xref: /csrg-svn/lib/libm/common/trig.c (revision 31828)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)trig.c	1.2 (Berkeley) 8/22/85; 1.5 (ucb.elefunt) 07/11/87";
17 #endif not lint
18 
19 /* SIN(X), COS(X), TAN(X)
20  * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY
21  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
22  * CODED IN C BY K.C. NG, 1/8/85;
23  * REVISED BY W. Kahan and K.C. NG, 8/17/85.
24  *
25  * Required system supported functions:
26  *      copysign(x,y)
27  *      finite(x)
28  *      drem(x,p)
29  *
30  * Static kernel functions:
31  *      sin__S(z)       ....sin__S(x*x) return (sin(x)-x)/x
32  *      cos__C(z)       ....cos__C(x*x) return cos(x)-1-x*x/2
33  *
34  * Method.
35  *      Let S and C denote the polynomial approximations to sin and cos
36  *      respectively on [-PI/4, +PI/4].
37  *
38  *      SIN and COS:
39  *      1. Reduce the argument into [-PI , +PI] by the remainder function.
40  *      2. For x in (-PI,+PI), there are three cases:
41  *			case 1:	|x| < PI/4
42  *			case 2:	PI/4 <= |x| < 3PI/4
43  *			case 3:	3PI/4 <= |x|.
44  *	   SIN and COS of x are computed by:
45  *
46  *                   sin(x)      cos(x)       remark
47  *     ----------------------------------------------------------
48  *        case 1     S(x)         C(x)
49  *        case 2 sign(x)*C(y)     S(y)      y=PI/2-|x|
50  *        case 3     S(y)        -C(y)      y=sign(x)*(PI-|x|)
51  *     ----------------------------------------------------------
52  *
53  *      TAN:
54  *      1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function.
55  *      2. For x in (-PI/2,+PI/2), there are two cases:
56  *			case 1:	|x| < PI/4
57  *			case 2:	PI/4 <= |x| < PI/2
58  *         TAN of x is computed by:
59  *
60  *                   tan (x)            remark
61  *     ----------------------------------------------------------
62  *        case 1     S(x)/C(x)
63  *        case 2     C(y)/S(y)     y=sign(x)*(PI/2-|x|)
64  *     ----------------------------------------------------------
65  *
66  *   Notes:
67  *      1. S(y) and C(y) were computed by:
68  *              S(y) = y+y*sin__S(y*y)
69  *              C(y) = 1-(y*y/2-cos__C(x*x))          ... if y*y/2 <  thresh,
70  *                   = 0.5-((y*y/2-0.5)-cos__C(x*x))  ... if y*y/2 >= thresh.
71  *         where
72  *              thresh = 0.5*(acos(3/4)**2)
73  *
74  *      2. For better accuracy, we use the following formula for S/C for tan
75  *         (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then
76  *
77  *                            y+y*ss             (y*y/2-cc)+ss
78  *             S(y)/C(y)   = -------- = y + y * ---------------.
79  *                               C                     C
80  *
81  *
82  * Special cases:
83  *      Let trig be any of sin, cos, or tan.
84  *      trig(+-INF)  is NaN, with signals;
85  *      trig(NaN)    is that NaN;
86  *      trig(n*PI/2) is exact for any integer n, provided n*PI is
87  *      representable; otherwise, trig(x) is inexact.
88  *
89  * Accuracy:
90  *      trig(x) returns the exact trig(x*pi/PI) nearly rounded, where
91  *
92  *      Decimal:
93  *              pi = 3.141592653589793 23846264338327 .....
94  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
95  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
96  *
97  *      Hexadecimal:
98  *              pi = 3.243F6A8885A308D313198A2E....
99  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18    error=.276ulps
100  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
101  *
102  *      In a test run with 1,024,000 random arguments on a VAX, the maximum
103  *      observed errors (compared with the exact trig(x*pi/PI)) were
104  *                      tan(x) : 2.09 ulps (around 4.716340404662354)
105  *                      sin(x) : .861 ulps
106  *                      cos(x) : .857 ulps
107  *
108  * Constants:
109  * The hexadecimal values are the intended ones for the following constants.
110  * The decimal values may be used, provided that the compiler will convert
111  * from decimal to binary accurately enough to produce the hexadecimal values
112  * shown.
113  */
114 
115 #if (defined(VAX)||defined(TAHOE))
116 #ifdef VAX
117 #define _0x(A,B)	0x/**/A/**/B
118 #else	/* VAX */
119 #define _0x(A,B)	0x/**/B/**/A
120 #endif	/* VAX */
121 /*thresh =  2.6117239648121182150E-1    , Hex  2^ -1   *  .85B8636B026EA0 */
122 /*PIo4   =  7.8539816339744830676E-1    , Hex  2^  0   *  .C90FDAA22168C2 */
123 /*PIo2   =  1.5707963267948966135E0     , Hex  2^  1   *  .C90FDAA22168C2 */
124 /*PI3o4  =  2.3561944901923449203E0     , Hex  2^  2   *  .96CBE3F9990E92 */
125 /*PI     =  3.1415926535897932270E0     , Hex  2^  2   *  .C90FDAA22168C2 */
126 /*PI2    =  6.2831853071795864540E0     ; Hex  2^  3   *  .C90FDAA22168C2 */
127 static long    threshx[] = { _0x(b863,3f85), _0x(6ea0,6b02)};
128 #define   thresh    (*(double*)threshx)
129 static long      PIo4x[] = { _0x(0fda,4049), _0x(68c2,a221)};
130 #define     PIo4    (*(double*)PIo4x)
131 static long      PIo2x[] = { _0x(0fda,40c9), _0x(68c2,a221)};
132 #define     PIo2    (*(double*)PIo2x)
133 static long      PI3o4x[] = { _0x(cbe3,4116), _0x(0e92,f999)};
134 #define     PI3o4    (*(double*)PI3o4x)
135 static long        PIx[] = { _0x(0fda,4149), _0x(68c2,a221)};
136 #define       PI    (*(double*)PIx)
137 static long       PI2x[] = { _0x(0fda,41c9), _0x(68c2,a221)};
138 #define      PI2    (*(double*)PI2x)
139 #else   /* IEEE double  */
140 static double
141 thresh =  2.6117239648121182150E-1    , /*Hex  2^ -2   *  1.0B70C6D604DD4 */
142 PIo4   =  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
143 PIo2   =  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
144 PI3o4  =  2.3561944901923448370E0     , /*Hex  2^  1   *  1.2D97C7F3321D2 */
145 PI     =  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
146 PI2    =  6.2831853071795862320E0     ; /*Hex  2^  2   *  1.921FB54442D18 */
147 #endif
148 static double zero=0, one=1, negone= -1, half=1.0/2.0,
149 	      small=1E-10, /* 1+small**2==1; better values for small:
150 					small = 1.5E-9 for VAX D
151 					      = 1.2E-8 for IEEE Double
152 					      = 2.8E-10 for IEEE Extended */
153 	      big=1E20;    /* big = 1/(small**2) */
154 
155 double tan(x)
156 double x;
157 {
158         double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c;
159 	int k;
160 #if (!defined(VAX)&&!defined(TAHOE))
161         extern int finite();
162         /* tan(NaN) and tan(INF) must be NaN */
163             if(!finite(x))  return(x-x);
164 #endif
165         x=drem(x,PI);        /* reduce x into [-PI/2, PI/2] */
166         a=copysign(x,one);   /* ... = abs(x) */
167 	if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); }
168 	   else { k=0; if(a < small ) { big + a; return(x); }}
169 
170         z  = x*x;
171         cc = cos__C(z);
172         ss = sin__S(z);
173 	z  = z*half ;		/* Next get c = cos(x) accurately */
174 	c  = (z >= thresh )? half-((z-half)-cc) : one-(z-cc);
175 	if (k==0) return ( x + (x*(z-(cc-ss)))/c );  /* sin/cos */
176 	return( c/(x+x*ss) );	/*                  ... cos/sin */
177 
178 
179 }
180 double sin(x)
181 double x;
182 {
183         double copysign(),drem(),sin__S(),cos__C(),a,c,z;
184 #if (!defined(VAX)&&!defined(TAHOE))
185         extern int finite();
186         /* sin(NaN) and sin(INF) must be NaN */
187             if(!finite(x))  return(x-x);
188 #endif
189 	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
190         a=copysign(x,one);
191 	if( a >= PIo4 ) {
192 	     if( a >= PI3o4 )   /* 	.. in [3PI/4,  PI ]  */
193 		x=copysign((a=PI-a),x);
194 
195 	     else {	       /* 	.. in [PI/4, 3PI/4]  */
196 		a=PIo2-a;      /* return sign(x)*C(PI/2-|x|) */
197 		z=a*a;
198 		c=cos__C(z);
199 		z=z*half;
200 		a=(z>=thresh)?half-((z-half)-c):one-(z-c);
201 		return(copysign(a,x));
202 		}
203              }
204 
205         /* return S(x) */
206             if( a < small) { big + a; return(x);}
207             return(x+x*sin__S(x*x));
208 }
209 
210 double cos(x)
211 double x;
212 {
213         double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0;
214 #if (!defined(VAX)&&!defined(TAHOE))
215         extern int finite();
216         /* cos(NaN) and cos(INF) must be NaN */
217             if(!finite(x))  return(x-x);
218 #endif
219 	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
220         a=copysign(x,one);
221 	if ( a >= PIo4 ) {
222 	     if ( a >= PI3o4 )  /* 	.. in [3PI/4,  PI ]  */
223 		{ a=PI-a; s= negone; }
224 
225 	     else 	       /* 	.. in [PI/4, 3PI/4]  */
226                                /*        return  S(PI/2-|x|) */
227 		{ a=PIo2-a; return(a+a*sin__S(a*a));}
228 	     }
229 
230 
231         /* return s*C(a) */
232             if( a < small) { big + a; return(s);}
233 	    z=a*a;
234 	    c=cos__C(z);
235 	    z=z*half;
236 	    a=(z>=thresh)?half-((z-half)-c):one-(z-c);
237 	    return(copysign(a,s));
238 }
239 
240 
241 /* sin__S(x*x)
242  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
243  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
244  * CODED IN C BY K.C. NG, 1/21/85;
245  * REVISED BY K.C. NG on 8/13/85.
246  *
247  *	    sin(x*k) - x
248  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
249  *	            x
250  * value of pi in machine precision:
251  *
252  *	Decimal:
253  *		pi = 3.141592653589793 23846264338327 .....
254  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
255  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
256  *
257  *	Hexadecimal:
258  *		pi = 3.243F6A8885A308D313198A2E....
259  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
260  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
261  *
262  * Method:
263  *	1. Let z=x*x. Create a polynomial approximation to
264  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
265  *	Then
266  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
267  *
268  *	The coefficient S's are obtained by a special Remez algorithm.
269  *
270  * Accuracy:
271  *	In the absence of rounding error, the approximation has absolute error
272  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
273  *
274  * Constants:
275  * The hexadecimal values are the intended ones for the following constants.
276  * The decimal values may be used, provided that the compiler will convert
277  * from decimal to binary accurately enough to produce the hexadecimal values
278  * shown.
279  *
280  */
281 
282 #if (defined(VAX)||defined(TAHOE))
283 /*S0     = -1.6666666666666646660E-1    , Hex  2^ -2   * -.AAAAAAAAAAAA71 */
284 /*S1     =  8.3333333333297230413E-3    , Hex  2^ -6   *  .8888888888477F */
285 /*S2     = -1.9841269838362403710E-4    , Hex  2^-12   * -.D00D00CF8A1057 */
286 /*S3     =  2.7557318019967078930E-6    , Hex  2^-18   *  .B8EF1CA326BEDC */
287 /*S4     = -2.5051841873876551398E-8    , Hex  2^-25   * -.D73195374CE1D3 */
288 /*S5     =  1.6028995389845827653E-10   , Hex  2^-32   *  .B03D9C6D26CCCC */
289 /*S6     = -6.2723499671769283121E-13   ; Hex  2^-40   * -.B08D0B7561EA82 */
290 static long        S0x[] = { _0x(aaaa,bf2a), _0x(aa71,aaaa)};
291 #define       S0    (*(double*)S0x)
292 static long        S1x[] = { _0x(8888,3d08), _0x(477f,8888)};
293 #define       S1    (*(double*)S1x)
294 static long        S2x[] = { _0x(0d00,ba50), _0x(1057,cf8a)};
295 #define       S2    (*(double*)S2x)
296 static long        S3x[] = { _0x(ef1c,3738), _0x(bedc,a326)};
297 #define       S3    (*(double*)S3x)
298 static long        S4x[] = { _0x(3195,b3d7), _0x(e1d3,374c)};
299 #define       S4    (*(double*)S4x)
300 static long        S5x[] = { _0x(3d9c,3030), _0x(cccc,6d26)};
301 #define       S5    (*(double*)S5x)
302 static long        S6x[] = { _0x(8d0b,ac30), _0x(ea82,7561)};
303 #define       S6    (*(double*)S6x)
304 #else	/* IEEE double  */
305 static double
306 S0     = -1.6666666666666463126E-1    , /*Hex  2^ -3   * -1.555555555550C */
307 S1     =  8.3333333332992771264E-3    , /*Hex  2^ -7   *  1.111111110C461 */
308 S2     = -1.9841269816180999116E-4    , /*Hex  2^-13   * -1.A01A019746345 */
309 S3     =  2.7557309793219876880E-6    , /*Hex  2^-19   *  1.71DE3209CDCD9 */
310 S4     = -2.5050225177523807003E-8    , /*Hex  2^-26   * -1.AE5C0E319A4EF */
311 S5     =  1.5868926979889205164E-10   ; /*Hex  2^-33   *  1.5CF61DF672B13 */
312 #endif
313 
314 static double sin__S(z)
315 double z;
316 {
317 #if (defined(VAX)||defined(TAHOE))
318 	return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))));
319 #else 	/* IEEE double */
320 	return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))));
321 #endif
322 }
323 
324 
325 /* cos__C(x*x)
326  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
327  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
328  * CODED IN C BY K.C. NG, 1/21/85;
329  * REVISED BY K.C. NG on 8/13/85.
330  *
331  *	   		    x*x
332  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
333  *	  		     2
334  * PI is the rounded value of pi in machine precision :
335  *
336  *	Decimal:
337  *		pi = 3.141592653589793 23846264338327 .....
338  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
339  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
340  *
341  *	Hexadecimal:
342  *		pi = 3.243F6A8885A308D313198A2E....
343  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
344  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
345  *
346  *
347  * Method:
348  *	1. Let z=x*x. Create a polynomial approximation to
349  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
350  *	then
351  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
352  *
353  *	The coefficient C's are obtained by a special Remez algorithm.
354  *
355  * Accuracy:
356  *	In the absence of rounding error, the approximation has absolute error
357  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
358  *
359  *
360  * Constants:
361  * The hexadecimal values are the intended ones for the following constants.
362  * The decimal values may be used, provided that the compiler will convert
363  * from decimal to binary accurately enough to produce the hexadecimal values
364  * shown.
365  *
366  */
367 
368 #if (defined(VAX)||defined(TAHOE))
369 /*C0     =  4.1666666666666504759E-2    , Hex  2^ -4   *  .AAAAAAAAAAA9F0 */
370 /*C1     = -1.3888888888865302059E-3    , Hex  2^ -9   * -.B60B60B60A0CCA */
371 /*C2     =  2.4801587285601038265E-5    , Hex  2^-15   *  .D00D00CDCD098F */
372 /*C3     = -2.7557313470902390219E-7    , Hex  2^-21   * -.93F27BB593E805 */
373 /*C4     =  2.0875623401082232009E-9    , Hex  2^-28   *  .8F74C8FA1E3FF0 */
374 /*C5     = -1.1355178117642986178E-11   ; Hex  2^-36   * -.C7C32D0A5C5A63 */
375 static long        C0x[] = { _0x(aaaa,3e2a), _0x(a9f0,aaaa)};
376 #define       C0    (*(double*)C0x)
377 static long        C1x[] = { _0x(0b60,bbb6), _0x(0cca,b60a)};
378 #define       C1    (*(double*)C1x)
379 static long        C2x[] = { _0x(0d00,38d0), _0x(098f,cdcd)};
380 #define       C2    (*(double*)C2x)
381 static long        C3x[] = { _0x(f27b,b593), _0x(e805,b593)};
382 #define       C3    (*(double*)C3x)
383 static long        C4x[] = { _0x(74c8,320f), _0x(3ff0,fa1e)};
384 #define       C4    (*(double*)C4x)
385 static long        C5x[] = { _0x(c32d,ae47), _0x(5a63,0a5c)};
386 #define       C5    (*(double*)C5x)
387 #else	/* IEEE double  */
388 static double
389 C0     =  4.1666666666666504759E-2    , /*Hex  2^ -5   *  1.555555555553E */
390 C1     = -1.3888888888865301516E-3    , /*Hex  2^-10   * -1.6C16C16C14199 */
391 C2     =  2.4801587269650015769E-5    , /*Hex  2^-16   *  1.A01A01971CAEB */
392 C3     = -2.7557304623183959811E-7    , /*Hex  2^-22   * -1.27E4F1314AD1A */
393 C4     =  2.0873958177697780076E-9    , /*Hex  2^-29   *  1.1EE3B60DDDC8C */
394 C5     = -1.1250289076471311557E-11   ; /*Hex  2^-37   * -1.8BD5986B2A52E */
395 #endif
396 
397 static double cos__C(z)
398 double z;
399 {
400 	return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))));
401 }
402