124582Szliu /* 224582Szliu * Copyright (c) 1985 Regents of the University of California. 324582Szliu * 424582Szliu * Use and reproduction of this software are granted in accordance with 524582Szliu * the terms and conditions specified in the Berkeley Software License 624582Szliu * Agreement (in particular, this entails acknowledgement of the programs' 724582Szliu * source, and inclusion of this notice) with the additional understanding 824582Szliu * that all recipients should regard themselves as participants in an 924582Szliu * ongoing research project and hence should feel obligated to report 1024582Szliu * their experiences (good or bad) with these elementary function codes, 1124582Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 1224582Szliu */ 1324582Szliu 1424582Szliu #ifndef lint 1524720Selefunt static char sccsid[] = 16*31814Szliu "@(#)trig.c 1.2 (Berkeley) 8/22/85; 1.4 (ucb.elefunt) 07/10/87"; 1724582Szliu #endif not lint 1824582Szliu 1924582Szliu /* SIN(X), COS(X), TAN(X) 2024582Szliu * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY 2124582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 2224582Szliu * CODED IN C BY K.C. NG, 1/8/85; 2324582Szliu * REVISED BY W. Kahan and K.C. NG, 8/17/85. 2424582Szliu * 2524582Szliu * Required system supported functions: 2624582Szliu * copysign(x,y) 2724582Szliu * finite(x) 2824582Szliu * drem(x,p) 2924582Szliu * 3024582Szliu * Static kernel functions: 3124582Szliu * sin__S(z) ....sin__S(x*x) return (sin(x)-x)/x 3224582Szliu * cos__C(z) ....cos__C(x*x) return cos(x)-1-x*x/2 3324582Szliu * 3424582Szliu * Method. 3524582Szliu * Let S and C denote the polynomial approximations to sin and cos 3624582Szliu * respectively on [-PI/4, +PI/4]. 3724582Szliu * 3824582Szliu * SIN and COS: 3924582Szliu * 1. Reduce the argument into [-PI , +PI] by the remainder function. 4024582Szliu * 2. For x in (-PI,+PI), there are three cases: 4124582Szliu * case 1: |x| < PI/4 4224582Szliu * case 2: PI/4 <= |x| < 3PI/4 4324582Szliu * case 3: 3PI/4 <= |x|. 4424582Szliu * SIN and COS of x are computed by: 4524582Szliu * 4624582Szliu * sin(x) cos(x) remark 4724582Szliu * ---------------------------------------------------------- 4824582Szliu * case 1 S(x) C(x) 4924582Szliu * case 2 sign(x)*C(y) S(y) y=PI/2-|x| 5024582Szliu * case 3 S(y) -C(y) y=sign(x)*(PI-|x|) 5124582Szliu * ---------------------------------------------------------- 5224582Szliu * 5324582Szliu * TAN: 5424582Szliu * 1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function. 5524582Szliu * 2. For x in (-PI/2,+PI/2), there are two cases: 5624582Szliu * case 1: |x| < PI/4 5724582Szliu * case 2: PI/4 <= |x| < PI/2 5824582Szliu * TAN of x is computed by: 5924582Szliu * 6024582Szliu * tan (x) remark 6124582Szliu * ---------------------------------------------------------- 6224582Szliu * case 1 S(x)/C(x) 6324582Szliu * case 2 C(y)/S(y) y=sign(x)*(PI/2-|x|) 6424582Szliu * ---------------------------------------------------------- 6524582Szliu * 6624582Szliu * Notes: 6724582Szliu * 1. S(y) and C(y) were computed by: 6824582Szliu * S(y) = y+y*sin__S(y*y) 6924582Szliu * C(y) = 1-(y*y/2-cos__C(x*x)) ... if y*y/2 < thresh, 7024582Szliu * = 0.5-((y*y/2-0.5)-cos__C(x*x)) ... if y*y/2 >= thresh. 7124582Szliu * where 7224582Szliu * thresh = 0.5*(acos(3/4)**2) 7324582Szliu * 7424582Szliu * 2. For better accuracy, we use the following formula for S/C for tan 7524582Szliu * (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then 7624582Szliu * 7724582Szliu * y+y*ss (y*y/2-cc)+ss 7824582Szliu * S(y)/C(y) = -------- = y + y * ---------------. 7924582Szliu * C C 8024582Szliu * 8124582Szliu * 8224582Szliu * Special cases: 8324582Szliu * Let trig be any of sin, cos, or tan. 8424582Szliu * trig(+-INF) is NaN, with signals; 8524582Szliu * trig(NaN) is that NaN; 8624582Szliu * trig(n*PI/2) is exact for any integer n, provided n*PI is 8724582Szliu * representable; otherwise, trig(x) is inexact. 8824582Szliu * 8924582Szliu * Accuracy: 9024582Szliu * trig(x) returns the exact trig(x*pi/PI) nearly rounded, where 9124582Szliu * 9224582Szliu * Decimal: 9324582Szliu * pi = 3.141592653589793 23846264338327 ..... 9424582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 9524582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 9624582Szliu * 9724582Szliu * Hexadecimal: 9824582Szliu * pi = 3.243F6A8885A308D313198A2E.... 9924582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 10024582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 10124582Szliu * 10224582Szliu * In a test run with 1,024,000 random arguments on a VAX, the maximum 10324582Szliu * observed errors (compared with the exact trig(x*pi/PI)) were 10424582Szliu * tan(x) : 2.09 ulps (around 4.716340404662354) 10524582Szliu * sin(x) : .861 ulps 10624582Szliu * cos(x) : .857 ulps 10724582Szliu * 10824582Szliu * Constants: 10924582Szliu * The hexadecimal values are the intended ones for the following constants. 11024582Szliu * The decimal values may be used, provided that the compiler will convert 11124582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 11224582Szliu * shown. 11324582Szliu */ 11424582Szliu 11531789Szliu #if (defined(VAX)||defined(TAHOE)) 116*31814Szliu #ifdef VAX 117*31814Szliu #define _0x(A,B) 0x/**/A/**/B 118*31814Szliu #else /* VAX */ 119*31814Szliu #define _0x(A,B) 0x/**/B/**/A 120*31814Szliu #endif /* VAX */ 12124582Szliu /*thresh = 2.6117239648121182150E-1 , Hex 2^ -1 * .85B8636B026EA0 */ 12224582Szliu /*PIo4 = 7.8539816339744830676E-1 , Hex 2^ 0 * .C90FDAA22168C2 */ 12324582Szliu /*PIo2 = 1.5707963267948966135E0 , Hex 2^ 1 * .C90FDAA22168C2 */ 12424582Szliu /*PI3o4 = 2.3561944901923449203E0 , Hex 2^ 2 * .96CBE3F9990E92 */ 12524582Szliu /*PI = 3.1415926535897932270E0 , Hex 2^ 2 * .C90FDAA22168C2 */ 12624582Szliu /*PI2 = 6.2831853071795864540E0 ; Hex 2^ 3 * .C90FDAA22168C2 */ 127*31814Szliu static long threshx[] = { _0x(b863,3f85), _0x(6ea0,6b02)}; 12824582Szliu #define thresh (*(double*)threshx) 129*31814Szliu static long PIo4x[] = { _0x(0fda,4049), _0x(68c2,a221)}; 13024582Szliu #define PIo4 (*(double*)PIo4x) 131*31814Szliu static long PIo2x[] = { _0x(0fda,40c9), _0x(68c2,a221)}; 13224582Szliu #define PIo2 (*(double*)PIo2x) 133*31814Szliu static long PI3o4x[] = { _0x(cbe3,4116), _0x(0e92,f999)}; 13424582Szliu #define PI3o4 (*(double*)PI3o4x) 135*31814Szliu static long PIx[] = { _0x(0fda,4149), _0x(68c2,a221)}; 13624582Szliu #define PI (*(double*)PIx) 137*31814Szliu static long PI2x[] = { _0x(0fda,41c9), _0x(68c2,a221)}; 13824582Szliu #define PI2 (*(double*)PI2x) 13924582Szliu #else /* IEEE double */ 14024582Szliu static double 14124582Szliu thresh = 2.6117239648121182150E-1 , /*Hex 2^ -2 * 1.0B70C6D604DD4 */ 14224582Szliu PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */ 14324582Szliu PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */ 14424582Szliu PI3o4 = 2.3561944901923448370E0 , /*Hex 2^ 1 * 1.2D97C7F3321D2 */ 14524582Szliu PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */ 14624582Szliu PI2 = 6.2831853071795862320E0 ; /*Hex 2^ 2 * 1.921FB54442D18 */ 14724582Szliu #endif 14824582Szliu static double zero=0, one=1, negone= -1, half=1.0/2.0, 14924582Szliu small=1E-10, /* 1+small**2==1; better values for small: 15024582Szliu small = 1.5E-9 for VAX D 15124582Szliu = 1.2E-8 for IEEE Double 15224582Szliu = 2.8E-10 for IEEE Extended */ 15324582Szliu big=1E20; /* big = 1/(small**2) */ 15424582Szliu 15524582Szliu double tan(x) 15624582Szliu double x; 15724582Szliu { 15824582Szliu double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c; 15924582Szliu int finite(),k; 16024582Szliu 16124582Szliu /* tan(NaN) and tan(INF) must be NaN */ 16224582Szliu if(!finite(x)) return(x-x); 16324582Szliu x=drem(x,PI); /* reduce x into [-PI/2, PI/2] */ 16424582Szliu a=copysign(x,one); /* ... = abs(x) */ 16524582Szliu if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); } 16624582Szliu else { k=0; if(a < small ) { big + a; return(x); }} 16724582Szliu 16824582Szliu z = x*x; 16924582Szliu cc = cos__C(z); 17024582Szliu ss = sin__S(z); 17124582Szliu z = z*half ; /* Next get c = cos(x) accurately */ 17224582Szliu c = (z >= thresh )? half-((z-half)-cc) : one-(z-cc); 17324582Szliu if (k==0) return ( x + (x*(z-(cc-ss)))/c ); /* sin/cos */ 17424582Szliu return( c/(x+x*ss) ); /* ... cos/sin */ 17524582Szliu 17624582Szliu 17724582Szliu } 17824582Szliu double sin(x) 17924582Szliu double x; 18024582Szliu { 18124582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z; 18224582Szliu int finite(); 18324582Szliu 18424582Szliu /* sin(NaN) and sin(INF) must be NaN */ 18524582Szliu if(!finite(x)) return(x-x); 18624582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */ 18724582Szliu a=copysign(x,one); 18824582Szliu if( a >= PIo4 ) { 18924582Szliu if( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 19024582Szliu x=copysign((a=PI-a),x); 19124582Szliu 19224582Szliu else { /* .. in [PI/4, 3PI/4] */ 19324582Szliu a=PIo2-a; /* return sign(x)*C(PI/2-|x|) */ 19424582Szliu z=a*a; 19524582Szliu c=cos__C(z); 19624582Szliu z=z*half; 19724582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c); 19824582Szliu return(copysign(a,x)); 19924582Szliu } 20024582Szliu } 20124582Szliu 20224582Szliu /* return S(x) */ 20324582Szliu if( a < small) { big + a; return(x);} 20424582Szliu return(x+x*sin__S(x*x)); 20524582Szliu } 20624582Szliu 20724582Szliu double cos(x) 20824582Szliu double x; 20924582Szliu { 21024582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0; 21124582Szliu int finite(); 21224582Szliu 21324582Szliu /* cos(NaN) and cos(INF) must be NaN */ 21424582Szliu if(!finite(x)) return(x-x); 21524582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */ 21624582Szliu a=copysign(x,one); 21724582Szliu if ( a >= PIo4 ) { 21824582Szliu if ( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 21924582Szliu { a=PI-a; s= negone; } 22024582Szliu 22124582Szliu else /* .. in [PI/4, 3PI/4] */ 22224582Szliu /* return S(PI/2-|x|) */ 22324582Szliu { a=PIo2-a; return(a+a*sin__S(a*a));} 22424582Szliu } 22524582Szliu 22624582Szliu 22724582Szliu /* return s*C(a) */ 22824582Szliu if( a < small) { big + a; return(s);} 22924582Szliu z=a*a; 23024582Szliu c=cos__C(z); 23124582Szliu z=z*half; 23224582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c); 23324582Szliu return(copysign(a,s)); 23424582Szliu } 23524582Szliu 23624582Szliu 23724582Szliu /* sin__S(x*x) 23824582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 23924582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 24024582Szliu * CODED IN C BY K.C. NG, 1/21/85; 24124582Szliu * REVISED BY K.C. NG on 8/13/85. 24224582Szliu * 24324582Szliu * sin(x*k) - x 24424582Szliu * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded 24524582Szliu * x 24624582Szliu * value of pi in machine precision: 24724582Szliu * 24824582Szliu * Decimal: 24924582Szliu * pi = 3.141592653589793 23846264338327 ..... 25024582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 25124582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 25224582Szliu * 25324582Szliu * Hexadecimal: 25424582Szliu * pi = 3.243F6A8885A308D313198A2E.... 25524582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 25624582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 25724582Szliu * 25824582Szliu * Method: 25924582Szliu * 1. Let z=x*x. Create a polynomial approximation to 26024582Szliu * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5). 26124582Szliu * Then 26224582Szliu * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5) 26324582Szliu * 26424582Szliu * The coefficient S's are obtained by a special Remez algorithm. 26524582Szliu * 26624582Szliu * Accuracy: 26724582Szliu * In the absence of rounding error, the approximation has absolute error 26824582Szliu * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. 26924582Szliu * 27024582Szliu * Constants: 27124582Szliu * The hexadecimal values are the intended ones for the following constants. 27224582Szliu * The decimal values may be used, provided that the compiler will convert 27324582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 27424582Szliu * shown. 27524582Szliu * 27624582Szliu */ 27724582Szliu 27831789Szliu #if (defined(VAX)||defined(TAHOE)) 27924582Szliu /*S0 = -1.6666666666666646660E-1 , Hex 2^ -2 * -.AAAAAAAAAAAA71 */ 28024582Szliu /*S1 = 8.3333333333297230413E-3 , Hex 2^ -6 * .8888888888477F */ 28124582Szliu /*S2 = -1.9841269838362403710E-4 , Hex 2^-12 * -.D00D00CF8A1057 */ 28224582Szliu /*S3 = 2.7557318019967078930E-6 , Hex 2^-18 * .B8EF1CA326BEDC */ 28324582Szliu /*S4 = -2.5051841873876551398E-8 , Hex 2^-25 * -.D73195374CE1D3 */ 28424582Szliu /*S5 = 1.6028995389845827653E-10 , Hex 2^-32 * .B03D9C6D26CCCC */ 28524582Szliu /*S6 = -6.2723499671769283121E-13 ; Hex 2^-40 * -.B08D0B7561EA82 */ 286*31814Szliu static long S0x[] = { _0x(aaaa,bf2a), _0x(aa71,aaaa)}; 28724582Szliu #define S0 (*(double*)S0x) 288*31814Szliu static long S1x[] = { _0x(8888,3d08), _0x(477f,8888)}; 28924582Szliu #define S1 (*(double*)S1x) 290*31814Szliu static long S2x[] = { _0x(0d00,ba50), _0x(1057,cf8a)}; 29124582Szliu #define S2 (*(double*)S2x) 292*31814Szliu static long S3x[] = { _0x(ef1c,3738), _0x(bedc,a326)}; 29324582Szliu #define S3 (*(double*)S3x) 294*31814Szliu static long S4x[] = { _0x(3195,b3d7), _0x(e1d3,374c)}; 29524582Szliu #define S4 (*(double*)S4x) 296*31814Szliu static long S5x[] = { _0x(3d9c,3030), _0x(cccc,6d26)}; 29724582Szliu #define S5 (*(double*)S5x) 298*31814Szliu static long S6x[] = { _0x(8d0b,ac30), _0x(ea82,7561)}; 29924582Szliu #define S6 (*(double*)S6x) 30024582Szliu #else /* IEEE double */ 30124582Szliu static double 30224582Szliu S0 = -1.6666666666666463126E-1 , /*Hex 2^ -3 * -1.555555555550C */ 30324582Szliu S1 = 8.3333333332992771264E-3 , /*Hex 2^ -7 * 1.111111110C461 */ 30424582Szliu S2 = -1.9841269816180999116E-4 , /*Hex 2^-13 * -1.A01A019746345 */ 30524582Szliu S3 = 2.7557309793219876880E-6 , /*Hex 2^-19 * 1.71DE3209CDCD9 */ 30624582Szliu S4 = -2.5050225177523807003E-8 , /*Hex 2^-26 * -1.AE5C0E319A4EF */ 30724582Szliu S5 = 1.5868926979889205164E-10 ; /*Hex 2^-33 * 1.5CF61DF672B13 */ 30824582Szliu #endif 30924582Szliu 31024582Szliu static double sin__S(z) 31124582Szliu double z; 31224582Szliu { 31331789Szliu #if (defined(VAX)||defined(TAHOE)) 31424582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6))))))); 31524582Szliu #else /* IEEE double */ 31624582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5)))))); 31724582Szliu #endif 31824582Szliu } 31924582Szliu 32024582Szliu 32124582Szliu /* cos__C(x*x) 32224582Szliu * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) 32324582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 32424582Szliu * CODED IN C BY K.C. NG, 1/21/85; 32524582Szliu * REVISED BY K.C. NG on 8/13/85. 32624582Szliu * 32724582Szliu * x*x 32824582Szliu * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI, 32924582Szliu * 2 33024582Szliu * PI is the rounded value of pi in machine precision : 33124582Szliu * 33224582Szliu * Decimal: 33324582Szliu * pi = 3.141592653589793 23846264338327 ..... 33424582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 33524582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 33624582Szliu * 33724582Szliu * Hexadecimal: 33824582Szliu * pi = 3.243F6A8885A308D313198A2E.... 33924582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 34024582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 34124582Szliu * 34224582Szliu * 34324582Szliu * Method: 34424582Szliu * 1. Let z=x*x. Create a polynomial approximation to 34524582Szliu * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5) 34624582Szliu * then 34724582Szliu * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5) 34824582Szliu * 34924582Szliu * The coefficient C's are obtained by a special Remez algorithm. 35024582Szliu * 35124582Szliu * Accuracy: 35224582Szliu * In the absence of rounding error, the approximation has absolute error 35324582Szliu * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. 35424582Szliu * 35524582Szliu * 35624582Szliu * Constants: 35724582Szliu * The hexadecimal values are the intended ones for the following constants. 35824582Szliu * The decimal values may be used, provided that the compiler will convert 35924582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 36024582Szliu * shown. 36124582Szliu * 36224582Szliu */ 36324582Szliu 36431789Szliu #if (defined(VAX)||defined(TAHOE)) 36524582Szliu /*C0 = 4.1666666666666504759E-2 , Hex 2^ -4 * .AAAAAAAAAAA9F0 */ 36624582Szliu /*C1 = -1.3888888888865302059E-3 , Hex 2^ -9 * -.B60B60B60A0CCA */ 36724582Szliu /*C2 = 2.4801587285601038265E-5 , Hex 2^-15 * .D00D00CDCD098F */ 36824582Szliu /*C3 = -2.7557313470902390219E-7 , Hex 2^-21 * -.93F27BB593E805 */ 36924582Szliu /*C4 = 2.0875623401082232009E-9 , Hex 2^-28 * .8F74C8FA1E3FF0 */ 37024582Szliu /*C5 = -1.1355178117642986178E-11 ; Hex 2^-36 * -.C7C32D0A5C5A63 */ 371*31814Szliu static long C0x[] = { _0x(aaaa,3e2a), _0x(a9f0,aaaa)}; 37224582Szliu #define C0 (*(double*)C0x) 373*31814Szliu static long C1x[] = { _0x(0b60,bbb6), _0x(0cca,b60a)}; 37424582Szliu #define C1 (*(double*)C1x) 375*31814Szliu static long C2x[] = { _0x(0d00,38d0), _0x(098f,cdcd)}; 37624582Szliu #define C2 (*(double*)C2x) 377*31814Szliu static long C3x[] = { _0x(f27b,b593), _0x(e805,b593)}; 37824582Szliu #define C3 (*(double*)C3x) 379*31814Szliu static long C4x[] = { _0x(74c8,320f), _0x(3ff0,fa1e)}; 38024582Szliu #define C4 (*(double*)C4x) 381*31814Szliu static long C5x[] = { _0x(c32d,ae47), _0x(5a63,0a5c)}; 38224582Szliu #define C5 (*(double*)C5x) 38324582Szliu #else /* IEEE double */ 38424582Szliu static double 38524582Szliu C0 = 4.1666666666666504759E-2 , /*Hex 2^ -5 * 1.555555555553E */ 38624582Szliu C1 = -1.3888888888865301516E-3 , /*Hex 2^-10 * -1.6C16C16C14199 */ 38724582Szliu C2 = 2.4801587269650015769E-5 , /*Hex 2^-16 * 1.A01A01971CAEB */ 38824582Szliu C3 = -2.7557304623183959811E-7 , /*Hex 2^-22 * -1.27E4F1314AD1A */ 38924582Szliu C4 = 2.0873958177697780076E-9 , /*Hex 2^-29 * 1.1EE3B60DDDC8C */ 39024582Szliu C5 = -1.1250289076471311557E-11 ; /*Hex 2^-37 * -1.8BD5986B2A52E */ 39124582Szliu #endif 39224582Szliu 39324582Szliu static double cos__C(z) 39424582Szliu double z; 39524582Szliu { 39624582Szliu return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5)))))); 39724582Szliu } 398