xref: /csrg-svn/lib/libm/common_source/acosh.c (revision 24706)
124586Szliu /*
224586Szliu  * Copyright (c) 1985 Regents of the University of California.
324586Szliu  *
424586Szliu  * Use and reproduction of this software are granted  in  accordance  with
524586Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
624586Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
724586Szliu  * source, and inclusion of this notice) with the additional understanding
824586Szliu  * that  all  recipients  should regard themselves as participants  in  an
924586Szliu  * ongoing  research  project and hence should  feel  obligated  to report
1024586Szliu  * their  experiences (good or bad) with these elementary function  codes,
1124586Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
1224586Szliu  */
1324586Szliu 
1424586Szliu #ifndef lint
15*24706Selefunt static char sccsid[] =
16*24706Selefunt "@(#)acosh.c	1.2 (Berkeley) 8/21/85; 1.2 (ucb.elefunt) 09/11/85";
1724586Szliu #endif not lint
1824586Szliu 
1924586Szliu /* ACOSH(X)
2024586Szliu  * RETURN THE INVERSE HYPERBOLIC COSINE OF X
2124586Szliu  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
2224586Szliu  * CODED IN C BY K.C. NG, 2/16/85;
2324586Szliu  * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
2424586Szliu  *
2524586Szliu  * Required system supported functions :
2624586Szliu  *	sqrt(x)
2724586Szliu  *
2824586Szliu  * Required kernel function:
2924586Szliu  *	log1p(x) 		...return log(1+x)
3024586Szliu  *
3124586Szliu  * Method :
3224586Szliu  *	Based on
3324586Szliu  *		acosh(x) = log [ x + sqrt(x*x-1) ]
3424586Szliu  *	we have
3524586Szliu  *		acosh(x) := log1p(x)+ln2,	if (x > 1.0E20); else
3624586Szliu  *		acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
3724586Szliu  *	These formulae avoid the over/underflow complication.
3824586Szliu  *
3924586Szliu  * Special cases:
4024586Szliu  *	acosh(x) is NaN with signal if x<1.
4124586Szliu  *	acosh(NaN) is NaN without signal.
4224586Szliu  *
4324586Szliu  * Accuracy:
4424586Szliu  *	acosh(x) returns the exact inverse hyperbolic cosine of x nearly
4524586Szliu  *	rounded. In a test run with 512,000 random arguments on a VAX, the
4624586Szliu  *	maximum observed error was 3.30 ulps (units of the last place) at
4724586Szliu  *	x=1.0070493753568216 .
4824586Szliu  *
4924586Szliu  * Constants:
5024586Szliu  * The hexadecimal values are the intended ones for the following constants.
5124586Szliu  * The decimal values may be used, provided that the compiler will convert
5224586Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
5324586Szliu  * shown.
5424586Szliu  */
5524586Szliu 
5624586Szliu #ifdef VAX	/* VAX D format */
5724586Szliu /* static double */
5824586Szliu /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
5924586Szliu /* ln2lo  =  1.6465949582897081279E-12   ; Hex  2^-39   *  .E7BCD5E4F1D9CC */
6024586Szliu static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
6124586Szliu static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
6224586Szliu #define    ln2hi    (*(double*)ln2hix)
6324586Szliu #define    ln2lo    (*(double*)ln2lox)
6424586Szliu #else	/* IEEE double */
6524586Szliu static double
6624586Szliu ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
6724586Szliu ln2lo  =  1.9082149292705877000E-10   ; /*Hex  2^-33   *  1.A39EF35793C76 */
6824586Szliu #endif
6924586Szliu 
7024586Szliu double acosh(x)
7124586Szliu double x;
7224586Szliu {
7324586Szliu 	double log1p(),sqrt(),t,big=1.E20; /* big+1==big */
7424586Szliu 
7524586Szliu #ifndef VAX
7624586Szliu 	if(x!=x) return(x);	/* x is NaN */
7724586Szliu #endif
7824586Szliu 
7924586Szliu     /* return log1p(x) + log(2) if x is large */
8024586Szliu 	if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
8124586Szliu 
8224586Szliu 	t=sqrt(x-1.0);
8324586Szliu 	return(log1p(t*(t+sqrt(x+1.0))));
8424586Szliu }
85