148402Sbostic /*-
2*61285Sbostic * Copyright (c) 1992, 1993
3*61285Sbostic * The Regents of the University of California. All rights reserved.
448402Sbostic *
556950Sbostic * %sccs.include.redist.c%
634121Sbostic */
724592Szliu
834121Sbostic #ifndef lint
9*61285Sbostic static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 06/04/93";
1034121Sbostic #endif /* not lint */
1134121Sbostic
1257130Smcilroy /* Modified Nov 30, 1992 P. McILROY:
1357130Smcilroy * Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
1457130Smcilroy * Replaced even+odd with direct calculation for x < .84375,
1557130Smcilroy * to avoid destructive cancellation.
1656950Sbostic *
1757130Smcilroy * Performance of erfc(x):
1857130Smcilroy * In 300000 trials in the range [.83, .84375] the
1957130Smcilroy * maximum observed error was 3.6ulp.
2056950Sbostic *
2157130Smcilroy * In [.84735,1.25] the maximum observed error was <2.5ulp in
2257130Smcilroy * 100000 runs in the range [1.2, 1.25].
2356950Sbostic *
2457130Smcilroy * In [1.25,26] (Not including subnormal results)
2557130Smcilroy * the error is < 1.7ulp.
2656950Sbostic */
2724592Szliu
2856950Sbostic /* double erf(double x)
2956950Sbostic * double erfc(double x)
3056950Sbostic * x
3156950Sbostic * 2 |\
3256950Sbostic * erf(x) = --------- | exp(-t*t)dt
3356950Sbostic * sqrt(pi) \|
3456950Sbostic * 0
3556950Sbostic *
3656950Sbostic * erfc(x) = 1-erf(x)
3756950Sbostic *
3856950Sbostic * Method:
3956950Sbostic * 1. Reduce x to |x| by erf(-x) = -erf(x)
4056950Sbostic * 2. For x in [0, 0.84375]
4156950Sbostic * erf(x) = x + x*P(x^2)
4256950Sbostic * erfc(x) = 1 - erf(x) if x<=0.25
4356950Sbostic * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
4456950Sbostic * where
4556950Sbostic * 2 2 4 20
4656950Sbostic * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x )
4756950Sbostic * is an approximation to (erf(x)-x)/x with precision
4856950Sbostic *
4956950Sbostic * -56.45
5056950Sbostic * | P - (erf(x)-x)/x | <= 2
5156950Sbostic *
5256950Sbostic *
5356950Sbostic * Remark. The formula is derived by noting
5456950Sbostic * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
5556950Sbostic * and that
5656950Sbostic * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
5757174Smcilroy * is close to one. The interval is chosen because the fixed
5856950Sbostic * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
5956950Sbostic * near 0.6174), and by some experiment, 0.84375 is chosen to
6056950Sbostic * guarantee the error is less than one ulp for erf.
6156950Sbostic *
6256950Sbostic * 3. For x in [0.84375,1.25], let s = x - 1, and
6356950Sbostic * c = 0.84506291151 rounded to single (24 bits)
6456950Sbostic * erf(x) = c + P1(s)/Q1(s)
6556950Sbostic * erfc(x) = (1-c) - P1(s)/Q1(s)
6656950Sbostic * |P1/Q1 - (erf(x)-c)| <= 2**-59.06
6756950Sbostic * Remark: here we use the taylor series expansion at x=1.
6856950Sbostic * erf(1+s) = erf(1) + s*Poly(s)
6956950Sbostic * = 0.845.. + P1(s)/Q1(s)
7056950Sbostic * That is, we use rational approximation to approximate
7156950Sbostic * erf(1+s) - (c = (single)0.84506291151)
7256950Sbostic * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
7356950Sbostic * where
7457174Smcilroy * P1(s) = degree 6 poly in s
7557174Smcilroy * Q1(s) = degree 6 poly in s
7656950Sbostic *
7757130Smcilroy * 4. For x in [1.25, 2]; [2, 4]
7857130Smcilroy * erf(x) = 1.0 - tiny
7957130Smcilroy * erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
8056950Sbostic *
8157130Smcilroy * Where z = 1/(x*x), R is degree 9, and S is degree 3;
8257130Smcilroy *
8357130Smcilroy * 5. For x in [4,28]
8456950Sbostic * erf(x) = 1.0 - tiny
8557130Smcilroy * erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
8656950Sbostic *
8757130Smcilroy * Where P is degree 14 polynomial in 1/(x*x).
8856950Sbostic *
8956950Sbostic * Notes:
9056950Sbostic * Here 4 and 5 make use of the asymptotic series
9156950Sbostic * exp(-x*x)
9256950Sbostic * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
9356950Sbostic * x*sqrt(pi)
9456950Sbostic *
9556950Sbostic * where for z = 1/(x*x)
9656950Sbostic * P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
9756950Sbostic *
9856950Sbostic * Thus we use rational approximation to approximate
9957130Smcilroy * erfc*x*exp(x*x) ~ 1/sqrt(pi);
10056950Sbostic *
10156950Sbostic * The error bound for the target function, G(z) for
10257130Smcilroy * the interval
10357130Smcilroy * [4, 28]:
10457130Smcilroy * |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
10557130Smcilroy * for [2, 4]:
10657130Smcilroy * |R(z)/S(z) - G(z)| < 2**(-58.24)
10757130Smcilroy * for [1.25, 2]:
10857130Smcilroy * |R(z)/S(z) - G(z)| < 2**(-58.12)
10956950Sbostic *
11056950Sbostic * 6. For inf > x >= 28
11156950Sbostic * erf(x) = 1 - tiny (raise inexact)
11256950Sbostic * erfc(x) = tiny*tiny (raise underflow)
11356950Sbostic *
11456950Sbostic * 7. Special cases:
11556950Sbostic * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
11656950Sbostic * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
11756950Sbostic * erfc/erf(NaN) is NaN
11856950Sbostic */
11924592Szliu
12056950Sbostic #if defined(vax) || defined(tahoe)
12156950Sbostic #define _IEEE 0
12256950Sbostic #define TRUNC(x) (double) (float) (x)
12356950Sbostic #else
12456950Sbostic #define _IEEE 1
12556950Sbostic #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
12656950Sbostic #define infnan(x) 0.0
12756950Sbostic #endif
12824592Szliu
12956950Sbostic #ifdef _IEEE_LIBM
13056950Sbostic /*
13156950Sbostic * redefining "___function" to "function" in _IEEE_LIBM mode
13256950Sbostic */
13356950Sbostic #include "ieee_libm.h"
13456950Sbostic #endif
13524592Szliu
13656950Sbostic static double
13756950Sbostic tiny = 1e-300,
13856950Sbostic half = 0.5,
13956950Sbostic one = 1.0,
14056950Sbostic two = 2.0,
14156950Sbostic c = 8.45062911510467529297e-01, /* (float)0.84506291151 */
14256950Sbostic /*
14357130Smcilroy * Coefficients for approximation to erf in [0,0.84375]
14456950Sbostic */
14556950Sbostic p0t8 = 1.02703333676410051049867154944018394163280,
14656950Sbostic p0 = 1.283791670955125638123339436800229927041e-0001,
14756950Sbostic p1 = -3.761263890318340796574473028946097022260e-0001,
14856950Sbostic p2 = 1.128379167093567004871858633779992337238e-0001,
14956950Sbostic p3 = -2.686617064084433642889526516177508374437e-0002,
15056950Sbostic p4 = 5.223977576966219409445780927846432273191e-0003,
15156950Sbostic p5 = -8.548323822001639515038738961618255438422e-0004,
15256950Sbostic p6 = 1.205520092530505090384383082516403772317e-0004,
15356950Sbostic p7 = -1.492214100762529635365672665955239554276e-0005,
15456950Sbostic p8 = 1.640186161764254363152286358441771740838e-0006,
15556950Sbostic p9 = -1.571599331700515057841960987689515895479e-0007,
15657130Smcilroy p10= 1.073087585213621540635426191486561494058e-0008;
15756950Sbostic /*
15857130Smcilroy * Coefficients for approximation to erf in [0.84375,1.25]
15956950Sbostic */
16057130Smcilroy static double
16156950Sbostic pa0 = -2.362118560752659485957248365514511540287e-0003,
16256950Sbostic pa1 = 4.148561186837483359654781492060070469522e-0001,
16356950Sbostic pa2 = -3.722078760357013107593507594535478633044e-0001,
16456950Sbostic pa3 = 3.183466199011617316853636418691420262160e-0001,
16556950Sbostic pa4 = -1.108946942823966771253985510891237782544e-0001,
16656950Sbostic pa5 = 3.547830432561823343969797140537411825179e-0002,
16756950Sbostic pa6 = -2.166375594868790886906539848893221184820e-0003,
16856950Sbostic qa1 = 1.064208804008442270765369280952419863524e-0001,
16956950Sbostic qa2 = 5.403979177021710663441167681878575087235e-0001,
17056950Sbostic qa3 = 7.182865441419627066207655332170665812023e-0002,
17156950Sbostic qa4 = 1.261712198087616469108438860983447773726e-0001,
17256950Sbostic qa5 = 1.363708391202905087876983523620537833157e-0002,
17357130Smcilroy qa6 = 1.198449984679910764099772682882189711364e-0002;
17456950Sbostic /*
17557130Smcilroy * log(sqrt(pi)) for large x expansions.
17657130Smcilroy * The tail (lsqrtPI_lo) is included in the rational
17757130Smcilroy * approximations.
17857130Smcilroy */
17957130Smcilroy static double
18057130Smcilroy lsqrtPI_hi = .5723649429247000819387380943226;
18156950Sbostic /*
18257130Smcilroy * lsqrtPI_lo = .000000000000000005132975581353913;
18357130Smcilroy *
18457130Smcilroy * Coefficients for approximation to erfc in [2, 4]
18557130Smcilroy */
18657130Smcilroy static double
18757130Smcilroy rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */
18857130Smcilroy rb1 = 2.15592846101742183841910806188e-008,
18957130Smcilroy rb2 = 6.24998557732436510470108714799e-001,
19057130Smcilroy rb3 = 8.24849222231141787631258921465e+000,
19157130Smcilroy rb4 = 2.63974967372233173534823436057e+001,
19257130Smcilroy rb5 = 9.86383092541570505318304640241e+000,
19357130Smcilroy rb6 = -7.28024154841991322228977878694e+000,
19457130Smcilroy rb7 = 5.96303287280680116566600190708e+000,
19557130Smcilroy rb8 = -4.40070358507372993983608466806e+000,
19657130Smcilroy rb9 = 2.39923700182518073731330332521e+000,
19757130Smcilroy rb10 = -6.89257464785841156285073338950e-001,
19857130Smcilroy sb1 = 1.56641558965626774835300238919e+001,
19957130Smcilroy sb2 = 7.20522741000949622502957936376e+001,
20057130Smcilroy sb3 = 9.60121069770492994166488642804e+001;
20157130Smcilroy /*
20257130Smcilroy * Coefficients for approximation to erfc in [1.25, 2]
20357130Smcilroy */
20457130Smcilroy static double
20557130Smcilroy rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */
20657130Smcilroy rc1 = 1.28735722546372485255126993930e-005,
20757130Smcilroy rc2 = 6.24664954087883916855616917019e-001,
20857130Smcilroy rc3 = 4.69798884785807402408863708843e+000,
20957130Smcilroy rc4 = 7.61618295853929705430118701770e+000,
21057130Smcilroy rc5 = 9.15640208659364240872946538730e-001,
21157130Smcilroy rc6 = -3.59753040425048631334448145935e-001,
21257130Smcilroy rc7 = 1.42862267989304403403849619281e-001,
21357130Smcilroy rc8 = -4.74392758811439801958087514322e-002,
21457130Smcilroy rc9 = 1.09964787987580810135757047874e-002,
21557130Smcilroy rc10 = -1.28856240494889325194638463046e-003,
21657130Smcilroy sc1 = 9.97395106984001955652274773456e+000,
21757130Smcilroy sc2 = 2.80952153365721279953959310660e+001,
21857130Smcilroy sc3 = 2.19826478142545234106819407316e+001;
21957130Smcilroy /*
22057130Smcilroy * Coefficients for approximation to erfc in [4,28]
22156950Sbostic */
22257130Smcilroy static double
22357130Smcilroy rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */
22457130Smcilroy rd1 = -4.99999999999640086151350330820e-001,
22557130Smcilroy rd2 = 6.24999999772906433825880867516e-001,
22657130Smcilroy rd3 = -1.54166659428052432723177389562e+000,
22757130Smcilroy rd4 = 5.51561147405411844601985649206e+000,
22857130Smcilroy rd5 = -2.55046307982949826964613748714e+001,
22957130Smcilroy rd6 = 1.43631424382843846387913799845e+002,
23057130Smcilroy rd7 = -9.45789244999420134263345971704e+002,
23157130Smcilroy rd8 = 6.94834146607051206956384703517e+003,
23257130Smcilroy rd9 = -5.27176414235983393155038356781e+004,
23357130Smcilroy rd10 = 3.68530281128672766499221324921e+005,
23457130Smcilroy rd11 = -2.06466642800404317677021026611e+006,
23557130Smcilroy rd12 = 7.78293889471135381609201431274e+006,
23657130Smcilroy rd13 = -1.42821001129434127360582351685e+007;
23724592Szliu
erf(x)23857131Smcilroy double erf(x)
23956950Sbostic double x;
24056950Sbostic {
24157130Smcilroy double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
24256950Sbostic if(!finite(x)) { /* erf(nan)=nan */
24356950Sbostic if (isnan(x))
24456950Sbostic return(x);
24556950Sbostic return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
24624592Szliu }
24756950Sbostic if ((ax = x) < 0)
24856950Sbostic ax = - ax;
24956950Sbostic if (ax < .84375) {
25056950Sbostic if (ax < 3.7e-09) {
25156950Sbostic if (ax < 1.0e-308)
25256950Sbostic return 0.125*(8.0*x+p0t8*x); /*avoid underflow */
25356950Sbostic return x + p0*x;
25456950Sbostic }
25556950Sbostic y = x*x;
25657130Smcilroy r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
25757130Smcilroy y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
25856950Sbostic return x + x*(p0+r);
25924592Szliu }
26056950Sbostic if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
26156950Sbostic s = fabs(x)-one;
26256950Sbostic P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
26356950Sbostic Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
26456950Sbostic if (x>=0)
26556950Sbostic return (c + P/Q);
26656950Sbostic else
26756950Sbostic return (-c - P/Q);
26856950Sbostic }
26956950Sbostic if (ax >= 6.0) { /* inf>|x|>=6 */
27056950Sbostic if (x >= 0.0)
27156950Sbostic return (one-tiny);
27256950Sbostic else
27356950Sbostic return (tiny-one);
27456950Sbostic }
27556950Sbostic /* 1.25 <= |x| < 6 */
27657130Smcilroy z = -ax*ax;
27757130Smcilroy s = -one/z;
27857130Smcilroy if (ax < 2.0) {
27957130Smcilroy R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
28057130Smcilroy s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
28157130Smcilroy S = one+s*(sc1+s*(sc2+s*sc3));
28257130Smcilroy } else {
28357130Smcilroy R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
28457130Smcilroy s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
28557130Smcilroy S = one+s*(sb1+s*(sb2+s*sb3));
28657130Smcilroy }
28757130Smcilroy y = (R/S -.5*s) - lsqrtPI_hi;
28857130Smcilroy z += y;
28957130Smcilroy z = exp(z)/ax;
29056950Sbostic if (x >= 0)
29156950Sbostic return (one-z);
29256950Sbostic else
29356950Sbostic return (z-one);
29424592Szliu }
29524592Szliu
erfc(x)29657131Smcilroy double erfc(x)
29756950Sbostic double x;
29856950Sbostic {
29957452Sbostic double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
30056950Sbostic if (!finite(x)) {
30156950Sbostic if (isnan(x)) /* erfc(NaN) = NaN */
30256950Sbostic return(x);
30356950Sbostic else if (x > 0) /* erfc(+-inf)=0,2 */
30456950Sbostic return 0.0;
30556950Sbostic else
30656950Sbostic return 2.0;
30724592Szliu }
30856950Sbostic if ((ax = x) < 0)
30956950Sbostic ax = -ax;
31056950Sbostic if (ax < .84375) { /* |x|<0.84375 */
31156950Sbostic if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */
31256950Sbostic return one-x;
31356950Sbostic y = x*x;
31457130Smcilroy r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
31557130Smcilroy y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
31656950Sbostic if (ax < .0625) { /* |x|<2**-4 */
31756950Sbostic return (one-(x+x*(p0+r)));
31856950Sbostic } else {
31956950Sbostic r = x*(p0+r);
32056950Sbostic r += (x-half);
32156950Sbostic return (half - r);
32256950Sbostic }
32356950Sbostic }
32456950Sbostic if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
32556950Sbostic s = ax-one;
32656950Sbostic P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
32756950Sbostic Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
32856950Sbostic if (x>=0) {
32956950Sbostic z = one-c; return z - P/Q;
33056950Sbostic } else {
33156950Sbostic z = c+P/Q; return one+z;
33256950Sbostic }
33356950Sbostic }
33456950Sbostic if (ax >= 28) /* Out of range */
33556950Sbostic if (x>0)
33656950Sbostic return (tiny*tiny);
33756950Sbostic else
33856950Sbostic return (two-tiny);
33956950Sbostic z = ax;
34056950Sbostic TRUNC(z);
34156950Sbostic y = z - ax; y *= (ax+z);
34256950Sbostic z *= -z; /* Here z + y = -x^2 */
34356950Sbostic s = one/(-z-y); /* 1/(x*x) */
34457130Smcilroy if (ax >= 4) { /* 6 <= ax */
34557130Smcilroy R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
34657130Smcilroy s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
34757130Smcilroy +s*(rd11+s*(rd12+s*rd13))))))))))));
34857130Smcilroy y += rd0;
34957130Smcilroy } else if (ax >= 2) {
35057130Smcilroy R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
35157130Smcilroy s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
35257130Smcilroy S = one+s*(sb1+s*(sb2+s*sb3));
35357130Smcilroy y += R/S;
35457130Smcilroy R = -.5*s;
35557130Smcilroy } else {
35657130Smcilroy R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
35757130Smcilroy s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
35857130Smcilroy S = one+s*(sc1+s*(sc2+s*sc3));
35957130Smcilroy y += R/S;
36057130Smcilroy R = -.5*s;
36156950Sbostic }
36257130Smcilroy /* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */
36357130Smcilroy s = ((R + y) - lsqrtPI_hi) + z;
36457130Smcilroy y = (((z-s) - lsqrtPI_hi) + R) + y;
36557452Sbostic r = __exp__D(s, y)/x;
36656950Sbostic if (x>0)
36756950Sbostic return r;
36856950Sbostic else
36956950Sbostic return two-r;
37024592Szliu }
371