xref: /csrg-svn/lib/libm/common/trig.h (revision 31931)
1*31931Szliu /*
2*31931Szliu  * Copyright (c) 1987 Regents of the University of California.
3*31931Szliu  *
4*31931Szliu  * Use and reproduction of this software are granted  in  accordance  with
5*31931Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
6*31931Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
7*31931Szliu  * source, and inclusion of this notice) with the additional understanding
8*31931Szliu  * that  all  recipients  should regard themselves as participants  in  an
9*31931Szliu  * ongoing  research  project and hence should  feel  obligated  to report
10*31931Szliu  * their  experiences (good or bad) with these elementary function  codes,
11*31931Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12*31931Szliu  */
13*31931Szliu /* @(#)trig.h	1.1	1.1 (ucb.elefunt) 07/24/87 */
14*31931Szliu #if defined(vax)||defined(tahoe)
15*31931Szliu #ifdef vax
16*31931Szliu #define _0x(A,B)	0x/**/A/**/B
17*31931Szliu #else	/* vax */
18*31931Szliu #define _0x(A,B)	0x/**/B/**/A
19*31931Szliu #endif	/* vax */
20*31931Szliu /*thresh =  2.6117239648121182150E-1    , Hex  2^ -1   *  .85B8636B026EA0 */
21*31931Szliu /*PIo4   =  7.8539816339744830676E-1    , Hex  2^  0   *  .C90FDAA22168C2 */
22*31931Szliu /*PIo2   =  1.5707963267948966135E0     , Hex  2^  1   *  .C90FDAA22168C2 */
23*31931Szliu /*PI3o4  =  2.3561944901923449203E0     , Hex  2^  2   *  .96CBE3F9990E92 */
24*31931Szliu /*PI     =  3.1415926535897932270E0     , Hex  2^  2   *  .C90FDAA22168C2 */
25*31931Szliu /*PI2    =  6.2831853071795864540E0     ; Hex  2^  3   *  .C90FDAA22168C2 */
26*31931Szliu static long threshx[]	= { _0x(b863,3f85), _0x(6ea0,6b02)};
27*31931Szliu static long PIo4x[]	= { _0x(0fda,4049), _0x(68c2,a221)};
28*31931Szliu static long PIo2x[]	= { _0x(0fda,40c9), _0x(68c2,a221)};
29*31931Szliu static long PI3o4x[]	= { _0x(cbe3,4116), _0x(0e92,f999)};
30*31931Szliu static long PIx[]	= { _0x(0fda,4149), _0x(68c2,a221)};
31*31931Szliu static long PI2x[]	= { _0x(0fda,41c9), _0x(68c2,a221)};
32*31931Szliu #define thresh	(*(double*)threshx)
33*31931Szliu #define PIo4	(*(double*)PIo4x)
34*31931Szliu #define PIo2	(*(double*)PIo2x)
35*31931Szliu #define PI3o4	(*(double*)PI3o4x)
36*31931Szliu #define PI	(*(double*)PIx)
37*31931Szliu #define PI2	(*(double*)PI2x)
38*31931Szliu #else   /* defined(vax)||defined(tahoe) */
39*31931Szliu static double
40*31931Szliu thresh	=  2.6117239648121182150E-1    , /*Hex  2^ -2   *  1.0B70C6D604DD4 */
41*31931Szliu PIo4	=  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
42*31931Szliu PIo2	=  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
43*31931Szliu PI3o4	=  2.3561944901923448370E0     , /*Hex  2^  1   *  1.2D97C7F3321D2 */
44*31931Szliu PI	=  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
45*31931Szliu PI2	=  6.2831853071795862320E0     ; /*Hex  2^  2   *  1.921FB54442D18 */
46*31931Szliu #ifdef national
47*31931Szliu static long fmaxx[]	= { 0xffffffff, 0x7fefffff};
48*31931Szliu #define   fmax    (*(double*)fmaxx)
49*31931Szliu #endif	/* national */
50*31931Szliu #endif	/* defined(vax)||defined(tahoe) */
51*31931Szliu static double
52*31931Szliu 	zero = 0,
53*31931Szliu 	one = 1,
54*31931Szliu 	negone = -1,
55*31931Szliu 	half = 1.0/2.0,
56*31931Szliu 	small = 1E-10,	/* 1+small**2 == 1; better values for small:
57*31931Szliu 			 *		small	= 1.5E-9 for VAX D
58*31931Szliu 			 *			= 1.2E-8 for IEEE Double
59*31931Szliu 			 *			= 2.8E-10 for IEEE Extended
60*31931Szliu 			 */
61*31931Szliu 	big = 1E20;	/* big := 1/(small**2) */
62*31931Szliu 
63*31931Szliu /* sin__S(x*x) ... re-implemented as a macro
64*31931Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
65*31931Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
66*31931Szliu  * CODED IN C BY K.C. NG, 1/21/85;
67*31931Szliu  * REVISED BY K.C. NG on 8/13/85.
68*31931Szliu  *
69*31931Szliu  *	    sin(x*k) - x
70*31931Szliu  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
71*31931Szliu  *	            x
72*31931Szliu  * value of pi in machine precision:
73*31931Szliu  *
74*31931Szliu  *	Decimal:
75*31931Szliu  *		pi = 3.141592653589793 23846264338327 .....
76*31931Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
77*31931Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
78*31931Szliu  *
79*31931Szliu  *	Hexadecimal:
80*31931Szliu  *		pi = 3.243F6A8885A308D313198A2E....
81*31931Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
82*31931Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
83*31931Szliu  *
84*31931Szliu  * Method:
85*31931Szliu  *	1. Let z=x*x. Create a polynomial approximation to
86*31931Szliu  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
87*31931Szliu  *	Then
88*31931Szliu  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
89*31931Szliu  *
90*31931Szliu  *	The coefficient S's are obtained by a special Remez algorithm.
91*31931Szliu  *
92*31931Szliu  * Accuracy:
93*31931Szliu  *	In the absence of rounding error, the approximation has absolute error
94*31931Szliu  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
95*31931Szliu  *
96*31931Szliu  * Constants:
97*31931Szliu  * The hexadecimal values are the intended ones for the following constants.
98*31931Szliu  * The decimal values may be used, provided that the compiler will convert
99*31931Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
100*31931Szliu  * shown.
101*31931Szliu  *
102*31931Szliu  */
103*31931Szliu 
104*31931Szliu #if defined(vax)||defined(tahoe)
105*31931Szliu /*S0     = -1.6666666666666646660E-1    , Hex  2^ -2   * -.AAAAAAAAAAAA71 */
106*31931Szliu /*S1     =  8.3333333333297230413E-3    , Hex  2^ -6   *  .8888888888477F */
107*31931Szliu /*S2     = -1.9841269838362403710E-4    , Hex  2^-12   * -.D00D00CF8A1057 */
108*31931Szliu /*S3     =  2.7557318019967078930E-6    , Hex  2^-18   *  .B8EF1CA326BEDC */
109*31931Szliu /*S4     = -2.5051841873876551398E-8    , Hex  2^-25   * -.D73195374CE1D3 */
110*31931Szliu /*S5     =  1.6028995389845827653E-10   , Hex  2^-32   *  .B03D9C6D26CCCC */
111*31931Szliu /*S6     = -6.2723499671769283121E-13   ; Hex  2^-40   * -.B08D0B7561EA82 */
112*31931Szliu static long S0x[]	= { _0x(aaaa,bf2a), _0x(aa71,aaaa)};
113*31931Szliu static long S1x[]	= { _0x(8888,3d08), _0x(477f,8888)};
114*31931Szliu static long S2x[]	= { _0x(0d00,ba50), _0x(1057,cf8a)};
115*31931Szliu static long S3x[]	= { _0x(ef1c,3738), _0x(bedc,a326)};
116*31931Szliu static long S4x[]	= { _0x(3195,b3d7), _0x(e1d3,374c)};
117*31931Szliu static long S5x[]	= { _0x(3d9c,3030), _0x(cccc,6d26)};
118*31931Szliu static long S6x[]	= { _0x(8d0b,ac30), _0x(ea82,7561)};
119*31931Szliu #define S0	(*(double*)S0x)
120*31931Szliu #define S1	(*(double*)S1x)
121*31931Szliu #define S2	(*(double*)S2x)
122*31931Szliu #define S3	(*(double*)S3x)
123*31931Szliu #define S4	(*(double*)S4x)
124*31931Szliu #define S5	(*(double*)S5x)
125*31931Szliu #define S6	(*(double*)S6x)
126*31931Szliu #else	/* IEEE double  */
127*31931Szliu static double
128*31931Szliu S0     = -1.6666666666666463126E-1    , /*Hex  2^ -3   * -1.555555555550C */
129*31931Szliu S1     =  8.3333333332992771264E-3    , /*Hex  2^ -7   *  1.111111110C461 */
130*31931Szliu S2     = -1.9841269816180999116E-4    , /*Hex  2^-13   * -1.A01A019746345 */
131*31931Szliu S3     =  2.7557309793219876880E-6    , /*Hex  2^-19   *  1.71DE3209CDCD9 */
132*31931Szliu S4     = -2.5050225177523807003E-8    , /*Hex  2^-26   * -1.AE5C0E319A4EF */
133*31931Szliu S5     =  1.5868926979889205164E-10   ; /*Hex  2^-33   *  1.5CF61DF672B13 */
134*31931Szliu #endif
135*31931Szliu 
136*31931Szliu #if defined(vax)||defined(tahoe)
137*31931Szliu #define sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
138*31931Szliu #else 	/* defined(vax)||defined(tahoe) */
139*31931Szliu #define sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
140*31931Szliu #endif 	/* defined(vax)||defined(tahoe) */
141*31931Szliu 
142*31931Szliu /* cos__C(x*x) ... re-implemented as a macro
143*31931Szliu  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
144*31931Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
145*31931Szliu  * CODED IN C BY K.C. NG, 1/21/85;
146*31931Szliu  * REVISED BY K.C. NG on 8/13/85.
147*31931Szliu  *
148*31931Szliu  *	   		    x*x
149*31931Szliu  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
150*31931Szliu  *	  		     2
151*31931Szliu  * PI is the rounded value of pi in machine precision :
152*31931Szliu  *
153*31931Szliu  *	Decimal:
154*31931Szliu  *		pi = 3.141592653589793 23846264338327 .....
155*31931Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
156*31931Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
157*31931Szliu  *
158*31931Szliu  *	Hexadecimal:
159*31931Szliu  *		pi = 3.243F6A8885A308D313198A2E....
160*31931Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
161*31931Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
162*31931Szliu  *
163*31931Szliu  *
164*31931Szliu  * Method:
165*31931Szliu  *	1. Let z=x*x. Create a polynomial approximation to
166*31931Szliu  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
167*31931Szliu  *	then
168*31931Szliu  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
169*31931Szliu  *
170*31931Szliu  *	The coefficient C's are obtained by a special Remez algorithm.
171*31931Szliu  *
172*31931Szliu  * Accuracy:
173*31931Szliu  *	In the absence of rounding error, the approximation has absolute error
174*31931Szliu  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
175*31931Szliu  *
176*31931Szliu  *
177*31931Szliu  * Constants:
178*31931Szliu  * The hexadecimal values are the intended ones for the following constants.
179*31931Szliu  * The decimal values may be used, provided that the compiler will convert
180*31931Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
181*31931Szliu  * shown.
182*31931Szliu  *
183*31931Szliu  */
184*31931Szliu 
185*31931Szliu #if defined(vax)||defined(tahoe)
186*31931Szliu /*C0     =  4.1666666666666504759E-2    , Hex  2^ -4   *  .AAAAAAAAAAA9F0 */
187*31931Szliu /*C1     = -1.3888888888865302059E-3    , Hex  2^ -9   * -.B60B60B60A0CCA */
188*31931Szliu /*C2     =  2.4801587285601038265E-5    , Hex  2^-15   *  .D00D00CDCD098F */
189*31931Szliu /*C3     = -2.7557313470902390219E-7    , Hex  2^-21   * -.93F27BB593E805 */
190*31931Szliu /*C4     =  2.0875623401082232009E-9    , Hex  2^-28   *  .8F74C8FA1E3FF0 */
191*31931Szliu /*C5     = -1.1355178117642986178E-11   ; Hex  2^-36   * -.C7C32D0A5C5A63 */
192*31931Szliu static long C0x[]	= { _0x(aaaa,3e2a), _0x(a9f0,aaaa)};
193*31931Szliu static long C1x[]	= { _0x(0b60,bbb6), _0x(0cca,b60a)};
194*31931Szliu static long C2x[]	= { _0x(0d00,38d0), _0x(098f,cdcd)};
195*31931Szliu static long C3x[]	= { _0x(f27b,b593), _0x(e805,b593)};
196*31931Szliu static long C4x[]	= { _0x(74c8,320f), _0x(3ff0,fa1e)};
197*31931Szliu static long C5x[]	= { _0x(c32d,ae47), _0x(5a63,0a5c)};
198*31931Szliu #define C0	(*(double*)C0x)
199*31931Szliu #define C1	(*(double*)C1x)
200*31931Szliu #define C2	(*(double*)C2x)
201*31931Szliu #define C3	(*(double*)C3x)
202*31931Szliu #define C4	(*(double*)C4x)
203*31931Szliu #define C5	(*(double*)C5x)
204*31931Szliu #else	/* defined(vax)||defined(tahoe) */
205*31931Szliu static double
206*31931Szliu C0     =  4.1666666666666504759E-2    , /*Hex  2^ -5   *  1.555555555553E */
207*31931Szliu C1     = -1.3888888888865301516E-3    , /*Hex  2^-10   * -1.6C16C16C14199 */
208*31931Szliu C2     =  2.4801587269650015769E-5    , /*Hex  2^-16   *  1.A01A01971CAEB */
209*31931Szliu C3     = -2.7557304623183959811E-7    , /*Hex  2^-22   * -1.27E4F1314AD1A */
210*31931Szliu C4     =  2.0873958177697780076E-9    , /*Hex  2^-29   *  1.1EE3B60DDDC8C */
211*31931Szliu C5     = -1.1250289076471311557E-11   ; /*Hex  2^-37   * -1.8BD5986B2A52E */
212*31931Szliu #endif	/* defined(vax)||defined(tahoe) */
213*31931Szliu 
214*31931Szliu #define cos__C(z)	(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
215*31931Szliu 
216*31931Szliu extern int finite();
217*31931Szliu extern double copysign(),drem();
218