xref: /csrg-svn/lib/libm/common_source/acosh.c (revision 24586)
1*24586Szliu /*
2*24586Szliu  * Copyright (c) 1985 Regents of the University of California.
3*24586Szliu  *
4*24586Szliu  * Use and reproduction of this software are granted  in  accordance  with
5*24586Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
6*24586Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
7*24586Szliu  * source, and inclusion of this notice) with the additional understanding
8*24586Szliu  * that  all  recipients  should regard themselves as participants  in  an
9*24586Szliu  * ongoing  research  project and hence should  feel  obligated  to report
10*24586Szliu  * their  experiences (good or bad) with these elementary function  codes,
11*24586Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12*24586Szliu  */
13*24586Szliu 
14*24586Szliu #ifndef lint
15*24586Szliu static char sccsid[] = "@(#)acosh.c	1.1 (ELEFUNT) 09/06/85";
16*24586Szliu #endif not lint
17*24586Szliu 
18*24586Szliu /* ACOSH(X)
19*24586Szliu  * RETURN THE INVERSE HYPERBOLIC COSINE OF X
20*24586Szliu  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
21*24586Szliu  * CODED IN C BY K.C. NG, 2/16/85;
22*24586Szliu  * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
23*24586Szliu  *
24*24586Szliu  * Required system supported functions :
25*24586Szliu  *	sqrt(x)
26*24586Szliu  *
27*24586Szliu  * Required kernel function:
28*24586Szliu  *	log1p(x) 		...return log(1+x)
29*24586Szliu  *
30*24586Szliu  * Method :
31*24586Szliu  *	Based on
32*24586Szliu  *		acosh(x) = log [ x + sqrt(x*x-1) ]
33*24586Szliu  *	we have
34*24586Szliu  *		acosh(x) := log1p(x)+ln2,	if (x > 1.0E20); else
35*24586Szliu  *		acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
36*24586Szliu  *	These formulae avoid the over/underflow complication.
37*24586Szliu  *
38*24586Szliu  * Special cases:
39*24586Szliu  *	acosh(x) is NaN with signal if x<1.
40*24586Szliu  *	acosh(NaN) is NaN without signal.
41*24586Szliu  *
42*24586Szliu  * Accuracy:
43*24586Szliu  *	acosh(x) returns the exact inverse hyperbolic cosine of x nearly
44*24586Szliu  *	rounded. In a test run with 512,000 random arguments on a VAX, the
45*24586Szliu  *	maximum observed error was 3.30 ulps (units of the last place) at
46*24586Szliu  *	x=1.0070493753568216 .
47*24586Szliu  *
48*24586Szliu  * Constants:
49*24586Szliu  * The hexadecimal values are the intended ones for the following constants.
50*24586Szliu  * The decimal values may be used, provided that the compiler will convert
51*24586Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
52*24586Szliu  * shown.
53*24586Szliu  */
54*24586Szliu 
55*24586Szliu #ifdef VAX	/* VAX D format */
56*24586Szliu /* static double */
57*24586Szliu /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
58*24586Szliu /* ln2lo  =  1.6465949582897081279E-12   ; Hex  2^-39   *  .E7BCD5E4F1D9CC */
59*24586Szliu static long     ln2hix[] = { 0x72174031, 0x0000f7d0};
60*24586Szliu static long     ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1};
61*24586Szliu #define    ln2hi    (*(double*)ln2hix)
62*24586Szliu #define    ln2lo    (*(double*)ln2lox)
63*24586Szliu #else	/* IEEE double */
64*24586Szliu static double
65*24586Szliu ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
66*24586Szliu ln2lo  =  1.9082149292705877000E-10   ; /*Hex  2^-33   *  1.A39EF35793C76 */
67*24586Szliu #endif
68*24586Szliu 
69*24586Szliu double acosh(x)
70*24586Szliu double x;
71*24586Szliu {
72*24586Szliu 	double log1p(),sqrt(),t,big=1.E20; /* big+1==big */
73*24586Szliu 
74*24586Szliu #ifndef VAX
75*24586Szliu 	if(x!=x) return(x);	/* x is NaN */
76*24586Szliu #endif
77*24586Szliu 
78*24586Szliu     /* return log1p(x) + log(2) if x is large */
79*24586Szliu 	if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
80*24586Szliu 
81*24586Szliu 	t=sqrt(x-1.0);
82*24586Szliu 	return(log1p(t*(t+sqrt(x+1.0))));
83*24586Szliu }
84