124582Szliu /* 224582Szliu * Copyright (c) 1985 Regents of the University of California. 324582Szliu * 424582Szliu * Use and reproduction of this software are granted in accordance with 524582Szliu * the terms and conditions specified in the Berkeley Software License 624582Szliu * Agreement (in particular, this entails acknowledgement of the programs' 724582Szliu * source, and inclusion of this notice) with the additional understanding 824582Szliu * that all recipients should regard themselves as participants in an 924582Szliu * ongoing research project and hence should feel obligated to report 1024582Szliu * their experiences (good or bad) with these elementary function codes, 1124582Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 1224582Szliu */ 1324582Szliu 1424582Szliu #ifndef lint 15*24720Selefunt static char sccsid[] = 16*24720Selefunt "@(#)trig.c 1.2 (Berkeley) 8/22/85; 1.2 (ucb.elefunt) 09/12/85"; 1724582Szliu #endif not lint 1824582Szliu 1924582Szliu /* SIN(X), COS(X), TAN(X) 2024582Szliu * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY 2124582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 2224582Szliu * CODED IN C BY K.C. NG, 1/8/85; 2324582Szliu * REVISED BY W. Kahan and K.C. NG, 8/17/85. 2424582Szliu * 2524582Szliu * Required system supported functions: 2624582Szliu * copysign(x,y) 2724582Szliu * finite(x) 2824582Szliu * drem(x,p) 2924582Szliu * 3024582Szliu * Static kernel functions: 3124582Szliu * sin__S(z) ....sin__S(x*x) return (sin(x)-x)/x 3224582Szliu * cos__C(z) ....cos__C(x*x) return cos(x)-1-x*x/2 3324582Szliu * 3424582Szliu * Method. 3524582Szliu * Let S and C denote the polynomial approximations to sin and cos 3624582Szliu * respectively on [-PI/4, +PI/4]. 3724582Szliu * 3824582Szliu * SIN and COS: 3924582Szliu * 1. Reduce the argument into [-PI , +PI] by the remainder function. 4024582Szliu * 2. For x in (-PI,+PI), there are three cases: 4124582Szliu * case 1: |x| < PI/4 4224582Szliu * case 2: PI/4 <= |x| < 3PI/4 4324582Szliu * case 3: 3PI/4 <= |x|. 4424582Szliu * SIN and COS of x are computed by: 4524582Szliu * 4624582Szliu * sin(x) cos(x) remark 4724582Szliu * ---------------------------------------------------------- 4824582Szliu * case 1 S(x) C(x) 4924582Szliu * case 2 sign(x)*C(y) S(y) y=PI/2-|x| 5024582Szliu * case 3 S(y) -C(y) y=sign(x)*(PI-|x|) 5124582Szliu * ---------------------------------------------------------- 5224582Szliu * 5324582Szliu * TAN: 5424582Szliu * 1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function. 5524582Szliu * 2. For x in (-PI/2,+PI/2), there are two cases: 5624582Szliu * case 1: |x| < PI/4 5724582Szliu * case 2: PI/4 <= |x| < PI/2 5824582Szliu * TAN of x is computed by: 5924582Szliu * 6024582Szliu * tan (x) remark 6124582Szliu * ---------------------------------------------------------- 6224582Szliu * case 1 S(x)/C(x) 6324582Szliu * case 2 C(y)/S(y) y=sign(x)*(PI/2-|x|) 6424582Szliu * ---------------------------------------------------------- 6524582Szliu * 6624582Szliu * Notes: 6724582Szliu * 1. S(y) and C(y) were computed by: 6824582Szliu * S(y) = y+y*sin__S(y*y) 6924582Szliu * C(y) = 1-(y*y/2-cos__C(x*x)) ... if y*y/2 < thresh, 7024582Szliu * = 0.5-((y*y/2-0.5)-cos__C(x*x)) ... if y*y/2 >= thresh. 7124582Szliu * where 7224582Szliu * thresh = 0.5*(acos(3/4)**2) 7324582Szliu * 7424582Szliu * 2. For better accuracy, we use the following formula for S/C for tan 7524582Szliu * (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then 7624582Szliu * 7724582Szliu * y+y*ss (y*y/2-cc)+ss 7824582Szliu * S(y)/C(y) = -------- = y + y * ---------------. 7924582Szliu * C C 8024582Szliu * 8124582Szliu * 8224582Szliu * Special cases: 8324582Szliu * Let trig be any of sin, cos, or tan. 8424582Szliu * trig(+-INF) is NaN, with signals; 8524582Szliu * trig(NaN) is that NaN; 8624582Szliu * trig(n*PI/2) is exact for any integer n, provided n*PI is 8724582Szliu * representable; otherwise, trig(x) is inexact. 8824582Szliu * 8924582Szliu * Accuracy: 9024582Szliu * trig(x) returns the exact trig(x*pi/PI) nearly rounded, where 9124582Szliu * 9224582Szliu * Decimal: 9324582Szliu * pi = 3.141592653589793 23846264338327 ..... 9424582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 9524582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 9624582Szliu * 9724582Szliu * Hexadecimal: 9824582Szliu * pi = 3.243F6A8885A308D313198A2E.... 9924582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 10024582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 10124582Szliu * 10224582Szliu * In a test run with 1,024,000 random arguments on a VAX, the maximum 10324582Szliu * observed errors (compared with the exact trig(x*pi/PI)) were 10424582Szliu * tan(x) : 2.09 ulps (around 4.716340404662354) 10524582Szliu * sin(x) : .861 ulps 10624582Szliu * cos(x) : .857 ulps 10724582Szliu * 10824582Szliu * Constants: 10924582Szliu * The hexadecimal values are the intended ones for the following constants. 11024582Szliu * The decimal values may be used, provided that the compiler will convert 11124582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 11224582Szliu * shown. 11324582Szliu */ 11424582Szliu 11524582Szliu #ifdef VAX 11624582Szliu /*thresh = 2.6117239648121182150E-1 , Hex 2^ -1 * .85B8636B026EA0 */ 11724582Szliu /*PIo4 = 7.8539816339744830676E-1 , Hex 2^ 0 * .C90FDAA22168C2 */ 11824582Szliu /*PIo2 = 1.5707963267948966135E0 , Hex 2^ 1 * .C90FDAA22168C2 */ 11924582Szliu /*PI3o4 = 2.3561944901923449203E0 , Hex 2^ 2 * .96CBE3F9990E92 */ 12024582Szliu /*PI = 3.1415926535897932270E0 , Hex 2^ 2 * .C90FDAA22168C2 */ 12124582Szliu /*PI2 = 6.2831853071795864540E0 ; Hex 2^ 3 * .C90FDAA22168C2 */ 12224582Szliu static long threshx[] = { 0xb8633f85, 0x6ea06b02}; 12324582Szliu #define thresh (*(double*)threshx) 12424582Szliu static long PIo4x[] = { 0x0fda4049, 0x68c2a221}; 12524582Szliu #define PIo4 (*(double*)PIo4x) 12624582Szliu static long PIo2x[] = { 0x0fda40c9, 0x68c2a221}; 12724582Szliu #define PIo2 (*(double*)PIo2x) 12824582Szliu static long PI3o4x[] = { 0xcbe34116, 0x0e92f999}; 12924582Szliu #define PI3o4 (*(double*)PI3o4x) 13024582Szliu static long PIx[] = { 0x0fda4149, 0x68c2a221}; 13124582Szliu #define PI (*(double*)PIx) 13224582Szliu static long PI2x[] = { 0x0fda41c9, 0x68c2a221}; 13324582Szliu #define PI2 (*(double*)PI2x) 13424582Szliu #else /* IEEE double */ 13524582Szliu static double 13624582Szliu thresh = 2.6117239648121182150E-1 , /*Hex 2^ -2 * 1.0B70C6D604DD4 */ 13724582Szliu PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */ 13824582Szliu PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */ 13924582Szliu PI3o4 = 2.3561944901923448370E0 , /*Hex 2^ 1 * 1.2D97C7F3321D2 */ 14024582Szliu PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */ 14124582Szliu PI2 = 6.2831853071795862320E0 ; /*Hex 2^ 2 * 1.921FB54442D18 */ 14224582Szliu #endif 14324582Szliu static double zero=0, one=1, negone= -1, half=1.0/2.0, 14424582Szliu small=1E-10, /* 1+small**2==1; better values for small: 14524582Szliu small = 1.5E-9 for VAX D 14624582Szliu = 1.2E-8 for IEEE Double 14724582Szliu = 2.8E-10 for IEEE Extended */ 14824582Szliu big=1E20; /* big = 1/(small**2) */ 14924582Szliu 15024582Szliu double tan(x) 15124582Szliu double x; 15224582Szliu { 15324582Szliu double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c; 15424582Szliu int finite(),k; 15524582Szliu 15624582Szliu /* tan(NaN) and tan(INF) must be NaN */ 15724582Szliu if(!finite(x)) return(x-x); 15824582Szliu x=drem(x,PI); /* reduce x into [-PI/2, PI/2] */ 15924582Szliu a=copysign(x,one); /* ... = abs(x) */ 16024582Szliu if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); } 16124582Szliu else { k=0; if(a < small ) { big + a; return(x); }} 16224582Szliu 16324582Szliu z = x*x; 16424582Szliu cc = cos__C(z); 16524582Szliu ss = sin__S(z); 16624582Szliu z = z*half ; /* Next get c = cos(x) accurately */ 16724582Szliu c = (z >= thresh )? half-((z-half)-cc) : one-(z-cc); 16824582Szliu if (k==0) return ( x + (x*(z-(cc-ss)))/c ); /* sin/cos */ 16924582Szliu return( c/(x+x*ss) ); /* ... cos/sin */ 17024582Szliu 17124582Szliu 17224582Szliu } 17324582Szliu double sin(x) 17424582Szliu double x; 17524582Szliu { 17624582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z; 17724582Szliu int finite(); 17824582Szliu 17924582Szliu /* sin(NaN) and sin(INF) must be NaN */ 18024582Szliu if(!finite(x)) return(x-x); 18124582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */ 18224582Szliu a=copysign(x,one); 18324582Szliu if( a >= PIo4 ) { 18424582Szliu if( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 18524582Szliu x=copysign((a=PI-a),x); 18624582Szliu 18724582Szliu else { /* .. in [PI/4, 3PI/4] */ 18824582Szliu a=PIo2-a; /* return sign(x)*C(PI/2-|x|) */ 18924582Szliu z=a*a; 19024582Szliu c=cos__C(z); 19124582Szliu z=z*half; 19224582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c); 19324582Szliu return(copysign(a,x)); 19424582Szliu } 19524582Szliu } 19624582Szliu 19724582Szliu /* return S(x) */ 19824582Szliu if( a < small) { big + a; return(x);} 19924582Szliu return(x+x*sin__S(x*x)); 20024582Szliu } 20124582Szliu 20224582Szliu double cos(x) 20324582Szliu double x; 20424582Szliu { 20524582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0; 20624582Szliu int finite(); 20724582Szliu 20824582Szliu /* cos(NaN) and cos(INF) must be NaN */ 20924582Szliu if(!finite(x)) return(x-x); 21024582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */ 21124582Szliu a=copysign(x,one); 21224582Szliu if ( a >= PIo4 ) { 21324582Szliu if ( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 21424582Szliu { a=PI-a; s= negone; } 21524582Szliu 21624582Szliu else /* .. in [PI/4, 3PI/4] */ 21724582Szliu /* return S(PI/2-|x|) */ 21824582Szliu { a=PIo2-a; return(a+a*sin__S(a*a));} 21924582Szliu } 22024582Szliu 22124582Szliu 22224582Szliu /* return s*C(a) */ 22324582Szliu if( a < small) { big + a; return(s);} 22424582Szliu z=a*a; 22524582Szliu c=cos__C(z); 22624582Szliu z=z*half; 22724582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c); 22824582Szliu return(copysign(a,s)); 22924582Szliu } 23024582Szliu 23124582Szliu 23224582Szliu /* sin__S(x*x) 23324582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 23424582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 23524582Szliu * CODED IN C BY K.C. NG, 1/21/85; 23624582Szliu * REVISED BY K.C. NG on 8/13/85. 23724582Szliu * 23824582Szliu * sin(x*k) - x 23924582Szliu * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded 24024582Szliu * x 24124582Szliu * value of pi in machine precision: 24224582Szliu * 24324582Szliu * Decimal: 24424582Szliu * pi = 3.141592653589793 23846264338327 ..... 24524582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 24624582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 24724582Szliu * 24824582Szliu * Hexadecimal: 24924582Szliu * pi = 3.243F6A8885A308D313198A2E.... 25024582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 25124582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 25224582Szliu * 25324582Szliu * Method: 25424582Szliu * 1. Let z=x*x. Create a polynomial approximation to 25524582Szliu * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5). 25624582Szliu * Then 25724582Szliu * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5) 25824582Szliu * 25924582Szliu * The coefficient S's are obtained by a special Remez algorithm. 26024582Szliu * 26124582Szliu * Accuracy: 26224582Szliu * In the absence of rounding error, the approximation has absolute error 26324582Szliu * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. 26424582Szliu * 26524582Szliu * Constants: 26624582Szliu * The hexadecimal values are the intended ones for the following constants. 26724582Szliu * The decimal values may be used, provided that the compiler will convert 26824582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 26924582Szliu * shown. 27024582Szliu * 27124582Szliu */ 27224582Szliu 27324582Szliu #ifdef VAX 27424582Szliu /*S0 = -1.6666666666666646660E-1 , Hex 2^ -2 * -.AAAAAAAAAAAA71 */ 27524582Szliu /*S1 = 8.3333333333297230413E-3 , Hex 2^ -6 * .8888888888477F */ 27624582Szliu /*S2 = -1.9841269838362403710E-4 , Hex 2^-12 * -.D00D00CF8A1057 */ 27724582Szliu /*S3 = 2.7557318019967078930E-6 , Hex 2^-18 * .B8EF1CA326BEDC */ 27824582Szliu /*S4 = -2.5051841873876551398E-8 , Hex 2^-25 * -.D73195374CE1D3 */ 27924582Szliu /*S5 = 1.6028995389845827653E-10 , Hex 2^-32 * .B03D9C6D26CCCC */ 28024582Szliu /*S6 = -6.2723499671769283121E-13 ; Hex 2^-40 * -.B08D0B7561EA82 */ 28124582Szliu static long S0x[] = { 0xaaaabf2a, 0xaa71aaaa}; 28224582Szliu #define S0 (*(double*)S0x) 28324582Szliu static long S1x[] = { 0x88883d08, 0x477f8888}; 28424582Szliu #define S1 (*(double*)S1x) 28524582Szliu static long S2x[] = { 0x0d00ba50, 0x1057cf8a}; 28624582Szliu #define S2 (*(double*)S2x) 28724582Szliu static long S3x[] = { 0xef1c3738, 0xbedca326}; 28824582Szliu #define S3 (*(double*)S3x) 28924582Szliu static long S4x[] = { 0x3195b3d7, 0xe1d3374c}; 29024582Szliu #define S4 (*(double*)S4x) 29124582Szliu static long S5x[] = { 0x3d9c3030, 0xcccc6d26}; 29224582Szliu #define S5 (*(double*)S5x) 29324582Szliu static long S6x[] = { 0x8d0bac30, 0xea827561}; 29424582Szliu #define S6 (*(double*)S6x) 29524582Szliu #else /* IEEE double */ 29624582Szliu static double 29724582Szliu S0 = -1.6666666666666463126E-1 , /*Hex 2^ -3 * -1.555555555550C */ 29824582Szliu S1 = 8.3333333332992771264E-3 , /*Hex 2^ -7 * 1.111111110C461 */ 29924582Szliu S2 = -1.9841269816180999116E-4 , /*Hex 2^-13 * -1.A01A019746345 */ 30024582Szliu S3 = 2.7557309793219876880E-6 , /*Hex 2^-19 * 1.71DE3209CDCD9 */ 30124582Szliu S4 = -2.5050225177523807003E-8 , /*Hex 2^-26 * -1.AE5C0E319A4EF */ 30224582Szliu S5 = 1.5868926979889205164E-10 ; /*Hex 2^-33 * 1.5CF61DF672B13 */ 30324582Szliu #endif 30424582Szliu 30524582Szliu static double sin__S(z) 30624582Szliu double z; 30724582Szliu { 30824582Szliu #ifdef VAX 30924582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6))))))); 31024582Szliu #else /* IEEE double */ 31124582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5)))))); 31224582Szliu #endif 31324582Szliu } 31424582Szliu 31524582Szliu 31624582Szliu /* cos__C(x*x) 31724582Szliu * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) 31824582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 31924582Szliu * CODED IN C BY K.C. NG, 1/21/85; 32024582Szliu * REVISED BY K.C. NG on 8/13/85. 32124582Szliu * 32224582Szliu * x*x 32324582Szliu * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI, 32424582Szliu * 2 32524582Szliu * PI is the rounded value of pi in machine precision : 32624582Szliu * 32724582Szliu * Decimal: 32824582Szliu * pi = 3.141592653589793 23846264338327 ..... 32924582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 33024582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 33124582Szliu * 33224582Szliu * Hexadecimal: 33324582Szliu * pi = 3.243F6A8885A308D313198A2E.... 33424582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 33524582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 33624582Szliu * 33724582Szliu * 33824582Szliu * Method: 33924582Szliu * 1. Let z=x*x. Create a polynomial approximation to 34024582Szliu * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5) 34124582Szliu * then 34224582Szliu * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5) 34324582Szliu * 34424582Szliu * The coefficient C's are obtained by a special Remez algorithm. 34524582Szliu * 34624582Szliu * Accuracy: 34724582Szliu * In the absence of rounding error, the approximation has absolute error 34824582Szliu * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. 34924582Szliu * 35024582Szliu * 35124582Szliu * Constants: 35224582Szliu * The hexadecimal values are the intended ones for the following constants. 35324582Szliu * The decimal values may be used, provided that the compiler will convert 35424582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 35524582Szliu * shown. 35624582Szliu * 35724582Szliu */ 35824582Szliu 35924582Szliu #ifdef VAX 36024582Szliu /*C0 = 4.1666666666666504759E-2 , Hex 2^ -4 * .AAAAAAAAAAA9F0 */ 36124582Szliu /*C1 = -1.3888888888865302059E-3 , Hex 2^ -9 * -.B60B60B60A0CCA */ 36224582Szliu /*C2 = 2.4801587285601038265E-5 , Hex 2^-15 * .D00D00CDCD098F */ 36324582Szliu /*C3 = -2.7557313470902390219E-7 , Hex 2^-21 * -.93F27BB593E805 */ 36424582Szliu /*C4 = 2.0875623401082232009E-9 , Hex 2^-28 * .8F74C8FA1E3FF0 */ 36524582Szliu /*C5 = -1.1355178117642986178E-11 ; Hex 2^-36 * -.C7C32D0A5C5A63 */ 36624582Szliu static long C0x[] = { 0xaaaa3e2a, 0xa9f0aaaa}; 36724582Szliu #define C0 (*(double*)C0x) 36824582Szliu static long C1x[] = { 0x0b60bbb6, 0x0ccab60a}; 36924582Szliu #define C1 (*(double*)C1x) 37024582Szliu static long C2x[] = { 0x0d0038d0, 0x098fcdcd}; 37124582Szliu #define C2 (*(double*)C2x) 37224582Szliu static long C3x[] = { 0xf27bb593, 0xe805b593}; 37324582Szliu #define C3 (*(double*)C3x) 37424582Szliu static long C4x[] = { 0x74c8320f, 0x3ff0fa1e}; 37524582Szliu #define C4 (*(double*)C4x) 37624582Szliu static long C5x[] = { 0xc32dae47, 0x5a630a5c}; 37724582Szliu #define C5 (*(double*)C5x) 37824582Szliu #else /* IEEE double */ 37924582Szliu static double 38024582Szliu C0 = 4.1666666666666504759E-2 , /*Hex 2^ -5 * 1.555555555553E */ 38124582Szliu C1 = -1.3888888888865301516E-3 , /*Hex 2^-10 * -1.6C16C16C14199 */ 38224582Szliu C2 = 2.4801587269650015769E-5 , /*Hex 2^-16 * 1.A01A01971CAEB */ 38324582Szliu C3 = -2.7557304623183959811E-7 , /*Hex 2^-22 * -1.27E4F1314AD1A */ 38424582Szliu C4 = 2.0873958177697780076E-9 , /*Hex 2^-29 * 1.1EE3B60DDDC8C */ 38524582Szliu C5 = -1.1250289076471311557E-11 ; /*Hex 2^-37 * -1.8BD5986B2A52E */ 38624582Szliu #endif 38724582Szliu 38824582Szliu static double cos__C(z) 38924582Szliu double z; 39024582Szliu { 39124582Szliu return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5)))))); 39224582Szliu } 393