1*34124Sbostic /*
224587Szliu  * Copyright (c) 1985 Regents of the University of California.
3*34124Sbostic  * All rights reserved.
4*34124Sbostic  *
5*34124Sbostic  * Redistribution and use in source and binary forms are permitted
6*34124Sbostic  * provided that this notice is preserved and that due credit is given
7*34124Sbostic  * to the University of California at Berkeley. The name of the University
8*34124Sbostic  * may not be used to endorse or promote products derived from this
9*34124Sbostic  * software without specific prior written permission. This software
10*34124Sbostic  * is provided ``as is'' without express or implied warranty.
11*34124Sbostic  *
12*34124Sbostic  * All recipients should regard themselves as participants in an ongoing
13*34124Sbostic  * research project and hence should feel obligated to report their
14*34124Sbostic  * experiences (good or bad) with these elementary function codes, using
15*34124Sbostic  * the sendbug(8) program, to the authors.
1624587Szliu  */
1724587Szliu 
1824587Szliu #ifndef lint
19*34124Sbostic static char sccsid[] = "@(#)asincos.c	5.2 (Berkeley) 04/29/88";
20*34124Sbostic #endif /* not lint */
2124587Szliu 
2224587Szliu /* ASIN(X)
2324587Szliu  * RETURNS ARC SINE OF X
2424587Szliu  * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
2524587Szliu  * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
2624587Szliu  *
2724587Szliu  * Required system supported functions:
2824587Szliu  *	copysign(x,y)
2924587Szliu  *	sqrt(x)
3024587Szliu  *
3124587Szliu  * Required kernel function:
3224587Szliu  *	atan2(y,x)
3324587Szliu  *
3424587Szliu  * Method :
3524587Szliu  *	asin(x) = atan2(x,sqrt(1-x*x)); for better accuracy, 1-x*x is
3624587Szliu  *		  computed as follows
3724587Szliu  *			1-x*x                     if x <  0.5,
3824587Szliu  *			2*(1-|x|)-(1-|x|)*(1-|x|) if x >= 0.5.
3924587Szliu  *
4024587Szliu  * Special cases:
4124587Szliu  *	if x is NaN, return x itself;
4224587Szliu  *	if |x|>1, return NaN.
4324587Szliu  *
4424587Szliu  * Accuracy:
4524587Szliu  * 1)  If atan2() uses machine PI, then
4624587Szliu  *
4724587Szliu  *	asin(x) returns (PI/pi) * (the exact arc sine of x) nearly rounded;
4824587Szliu  *	and PI is the exact pi rounded to machine precision (see atan2 for
4924587Szliu  *      details):
5024587Szliu  *
5124587Szliu  *	in decimal:
5224587Szliu  *		pi = 3.141592653589793 23846264338327 .....
5324587Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
5424587Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
5524587Szliu  *
5624587Szliu  *	in hexadecimal:
5724587Szliu  *		pi = 3.243F6A8885A308D313198A2E....
5824587Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
5924587Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
6024587Szliu  *
6124587Szliu  *	In a test run with more than 200,000 random arguments on a VAX, the
6224587Szliu  *	maximum observed error in ulps (units in the last place) was
6324587Szliu  *	2.06 ulps.      (comparing against (PI/pi)*(exact asin(x)));
6424587Szliu  *
6524587Szliu  * 2)  If atan2() uses true pi, then
6624587Szliu  *
6724587Szliu  *	asin(x) returns the exact asin(x) with error below about 2 ulps.
6824587Szliu  *
6924587Szliu  *	In a test run with more than 1,024,000 random arguments on a VAX, the
7024587Szliu  *	maximum observed error in ulps (units in the last place) was
7124587Szliu  *      1.99 ulps.
7224587Szliu  */
7324587Szliu 
7424587Szliu double asin(x)
7524587Szliu double x;
7624587Szliu {
7724587Szliu 	double s,t,copysign(),atan2(),sqrt(),one=1.0;
7831853Szliu #if !defined(vax)&&!defined(tahoe)
7924587Szliu 	if(x!=x) return(x);	/* x is NaN */
8031853Szliu #endif	/* !defined(vax)&&!defined(tahoe) */
8124587Szliu 	s=copysign(x,one);
8224587Szliu 	if(s <= 0.5)
8324587Szliu 	    return(atan2(x,sqrt(one-x*x)));
8424587Szliu 	else
8524587Szliu 	    { t=one-s; s=t+t; return(atan2(x,sqrt(s-t*t))); }
8624587Szliu 
8724587Szliu }
8824587Szliu 
8924587Szliu /* ACOS(X)
9024587Szliu  * RETURNS ARC COS OF X
9124587Szliu  * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
9224587Szliu  * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
9324587Szliu  *
9424587Szliu  * Required system supported functions:
9524587Szliu  *	copysign(x,y)
9624587Szliu  *	sqrt(x)
9724587Szliu  *
9824587Szliu  * Required kernel function:
9924587Szliu  *	atan2(y,x)
10024587Szliu  *
10124587Szliu  * Method :
10224587Szliu  *			      ________
10324587Szliu  *                           / 1 - x
10424587Szliu  *	acos(x) = 2*atan2(  / -------- , 1 ) .
10524587Szliu  *                        \/   1 + x
10624587Szliu  *
10724587Szliu  * Special cases:
10824587Szliu  *	if x is NaN, return x itself;
10924587Szliu  *	if |x|>1, return NaN.
11024587Szliu  *
11124587Szliu  * Accuracy:
11224587Szliu  * 1)  If atan2() uses machine PI, then
11324587Szliu  *
11424587Szliu  *	acos(x) returns (PI/pi) * (the exact arc cosine of x) nearly rounded;
11524587Szliu  *	and PI is the exact pi rounded to machine precision (see atan2 for
11624587Szliu  *      details):
11724587Szliu  *
11824587Szliu  *	in decimal:
11924587Szliu  *		pi = 3.141592653589793 23846264338327 .....
12024587Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
12124587Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
12224587Szliu  *
12324587Szliu  *	in hexadecimal:
12424587Szliu  *		pi = 3.243F6A8885A308D313198A2E....
12524587Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
12624587Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
12724587Szliu  *
12824587Szliu  *	In a test run with more than 200,000 random arguments on a VAX, the
12924587Szliu  *	maximum observed error in ulps (units in the last place) was
13024587Szliu  *	2.07 ulps.      (comparing against (PI/pi)*(exact acos(x)));
13124587Szliu  *
13224587Szliu  * 2)  If atan2() uses true pi, then
13324587Szliu  *
13424587Szliu  *	acos(x) returns the exact acos(x) with error below about 2 ulps.
13524587Szliu  *
13624587Szliu  *	In a test run with more than 1,024,000 random arguments on a VAX, the
13724587Szliu  *	maximum observed error in ulps (units in the last place) was
13824587Szliu  *	2.15 ulps.
13924587Szliu  */
14024587Szliu 
14124587Szliu double acos(x)
14224587Szliu double x;
14324587Szliu {
14424587Szliu 	double t,copysign(),atan2(),sqrt(),one=1.0;
14531853Szliu #if !defined(vax)&&!defined(tahoe)
14624587Szliu 	if(x!=x) return(x);
14731853Szliu #endif	/* !defined(vax)&&!defined(tahoe) */
14824587Szliu 	if( x != -1.0)
14924587Szliu 	    t=atan2(sqrt((one-x)/(one+x)),one);
15024587Szliu 	else
15124587Szliu 	    t=atan2(one,0.0);	/* t = PI/2 */
15224587Szliu 	return(t+t);
15324587Szliu }
154