124587Szliu /* 224587Szliu * Copyright (c) 1985 Regents of the University of California. 324587Szliu * 424587Szliu * Use and reproduction of this software are granted in accordance with 524587Szliu * the terms and conditions specified in the Berkeley Software License 624587Szliu * Agreement (in particular, this entails acknowledgement of the programs' 724587Szliu * source, and inclusion of this notice) with the additional understanding 824587Szliu * that all recipients should regard themselves as participants in an 924587Szliu * ongoing research project and hence should feel obligated to report 1024587Szliu * their experiences (good or bad) with these elementary function codes, 1124587Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 1224587Szliu */ 1324587Szliu 1424587Szliu #ifndef lint 1524706Selefunt static char sccsid[] = 16*31853Szliu "@(#)asincos.c 1.1 (Berkeley) 8/21/85; 1.4 (ucb.elefunt) 07/13/87"; 17*31853Szliu #endif /* not lint */ 1824587Szliu 1924587Szliu /* ASIN(X) 2024587Szliu * RETURNS ARC SINE OF X 2124587Szliu * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits) 2224587Szliu * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85. 2324587Szliu * 2424587Szliu * Required system supported functions: 2524587Szliu * copysign(x,y) 2624587Szliu * sqrt(x) 2724587Szliu * 2824587Szliu * Required kernel function: 2924587Szliu * atan2(y,x) 3024587Szliu * 3124587Szliu * Method : 3224587Szliu * asin(x) = atan2(x,sqrt(1-x*x)); for better accuracy, 1-x*x is 3324587Szliu * computed as follows 3424587Szliu * 1-x*x if x < 0.5, 3524587Szliu * 2*(1-|x|)-(1-|x|)*(1-|x|) if x >= 0.5. 3624587Szliu * 3724587Szliu * Special cases: 3824587Szliu * if x is NaN, return x itself; 3924587Szliu * if |x|>1, return NaN. 4024587Szliu * 4124587Szliu * Accuracy: 4224587Szliu * 1) If atan2() uses machine PI, then 4324587Szliu * 4424587Szliu * asin(x) returns (PI/pi) * (the exact arc sine of x) nearly rounded; 4524587Szliu * and PI is the exact pi rounded to machine precision (see atan2 for 4624587Szliu * details): 4724587Szliu * 4824587Szliu * in decimal: 4924587Szliu * pi = 3.141592653589793 23846264338327 ..... 5024587Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 5124587Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 5224587Szliu * 5324587Szliu * in hexadecimal: 5424587Szliu * pi = 3.243F6A8885A308D313198A2E.... 5524587Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 5624587Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 5724587Szliu * 5824587Szliu * In a test run with more than 200,000 random arguments on a VAX, the 5924587Szliu * maximum observed error in ulps (units in the last place) was 6024587Szliu * 2.06 ulps. (comparing against (PI/pi)*(exact asin(x))); 6124587Szliu * 6224587Szliu * 2) If atan2() uses true pi, then 6324587Szliu * 6424587Szliu * asin(x) returns the exact asin(x) with error below about 2 ulps. 6524587Szliu * 6624587Szliu * In a test run with more than 1,024,000 random arguments on a VAX, the 6724587Szliu * maximum observed error in ulps (units in the last place) was 6824587Szliu * 1.99 ulps. 6924587Szliu */ 7024587Szliu 7124587Szliu double asin(x) 7224587Szliu double x; 7324587Szliu { 7424587Szliu double s,t,copysign(),atan2(),sqrt(),one=1.0; 75*31853Szliu #if !defined(vax)&&!defined(tahoe) 7624587Szliu if(x!=x) return(x); /* x is NaN */ 77*31853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 7824587Szliu s=copysign(x,one); 7924587Szliu if(s <= 0.5) 8024587Szliu return(atan2(x,sqrt(one-x*x))); 8124587Szliu else 8224587Szliu { t=one-s; s=t+t; return(atan2(x,sqrt(s-t*t))); } 8324587Szliu 8424587Szliu } 8524587Szliu 8624587Szliu /* ACOS(X) 8724587Szliu * RETURNS ARC COS OF X 8824587Szliu * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits) 8924587Szliu * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85. 9024587Szliu * 9124587Szliu * Required system supported functions: 9224587Szliu * copysign(x,y) 9324587Szliu * sqrt(x) 9424587Szliu * 9524587Szliu * Required kernel function: 9624587Szliu * atan2(y,x) 9724587Szliu * 9824587Szliu * Method : 9924587Szliu * ________ 10024587Szliu * / 1 - x 10124587Szliu * acos(x) = 2*atan2( / -------- , 1 ) . 10224587Szliu * \/ 1 + x 10324587Szliu * 10424587Szliu * Special cases: 10524587Szliu * if x is NaN, return x itself; 10624587Szliu * if |x|>1, return NaN. 10724587Szliu * 10824587Szliu * Accuracy: 10924587Szliu * 1) If atan2() uses machine PI, then 11024587Szliu * 11124587Szliu * acos(x) returns (PI/pi) * (the exact arc cosine of x) nearly rounded; 11224587Szliu * and PI is the exact pi rounded to machine precision (see atan2 for 11324587Szliu * details): 11424587Szliu * 11524587Szliu * in decimal: 11624587Szliu * pi = 3.141592653589793 23846264338327 ..... 11724587Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 11824587Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 11924587Szliu * 12024587Szliu * in hexadecimal: 12124587Szliu * pi = 3.243F6A8885A308D313198A2E.... 12224587Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 12324587Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 12424587Szliu * 12524587Szliu * In a test run with more than 200,000 random arguments on a VAX, the 12624587Szliu * maximum observed error in ulps (units in the last place) was 12724587Szliu * 2.07 ulps. (comparing against (PI/pi)*(exact acos(x))); 12824587Szliu * 12924587Szliu * 2) If atan2() uses true pi, then 13024587Szliu * 13124587Szliu * acos(x) returns the exact acos(x) with error below about 2 ulps. 13224587Szliu * 13324587Szliu * In a test run with more than 1,024,000 random arguments on a VAX, the 13424587Szliu * maximum observed error in ulps (units in the last place) was 13524587Szliu * 2.15 ulps. 13624587Szliu */ 13724587Szliu 13824587Szliu double acos(x) 13924587Szliu double x; 14024587Szliu { 14124587Szliu double t,copysign(),atan2(),sqrt(),one=1.0; 142*31853Szliu #if !defined(vax)&&!defined(tahoe) 14324587Szliu if(x!=x) return(x); 144*31853Szliu #endif /* !defined(vax)&&!defined(tahoe) */ 14524587Szliu if( x != -1.0) 14624587Szliu t=atan2(sqrt((one-x)/(one+x)),one); 14724587Szliu else 14824587Szliu t=atan2(one,0.0); /* t = PI/2 */ 14924587Szliu return(t+t); 15024587Szliu } 151