1*24582Szliu /* 2*24582Szliu * Copyright (c) 1985 Regents of the University of California. 3*24582Szliu * 4*24582Szliu * Use and reproduction of this software are granted in accordance with 5*24582Szliu * the terms and conditions specified in the Berkeley Software License 6*24582Szliu * Agreement (in particular, this entails acknowledgement of the programs' 7*24582Szliu * source, and inclusion of this notice) with the additional understanding 8*24582Szliu * that all recipients should regard themselves as participants in an 9*24582Szliu * ongoing research project and hence should feel obligated to report 10*24582Szliu * their experiences (good or bad) with these elementary function codes, 11*24582Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12*24582Szliu */ 13*24582Szliu 14*24582Szliu #ifndef lint 15*24582Szliu static char sccsid[] = "@(#)trig.c 1.1 (ELEFUNT) 09/06/85"; 16*24582Szliu #endif not lint 17*24582Szliu 18*24582Szliu /* SIN(X), COS(X), TAN(X) 19*24582Szliu * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY 20*24582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 21*24582Szliu * CODED IN C BY K.C. NG, 1/8/85; 22*24582Szliu * REVISED BY W. Kahan and K.C. NG, 8/17/85. 23*24582Szliu * 24*24582Szliu * Required system supported functions: 25*24582Szliu * copysign(x,y) 26*24582Szliu * finite(x) 27*24582Szliu * drem(x,p) 28*24582Szliu * 29*24582Szliu * Static kernel functions: 30*24582Szliu * sin__S(z) ....sin__S(x*x) return (sin(x)-x)/x 31*24582Szliu * cos__C(z) ....cos__C(x*x) return cos(x)-1-x*x/2 32*24582Szliu * 33*24582Szliu * Method. 34*24582Szliu * Let S and C denote the polynomial approximations to sin and cos 35*24582Szliu * respectively on [-PI/4, +PI/4]. 36*24582Szliu * 37*24582Szliu * SIN and COS: 38*24582Szliu * 1. Reduce the argument into [-PI , +PI] by the remainder function. 39*24582Szliu * 2. For x in (-PI,+PI), there are three cases: 40*24582Szliu * case 1: |x| < PI/4 41*24582Szliu * case 2: PI/4 <= |x| < 3PI/4 42*24582Szliu * case 3: 3PI/4 <= |x|. 43*24582Szliu * SIN and COS of x are computed by: 44*24582Szliu * 45*24582Szliu * sin(x) cos(x) remark 46*24582Szliu * ---------------------------------------------------------- 47*24582Szliu * case 1 S(x) C(x) 48*24582Szliu * case 2 sign(x)*C(y) S(y) y=PI/2-|x| 49*24582Szliu * case 3 S(y) -C(y) y=sign(x)*(PI-|x|) 50*24582Szliu * ---------------------------------------------------------- 51*24582Szliu * 52*24582Szliu * TAN: 53*24582Szliu * 1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function. 54*24582Szliu * 2. For x in (-PI/2,+PI/2), there are two cases: 55*24582Szliu * case 1: |x| < PI/4 56*24582Szliu * case 2: PI/4 <= |x| < PI/2 57*24582Szliu * TAN of x is computed by: 58*24582Szliu * 59*24582Szliu * tan (x) remark 60*24582Szliu * ---------------------------------------------------------- 61*24582Szliu * case 1 S(x)/C(x) 62*24582Szliu * case 2 C(y)/S(y) y=sign(x)*(PI/2-|x|) 63*24582Szliu * ---------------------------------------------------------- 64*24582Szliu * 65*24582Szliu * Notes: 66*24582Szliu * 1. S(y) and C(y) were computed by: 67*24582Szliu * S(y) = y+y*sin__S(y*y) 68*24582Szliu * C(y) = 1-(y*y/2-cos__C(x*x)) ... if y*y/2 < thresh, 69*24582Szliu * = 0.5-((y*y/2-0.5)-cos__C(x*x)) ... if y*y/2 >= thresh. 70*24582Szliu * where 71*24582Szliu * thresh = 0.5*(acos(3/4)**2) 72*24582Szliu * 73*24582Szliu * 2. For better accuracy, we use the following formula for S/C for tan 74*24582Szliu * (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then 75*24582Szliu * 76*24582Szliu * y+y*ss (y*y/2-cc)+ss 77*24582Szliu * S(y)/C(y) = -------- = y + y * ---------------. 78*24582Szliu * C C 79*24582Szliu * 80*24582Szliu * 81*24582Szliu * Special cases: 82*24582Szliu * Let trig be any of sin, cos, or tan. 83*24582Szliu * trig(+-INF) is NaN, with signals; 84*24582Szliu * trig(NaN) is that NaN; 85*24582Szliu * trig(n*PI/2) is exact for any integer n, provided n*PI is 86*24582Szliu * representable; otherwise, trig(x) is inexact. 87*24582Szliu * 88*24582Szliu * Accuracy: 89*24582Szliu * trig(x) returns the exact trig(x*pi/PI) nearly rounded, where 90*24582Szliu * 91*24582Szliu * Decimal: 92*24582Szliu * pi = 3.141592653589793 23846264338327 ..... 93*24582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 94*24582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 95*24582Szliu * 96*24582Szliu * Hexadecimal: 97*24582Szliu * pi = 3.243F6A8885A308D313198A2E.... 98*24582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 99*24582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 100*24582Szliu * 101*24582Szliu * In a test run with 1,024,000 random arguments on a VAX, the maximum 102*24582Szliu * observed errors (compared with the exact trig(x*pi/PI)) were 103*24582Szliu * tan(x) : 2.09 ulps (around 4.716340404662354) 104*24582Szliu * sin(x) : .861 ulps 105*24582Szliu * cos(x) : .857 ulps 106*24582Szliu * 107*24582Szliu * Constants: 108*24582Szliu * The hexadecimal values are the intended ones for the following constants. 109*24582Szliu * The decimal values may be used, provided that the compiler will convert 110*24582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 111*24582Szliu * shown. 112*24582Szliu */ 113*24582Szliu 114*24582Szliu #ifdef VAX 115*24582Szliu /*thresh = 2.6117239648121182150E-1 , Hex 2^ -1 * .85B8636B026EA0 */ 116*24582Szliu /*PIo4 = 7.8539816339744830676E-1 , Hex 2^ 0 * .C90FDAA22168C2 */ 117*24582Szliu /*PIo2 = 1.5707963267948966135E0 , Hex 2^ 1 * .C90FDAA22168C2 */ 118*24582Szliu /*PI3o4 = 2.3561944901923449203E0 , Hex 2^ 2 * .96CBE3F9990E92 */ 119*24582Szliu /*PI = 3.1415926535897932270E0 , Hex 2^ 2 * .C90FDAA22168C2 */ 120*24582Szliu /*PI2 = 6.2831853071795864540E0 ; Hex 2^ 3 * .C90FDAA22168C2 */ 121*24582Szliu static long threshx[] = { 0xb8633f85, 0x6ea06b02}; 122*24582Szliu #define thresh (*(double*)threshx) 123*24582Szliu static long PIo4x[] = { 0x0fda4049, 0x68c2a221}; 124*24582Szliu #define PIo4 (*(double*)PIo4x) 125*24582Szliu static long PIo2x[] = { 0x0fda40c9, 0x68c2a221}; 126*24582Szliu #define PIo2 (*(double*)PIo2x) 127*24582Szliu static long PI3o4x[] = { 0xcbe34116, 0x0e92f999}; 128*24582Szliu #define PI3o4 (*(double*)PI3o4x) 129*24582Szliu static long PIx[] = { 0x0fda4149, 0x68c2a221}; 130*24582Szliu #define PI (*(double*)PIx) 131*24582Szliu static long PI2x[] = { 0x0fda41c9, 0x68c2a221}; 132*24582Szliu #define PI2 (*(double*)PI2x) 133*24582Szliu #else /* IEEE double */ 134*24582Szliu static double 135*24582Szliu thresh = 2.6117239648121182150E-1 , /*Hex 2^ -2 * 1.0B70C6D604DD4 */ 136*24582Szliu PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */ 137*24582Szliu PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */ 138*24582Szliu PI3o4 = 2.3561944901923448370E0 , /*Hex 2^ 1 * 1.2D97C7F3321D2 */ 139*24582Szliu PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */ 140*24582Szliu PI2 = 6.2831853071795862320E0 ; /*Hex 2^ 2 * 1.921FB54442D18 */ 141*24582Szliu #endif 142*24582Szliu static double zero=0, one=1, negone= -1, half=1.0/2.0, 143*24582Szliu small=1E-10, /* 1+small**2==1; better values for small: 144*24582Szliu small = 1.5E-9 for VAX D 145*24582Szliu = 1.2E-8 for IEEE Double 146*24582Szliu = 2.8E-10 for IEEE Extended */ 147*24582Szliu big=1E20; /* big = 1/(small**2) */ 148*24582Szliu 149*24582Szliu double tan(x) 150*24582Szliu double x; 151*24582Szliu { 152*24582Szliu double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c; 153*24582Szliu int finite(),k; 154*24582Szliu 155*24582Szliu /* tan(NaN) and tan(INF) must be NaN */ 156*24582Szliu if(!finite(x)) return(x-x); 157*24582Szliu x=drem(x,PI); /* reduce x into [-PI/2, PI/2] */ 158*24582Szliu a=copysign(x,one); /* ... = abs(x) */ 159*24582Szliu if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); } 160*24582Szliu else { k=0; if(a < small ) { big + a; return(x); }} 161*24582Szliu 162*24582Szliu z = x*x; 163*24582Szliu cc = cos__C(z); 164*24582Szliu ss = sin__S(z); 165*24582Szliu z = z*half ; /* Next get c = cos(x) accurately */ 166*24582Szliu c = (z >= thresh )? half-((z-half)-cc) : one-(z-cc); 167*24582Szliu if (k==0) return ( x + (x*(z-(cc-ss)))/c ); /* sin/cos */ 168*24582Szliu return( c/(x+x*ss) ); /* ... cos/sin */ 169*24582Szliu 170*24582Szliu 171*24582Szliu } 172*24582Szliu double sin(x) 173*24582Szliu double x; 174*24582Szliu { 175*24582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z; 176*24582Szliu int finite(); 177*24582Szliu 178*24582Szliu /* sin(NaN) and sin(INF) must be NaN */ 179*24582Szliu if(!finite(x)) return(x-x); 180*24582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */ 181*24582Szliu a=copysign(x,one); 182*24582Szliu if( a >= PIo4 ) { 183*24582Szliu if( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 184*24582Szliu x=copysign((a=PI-a),x); 185*24582Szliu 186*24582Szliu else { /* .. in [PI/4, 3PI/4] */ 187*24582Szliu a=PIo2-a; /* return sign(x)*C(PI/2-|x|) */ 188*24582Szliu z=a*a; 189*24582Szliu c=cos__C(z); 190*24582Szliu z=z*half; 191*24582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c); 192*24582Szliu return(copysign(a,x)); 193*24582Szliu } 194*24582Szliu } 195*24582Szliu 196*24582Szliu /* return S(x) */ 197*24582Szliu if( a < small) { big + a; return(x);} 198*24582Szliu return(x+x*sin__S(x*x)); 199*24582Szliu } 200*24582Szliu 201*24582Szliu double cos(x) 202*24582Szliu double x; 203*24582Szliu { 204*24582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0; 205*24582Szliu int finite(); 206*24582Szliu 207*24582Szliu /* cos(NaN) and cos(INF) must be NaN */ 208*24582Szliu if(!finite(x)) return(x-x); 209*24582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */ 210*24582Szliu a=copysign(x,one); 211*24582Szliu if ( a >= PIo4 ) { 212*24582Szliu if ( a >= PI3o4 ) /* .. in [3PI/4, PI ] */ 213*24582Szliu { a=PI-a; s= negone; } 214*24582Szliu 215*24582Szliu else /* .. in [PI/4, 3PI/4] */ 216*24582Szliu /* return S(PI/2-|x|) */ 217*24582Szliu { a=PIo2-a; return(a+a*sin__S(a*a));} 218*24582Szliu } 219*24582Szliu 220*24582Szliu 221*24582Szliu /* return s*C(a) */ 222*24582Szliu if( a < small) { big + a; return(s);} 223*24582Szliu z=a*a; 224*24582Szliu c=cos__C(z); 225*24582Szliu z=z*half; 226*24582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c); 227*24582Szliu return(copysign(a,s)); 228*24582Szliu } 229*24582Szliu 230*24582Szliu 231*24582Szliu /* sin__S(x*x) 232*24582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 233*24582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 234*24582Szliu * CODED IN C BY K.C. NG, 1/21/85; 235*24582Szliu * REVISED BY K.C. NG on 8/13/85. 236*24582Szliu * 237*24582Szliu * sin(x*k) - x 238*24582Szliu * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded 239*24582Szliu * x 240*24582Szliu * value of pi in machine precision: 241*24582Szliu * 242*24582Szliu * Decimal: 243*24582Szliu * pi = 3.141592653589793 23846264338327 ..... 244*24582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 245*24582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 246*24582Szliu * 247*24582Szliu * Hexadecimal: 248*24582Szliu * pi = 3.243F6A8885A308D313198A2E.... 249*24582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 250*24582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 251*24582Szliu * 252*24582Szliu * Method: 253*24582Szliu * 1. Let z=x*x. Create a polynomial approximation to 254*24582Szliu * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5). 255*24582Szliu * Then 256*24582Szliu * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5) 257*24582Szliu * 258*24582Szliu * The coefficient S's are obtained by a special Remez algorithm. 259*24582Szliu * 260*24582Szliu * Accuracy: 261*24582Szliu * In the absence of rounding error, the approximation has absolute error 262*24582Szliu * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. 263*24582Szliu * 264*24582Szliu * Constants: 265*24582Szliu * The hexadecimal values are the intended ones for the following constants. 266*24582Szliu * The decimal values may be used, provided that the compiler will convert 267*24582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 268*24582Szliu * shown. 269*24582Szliu * 270*24582Szliu */ 271*24582Szliu 272*24582Szliu #ifdef VAX 273*24582Szliu /*S0 = -1.6666666666666646660E-1 , Hex 2^ -2 * -.AAAAAAAAAAAA71 */ 274*24582Szliu /*S1 = 8.3333333333297230413E-3 , Hex 2^ -6 * .8888888888477F */ 275*24582Szliu /*S2 = -1.9841269838362403710E-4 , Hex 2^-12 * -.D00D00CF8A1057 */ 276*24582Szliu /*S3 = 2.7557318019967078930E-6 , Hex 2^-18 * .B8EF1CA326BEDC */ 277*24582Szliu /*S4 = -2.5051841873876551398E-8 , Hex 2^-25 * -.D73195374CE1D3 */ 278*24582Szliu /*S5 = 1.6028995389845827653E-10 , Hex 2^-32 * .B03D9C6D26CCCC */ 279*24582Szliu /*S6 = -6.2723499671769283121E-13 ; Hex 2^-40 * -.B08D0B7561EA82 */ 280*24582Szliu static long S0x[] = { 0xaaaabf2a, 0xaa71aaaa}; 281*24582Szliu #define S0 (*(double*)S0x) 282*24582Szliu static long S1x[] = { 0x88883d08, 0x477f8888}; 283*24582Szliu #define S1 (*(double*)S1x) 284*24582Szliu static long S2x[] = { 0x0d00ba50, 0x1057cf8a}; 285*24582Szliu #define S2 (*(double*)S2x) 286*24582Szliu static long S3x[] = { 0xef1c3738, 0xbedca326}; 287*24582Szliu #define S3 (*(double*)S3x) 288*24582Szliu static long S4x[] = { 0x3195b3d7, 0xe1d3374c}; 289*24582Szliu #define S4 (*(double*)S4x) 290*24582Szliu static long S5x[] = { 0x3d9c3030, 0xcccc6d26}; 291*24582Szliu #define S5 (*(double*)S5x) 292*24582Szliu static long S6x[] = { 0x8d0bac30, 0xea827561}; 293*24582Szliu #define S6 (*(double*)S6x) 294*24582Szliu #else /* IEEE double */ 295*24582Szliu static double 296*24582Szliu S0 = -1.6666666666666463126E-1 , /*Hex 2^ -3 * -1.555555555550C */ 297*24582Szliu S1 = 8.3333333332992771264E-3 , /*Hex 2^ -7 * 1.111111110C461 */ 298*24582Szliu S2 = -1.9841269816180999116E-4 , /*Hex 2^-13 * -1.A01A019746345 */ 299*24582Szliu S3 = 2.7557309793219876880E-6 , /*Hex 2^-19 * 1.71DE3209CDCD9 */ 300*24582Szliu S4 = -2.5050225177523807003E-8 , /*Hex 2^-26 * -1.AE5C0E319A4EF */ 301*24582Szliu S5 = 1.5868926979889205164E-10 ; /*Hex 2^-33 * 1.5CF61DF672B13 */ 302*24582Szliu #endif 303*24582Szliu 304*24582Szliu static double sin__S(z) 305*24582Szliu double z; 306*24582Szliu { 307*24582Szliu #ifdef VAX 308*24582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6))))))); 309*24582Szliu #else /* IEEE double */ 310*24582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5)))))); 311*24582Szliu #endif 312*24582Szliu } 313*24582Szliu 314*24582Szliu 315*24582Szliu /* cos__C(x*x) 316*24582Szliu * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) 317*24582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 318*24582Szliu * CODED IN C BY K.C. NG, 1/21/85; 319*24582Szliu * REVISED BY K.C. NG on 8/13/85. 320*24582Szliu * 321*24582Szliu * x*x 322*24582Szliu * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI, 323*24582Szliu * 2 324*24582Szliu * PI is the rounded value of pi in machine precision : 325*24582Szliu * 326*24582Szliu * Decimal: 327*24582Szliu * pi = 3.141592653589793 23846264338327 ..... 328*24582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 329*24582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 330*24582Szliu * 331*24582Szliu * Hexadecimal: 332*24582Szliu * pi = 3.243F6A8885A308D313198A2E.... 333*24582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 334*24582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 335*24582Szliu * 336*24582Szliu * 337*24582Szliu * Method: 338*24582Szliu * 1. Let z=x*x. Create a polynomial approximation to 339*24582Szliu * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5) 340*24582Szliu * then 341*24582Szliu * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5) 342*24582Szliu * 343*24582Szliu * The coefficient C's are obtained by a special Remez algorithm. 344*24582Szliu * 345*24582Szliu * Accuracy: 346*24582Szliu * In the absence of rounding error, the approximation has absolute error 347*24582Szliu * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. 348*24582Szliu * 349*24582Szliu * 350*24582Szliu * Constants: 351*24582Szliu * The hexadecimal values are the intended ones for the following constants. 352*24582Szliu * The decimal values may be used, provided that the compiler will convert 353*24582Szliu * from decimal to binary accurately enough to produce the hexadecimal values 354*24582Szliu * shown. 355*24582Szliu * 356*24582Szliu */ 357*24582Szliu 358*24582Szliu #ifdef VAX 359*24582Szliu /*C0 = 4.1666666666666504759E-2 , Hex 2^ -4 * .AAAAAAAAAAA9F0 */ 360*24582Szliu /*C1 = -1.3888888888865302059E-3 , Hex 2^ -9 * -.B60B60B60A0CCA */ 361*24582Szliu /*C2 = 2.4801587285601038265E-5 , Hex 2^-15 * .D00D00CDCD098F */ 362*24582Szliu /*C3 = -2.7557313470902390219E-7 , Hex 2^-21 * -.93F27BB593E805 */ 363*24582Szliu /*C4 = 2.0875623401082232009E-9 , Hex 2^-28 * .8F74C8FA1E3FF0 */ 364*24582Szliu /*C5 = -1.1355178117642986178E-11 ; Hex 2^-36 * -.C7C32D0A5C5A63 */ 365*24582Szliu static long C0x[] = { 0xaaaa3e2a, 0xa9f0aaaa}; 366*24582Szliu #define C0 (*(double*)C0x) 367*24582Szliu static long C1x[] = { 0x0b60bbb6, 0x0ccab60a}; 368*24582Szliu #define C1 (*(double*)C1x) 369*24582Szliu static long C2x[] = { 0x0d0038d0, 0x098fcdcd}; 370*24582Szliu #define C2 (*(double*)C2x) 371*24582Szliu static long C3x[] = { 0xf27bb593, 0xe805b593}; 372*24582Szliu #define C3 (*(double*)C3x) 373*24582Szliu static long C4x[] = { 0x74c8320f, 0x3ff0fa1e}; 374*24582Szliu #define C4 (*(double*)C4x) 375*24582Szliu static long C5x[] = { 0xc32dae47, 0x5a630a5c}; 376*24582Szliu #define C5 (*(double*)C5x) 377*24582Szliu #else /* IEEE double */ 378*24582Szliu static double 379*24582Szliu C0 = 4.1666666666666504759E-2 , /*Hex 2^ -5 * 1.555555555553E */ 380*24582Szliu C1 = -1.3888888888865301516E-3 , /*Hex 2^-10 * -1.6C16C16C14199 */ 381*24582Szliu C2 = 2.4801587269650015769E-5 , /*Hex 2^-16 * 1.A01A01971CAEB */ 382*24582Szliu C3 = -2.7557304623183959811E-7 , /*Hex 2^-22 * -1.27E4F1314AD1A */ 383*24582Szliu C4 = 2.0873958177697780076E-9 , /*Hex 2^-29 * 1.1EE3B60DDDC8C */ 384*24582Szliu C5 = -1.1250289076471311557E-11 ; /*Hex 2^-37 * -1.8BD5986B2A52E */ 385*24582Szliu #endif 386*24582Szliu 387*24582Szliu static double cos__C(z) 388*24582Szliu double z; 389*24582Szliu { 390*24582Szliu return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5)))))); 391*24582Szliu } 392