y = z - ax; y *= (ax+z);
319*56950Sbostic 	z *= -z;			/* Here z + y = -x^2 */
320*56950Sbostic 	if (ax >= 6) {			/* 6 <= ax */
321*56950Sbostic 		s = one/(-z-y);		/* 1/(x*x) */
322*56950Sbostic 		R = s*(P0+s*(P1+s*(P2+s*(P3+s*(P4+
323*56950Sbostic 			s*(P5+s*(P6+s*(P7+s*(P8+s*P9)))))))));
324*56950Sbostic 		y += a0_lo;
325*56950Sbostic 	/* return exp(-x^2 + a0_hi + R)/x;	*/
326*56950Sbostic 		s = ((R + y) + a0_hi) + z;
327*56950Sbostic 		y = (((z-s) + a0_hi) + R) + y;
328*56950Sbostic 		r = exp__D(s, y)/x;
329*56950Sbostic 	} else {			/* 1.25 <= ax <= 6 */
330*56950Sbostic 		s = one/(ax);
331*56950Sbostic 	  	R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+
332*56950Sbostic 			s*(ra5+s*(ra6+s*ra7))))));
333*56950Sbostic 		S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+
334*56950Sbostic 			s*(sa5+s*(sa6+s*(sa7+s*sa8)))))));
335*56950Sbostic 	  	r = (R/S)/x;
336*56950Sbostic 		s = z + y; y = (z-s) + y;
337*56950Sbostic 		r *= exp__D(s, y);
338*56950Sbostic 	}
339*56950Sbostic 	if (x>0)
340*56950Sbostic 		return r;
341*56950Sbostic 	else
342*56950Sbostic 		return two-r;
34324592Szliu }
344