xref: /csrg-svn/lib/libm/common/trig.c (revision 24582)
1*24582Szliu /*
2*24582Szliu  * Copyright (c) 1985 Regents of the University of California.
3*24582Szliu  *
4*24582Szliu  * Use and reproduction of this software are granted  in  accordance  with
5*24582Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
6*24582Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
7*24582Szliu  * source, and inclusion of this notice) with the additional understanding
8*24582Szliu  * that  all  recipients  should regard themselves as participants  in  an
9*24582Szliu  * ongoing  research  project and hence should  feel  obligated  to report
10*24582Szliu  * their  experiences (good or bad) with these elementary function  codes,
11*24582Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12*24582Szliu  */
13*24582Szliu 
14*24582Szliu #ifndef lint
15*24582Szliu static char sccsid[] = "@(#)trig.c	1.1 (ELEFUNT) 09/06/85";
16*24582Szliu #endif not lint
17*24582Szliu 
18*24582Szliu /* SIN(X), COS(X), TAN(X)
19*24582Szliu  * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY
20*24582Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
21*24582Szliu  * CODED IN C BY K.C. NG, 1/8/85;
22*24582Szliu  * REVISED BY W. Kahan and K.C. NG, 8/17/85.
23*24582Szliu  *
24*24582Szliu  * Required system supported functions:
25*24582Szliu  *      copysign(x,y)
26*24582Szliu  *      finite(x)
27*24582Szliu  *      drem(x,p)
28*24582Szliu  *
29*24582Szliu  * Static kernel functions:
30*24582Szliu  *      sin__S(z)       ....sin__S(x*x) return (sin(x)-x)/x
31*24582Szliu  *      cos__C(z)       ....cos__C(x*x) return cos(x)-1-x*x/2
32*24582Szliu  *
33*24582Szliu  * Method.
34*24582Szliu  *      Let S and C denote the polynomial approximations to sin and cos
35*24582Szliu  *      respectively on [-PI/4, +PI/4].
36*24582Szliu  *
37*24582Szliu  *      SIN and COS:
38*24582Szliu  *      1. Reduce the argument into [-PI , +PI] by the remainder function.
39*24582Szliu  *      2. For x in (-PI,+PI), there are three cases:
40*24582Szliu  *			case 1:	|x| < PI/4
41*24582Szliu  *			case 2:	PI/4 <= |x| < 3PI/4
42*24582Szliu  *			case 3:	3PI/4 <= |x|.
43*24582Szliu  *	   SIN and COS of x are computed by:
44*24582Szliu  *
45*24582Szliu  *                   sin(x)      cos(x)       remark
46*24582Szliu  *     ----------------------------------------------------------
47*24582Szliu  *        case 1     S(x)         C(x)
48*24582Szliu  *        case 2 sign(x)*C(y)     S(y)      y=PI/2-|x|
49*24582Szliu  *        case 3     S(y)        -C(y)      y=sign(x)*(PI-|x|)
50*24582Szliu  *     ----------------------------------------------------------
51*24582Szliu  *
52*24582Szliu  *      TAN:
53*24582Szliu  *      1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function.
54*24582Szliu  *      2. For x in (-PI/2,+PI/2), there are two cases:
55*24582Szliu  *			case 1:	|x| < PI/4
56*24582Szliu  *			case 2:	PI/4 <= |x| < PI/2
57*24582Szliu  *         TAN of x is computed by:
58*24582Szliu  *
59*24582Szliu  *                   tan (x)            remark
60*24582Szliu  *     ----------------------------------------------------------
61*24582Szliu  *        case 1     S(x)/C(x)
62*24582Szliu  *        case 2     C(y)/S(y)     y=sign(x)*(PI/2-|x|)
63*24582Szliu  *     ----------------------------------------------------------
64*24582Szliu  *
65*24582Szliu  *   Notes:
66*24582Szliu  *      1. S(y) and C(y) were computed by:
67*24582Szliu  *              S(y) = y+y*sin__S(y*y)
68*24582Szliu  *              C(y) = 1-(y*y/2-cos__C(x*x))          ... if y*y/2 <  thresh,
69*24582Szliu  *                   = 0.5-((y*y/2-0.5)-cos__C(x*x))  ... if y*y/2 >= thresh.
70*24582Szliu  *         where
71*24582Szliu  *              thresh = 0.5*(acos(3/4)**2)
72*24582Szliu  *
73*24582Szliu  *      2. For better accuracy, we use the following formula for S/C for tan
74*24582Szliu  *         (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then
75*24582Szliu  *
76*24582Szliu  *                            y+y*ss             (y*y/2-cc)+ss
77*24582Szliu  *             S(y)/C(y)   = -------- = y + y * ---------------.
78*24582Szliu  *                               C                     C
79*24582Szliu  *
80*24582Szliu  *
81*24582Szliu  * Special cases:
82*24582Szliu  *      Let trig be any of sin, cos, or tan.
83*24582Szliu  *      trig(+-INF)  is NaN, with signals;
84*24582Szliu  *      trig(NaN)    is that NaN;
85*24582Szliu  *      trig(n*PI/2) is exact for any integer n, provided n*PI is
86*24582Szliu  *      representable; otherwise, trig(x) is inexact.
87*24582Szliu  *
88*24582Szliu  * Accuracy:
89*24582Szliu  *      trig(x) returns the exact trig(x*pi/PI) nearly rounded, where
90*24582Szliu  *
91*24582Szliu  *      Decimal:
92*24582Szliu  *              pi = 3.141592653589793 23846264338327 .....
93*24582Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
94*24582Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
95*24582Szliu  *
96*24582Szliu  *      Hexadecimal:
97*24582Szliu  *              pi = 3.243F6A8885A308D313198A2E....
98*24582Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18    error=.276ulps
99*24582Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
100*24582Szliu  *
101*24582Szliu  *      In a test run with 1,024,000 random arguments on a VAX, the maximum
102*24582Szliu  *      observed errors (compared with the exact trig(x*pi/PI)) were
103*24582Szliu  *                      tan(x) : 2.09 ulps (around 4.716340404662354)
104*24582Szliu  *                      sin(x) : .861 ulps
105*24582Szliu  *                      cos(x) : .857 ulps
106*24582Szliu  *
107*24582Szliu  * Constants:
108*24582Szliu  * The hexadecimal values are the intended ones for the following constants.
109*24582Szliu  * The decimal values may be used, provided that the compiler will convert
110*24582Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
111*24582Szliu  * shown.
112*24582Szliu  */
113*24582Szliu 
114*24582Szliu #ifdef VAX
115*24582Szliu /*thresh =  2.6117239648121182150E-1    , Hex  2^ -1   *  .85B8636B026EA0 */
116*24582Szliu /*PIo4   =  7.8539816339744830676E-1    , Hex  2^  0   *  .C90FDAA22168C2 */
117*24582Szliu /*PIo2   =  1.5707963267948966135E0     , Hex  2^  1   *  .C90FDAA22168C2 */
118*24582Szliu /*PI3o4  =  2.3561944901923449203E0     , Hex  2^  2   *  .96CBE3F9990E92 */
119*24582Szliu /*PI     =  3.1415926535897932270E0     , Hex  2^  2   *  .C90FDAA22168C2 */
120*24582Szliu /*PI2    =  6.2831853071795864540E0     ; Hex  2^  3   *  .C90FDAA22168C2 */
121*24582Szliu static long    threshx[] = { 0xb8633f85, 0x6ea06b02};
122*24582Szliu #define   thresh    (*(double*)threshx)
123*24582Szliu static long      PIo4x[] = { 0x0fda4049, 0x68c2a221};
124*24582Szliu #define     PIo4    (*(double*)PIo4x)
125*24582Szliu static long      PIo2x[] = { 0x0fda40c9, 0x68c2a221};
126*24582Szliu #define     PIo2    (*(double*)PIo2x)
127*24582Szliu static long      PI3o4x[] = { 0xcbe34116, 0x0e92f999};
128*24582Szliu #define     PI3o4    (*(double*)PI3o4x)
129*24582Szliu static long        PIx[] = { 0x0fda4149, 0x68c2a221};
130*24582Szliu #define       PI    (*(double*)PIx)
131*24582Szliu static long       PI2x[] = { 0x0fda41c9, 0x68c2a221};
132*24582Szliu #define      PI2    (*(double*)PI2x)
133*24582Szliu #else   /* IEEE double  */
134*24582Szliu static double
135*24582Szliu thresh =  2.6117239648121182150E-1    , /*Hex  2^ -2   *  1.0B70C6D604DD4 */
136*24582Szliu PIo4   =  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
137*24582Szliu PIo2   =  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
138*24582Szliu PI3o4  =  2.3561944901923448370E0     , /*Hex  2^  1   *  1.2D97C7F3321D2 */
139*24582Szliu PI     =  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
140*24582Szliu PI2    =  6.2831853071795862320E0     ; /*Hex  2^  2   *  1.921FB54442D18 */
141*24582Szliu #endif
142*24582Szliu static double zero=0, one=1, negone= -1, half=1.0/2.0,
143*24582Szliu 	      small=1E-10, /* 1+small**2==1; better values for small:
144*24582Szliu 					small = 1.5E-9 for VAX D
145*24582Szliu 					      = 1.2E-8 for IEEE Double
146*24582Szliu 					      = 2.8E-10 for IEEE Extended */
147*24582Szliu 	      big=1E20;    /* big = 1/(small**2) */
148*24582Szliu 
149*24582Szliu double tan(x)
150*24582Szliu double x;
151*24582Szliu {
152*24582Szliu         double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c;
153*24582Szliu         int finite(),k;
154*24582Szliu 
155*24582Szliu         /* tan(NaN) and tan(INF) must be NaN */
156*24582Szliu             if(!finite(x))  return(x-x);
157*24582Szliu         x=drem(x,PI);        /* reduce x into [-PI/2, PI/2] */
158*24582Szliu         a=copysign(x,one);   /* ... = abs(x) */
159*24582Szliu 	if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); }
160*24582Szliu 	   else { k=0; if(a < small ) { big + a; return(x); }}
161*24582Szliu 
162*24582Szliu         z  = x*x;
163*24582Szliu         cc = cos__C(z);
164*24582Szliu         ss = sin__S(z);
165*24582Szliu 	z  = z*half ;		/* Next get c = cos(x) accurately */
166*24582Szliu 	c  = (z >= thresh )? half-((z-half)-cc) : one-(z-cc);
167*24582Szliu 	if (k==0) return ( x + (x*(z-(cc-ss)))/c );  /* sin/cos */
168*24582Szliu 	return( c/(x+x*ss) );	/*                  ... cos/sin */
169*24582Szliu 
170*24582Szliu 
171*24582Szliu }
172*24582Szliu double sin(x)
173*24582Szliu double x;
174*24582Szliu {
175*24582Szliu         double copysign(),drem(),sin__S(),cos__C(),a,c,z;
176*24582Szliu         int finite();
177*24582Szliu 
178*24582Szliu         /* sin(NaN) and sin(INF) must be NaN */
179*24582Szliu             if(!finite(x))  return(x-x);
180*24582Szliu 	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
181*24582Szliu         a=copysign(x,one);
182*24582Szliu 	if( a >= PIo4 ) {
183*24582Szliu 	     if( a >= PI3o4 )   /* 	.. in [3PI/4,  PI ]  */
184*24582Szliu 		x=copysign((a=PI-a),x);
185*24582Szliu 
186*24582Szliu 	     else {	       /* 	.. in [PI/4, 3PI/4]  */
187*24582Szliu 		a=PIo2-a;      /* return sign(x)*C(PI/2-|x|) */
188*24582Szliu 		z=a*a;
189*24582Szliu 		c=cos__C(z);
190*24582Szliu 		z=z*half;
191*24582Szliu 		a=(z>=thresh)?half-((z-half)-c):one-(z-c);
192*24582Szliu 		return(copysign(a,x));
193*24582Szliu 		}
194*24582Szliu              }
195*24582Szliu 
196*24582Szliu         /* return S(x) */
197*24582Szliu             if( a < small) { big + a; return(x);}
198*24582Szliu             return(x+x*sin__S(x*x));
199*24582Szliu }
200*24582Szliu 
201*24582Szliu double cos(x)
202*24582Szliu double x;
203*24582Szliu {
204*24582Szliu         double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0;
205*24582Szliu         int finite();
206*24582Szliu 
207*24582Szliu         /* cos(NaN) and cos(INF) must be NaN */
208*24582Szliu             if(!finite(x))  return(x-x);
209*24582Szliu 	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
210*24582Szliu         a=copysign(x,one);
211*24582Szliu 	if ( a >= PIo4 ) {
212*24582Szliu 	     if ( a >= PI3o4 )  /* 	.. in [3PI/4,  PI ]  */
213*24582Szliu 		{ a=PI-a; s= negone; }
214*24582Szliu 
215*24582Szliu 	     else 	       /* 	.. in [PI/4, 3PI/4]  */
216*24582Szliu                                /*        return  S(PI/2-|x|) */
217*24582Szliu 		{ a=PIo2-a; return(a+a*sin__S(a*a));}
218*24582Szliu 	     }
219*24582Szliu 
220*24582Szliu 
221*24582Szliu         /* return s*C(a) */
222*24582Szliu             if( a < small) { big + a; return(s);}
223*24582Szliu 	    z=a*a;
224*24582Szliu 	    c=cos__C(z);
225*24582Szliu 	    z=z*half;
226*24582Szliu 	    a=(z>=thresh)?half-((z-half)-c):one-(z-c);
227*24582Szliu 	    return(copysign(a,s));
228*24582Szliu }
229*24582Szliu 
230*24582Szliu 
231*24582Szliu /* sin__S(x*x)
232*24582Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
233*24582Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
234*24582Szliu  * CODED IN C BY K.C. NG, 1/21/85;
235*24582Szliu  * REVISED BY K.C. NG on 8/13/85.
236*24582Szliu  *
237*24582Szliu  *	    sin(x*k) - x
238*24582Szliu  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
239*24582Szliu  *	            x
240*24582Szliu  * value of pi in machine precision:
241*24582Szliu  *
242*24582Szliu  *	Decimal:
243*24582Szliu  *		pi = 3.141592653589793 23846264338327 .....
244*24582Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
245*24582Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
246*24582Szliu  *
247*24582Szliu  *	Hexadecimal:
248*24582Szliu  *		pi = 3.243F6A8885A308D313198A2E....
249*24582Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
250*24582Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
251*24582Szliu  *
252*24582Szliu  * Method:
253*24582Szliu  *	1. Let z=x*x. Create a polynomial approximation to
254*24582Szliu  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
255*24582Szliu  *	Then
256*24582Szliu  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
257*24582Szliu  *
258*24582Szliu  *	The coefficient S's are obtained by a special Remez algorithm.
259*24582Szliu  *
260*24582Szliu  * Accuracy:
261*24582Szliu  *	In the absence of rounding error, the approximation has absolute error
262*24582Szliu  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
263*24582Szliu  *
264*24582Szliu  * Constants:
265*24582Szliu  * The hexadecimal values are the intended ones for the following constants.
266*24582Szliu  * The decimal values may be used, provided that the compiler will convert
267*24582Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
268*24582Szliu  * shown.
269*24582Szliu  *
270*24582Szliu  */
271*24582Szliu 
272*24582Szliu #ifdef VAX
273*24582Szliu /*S0     = -1.6666666666666646660E-1    , Hex  2^ -2   * -.AAAAAAAAAAAA71 */
274*24582Szliu /*S1     =  8.3333333333297230413E-3    , Hex  2^ -6   *  .8888888888477F */
275*24582Szliu /*S2     = -1.9841269838362403710E-4    , Hex  2^-12   * -.D00D00CF8A1057 */
276*24582Szliu /*S3     =  2.7557318019967078930E-6    , Hex  2^-18   *  .B8EF1CA326BEDC */
277*24582Szliu /*S4     = -2.5051841873876551398E-8    , Hex  2^-25   * -.D73195374CE1D3 */
278*24582Szliu /*S5     =  1.6028995389845827653E-10   , Hex  2^-32   *  .B03D9C6D26CCCC */
279*24582Szliu /*S6     = -6.2723499671769283121E-13   ; Hex  2^-40   * -.B08D0B7561EA82 */
280*24582Szliu static long        S0x[] = { 0xaaaabf2a, 0xaa71aaaa};
281*24582Szliu #define       S0    (*(double*)S0x)
282*24582Szliu static long        S1x[] = { 0x88883d08, 0x477f8888};
283*24582Szliu #define       S1    (*(double*)S1x)
284*24582Szliu static long        S2x[] = { 0x0d00ba50, 0x1057cf8a};
285*24582Szliu #define       S2    (*(double*)S2x)
286*24582Szliu static long        S3x[] = { 0xef1c3738, 0xbedca326};
287*24582Szliu #define       S3    (*(double*)S3x)
288*24582Szliu static long        S4x[] = { 0x3195b3d7, 0xe1d3374c};
289*24582Szliu #define       S4    (*(double*)S4x)
290*24582Szliu static long        S5x[] = { 0x3d9c3030, 0xcccc6d26};
291*24582Szliu #define       S5    (*(double*)S5x)
292*24582Szliu static long        S6x[] = { 0x8d0bac30, 0xea827561};
293*24582Szliu #define       S6    (*(double*)S6x)
294*24582Szliu #else	/* IEEE double  */
295*24582Szliu static double
296*24582Szliu S0     = -1.6666666666666463126E-1    , /*Hex  2^ -3   * -1.555555555550C */
297*24582Szliu S1     =  8.3333333332992771264E-3    , /*Hex  2^ -7   *  1.111111110C461 */
298*24582Szliu S2     = -1.9841269816180999116E-4    , /*Hex  2^-13   * -1.A01A019746345 */
299*24582Szliu S3     =  2.7557309793219876880E-6    , /*Hex  2^-19   *  1.71DE3209CDCD9 */
300*24582Szliu S4     = -2.5050225177523807003E-8    , /*Hex  2^-26   * -1.AE5C0E319A4EF */
301*24582Szliu S5     =  1.5868926979889205164E-10   ; /*Hex  2^-33   *  1.5CF61DF672B13 */
302*24582Szliu #endif
303*24582Szliu 
304*24582Szliu static double sin__S(z)
305*24582Szliu double z;
306*24582Szliu {
307*24582Szliu #ifdef VAX
308*24582Szliu 	return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))));
309*24582Szliu #else 	/* IEEE double */
310*24582Szliu 	return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))));
311*24582Szliu #endif
312*24582Szliu }
313*24582Szliu 
314*24582Szliu 
315*24582Szliu /* cos__C(x*x)
316*24582Szliu  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
317*24582Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
318*24582Szliu  * CODED IN C BY K.C. NG, 1/21/85;
319*24582Szliu  * REVISED BY K.C. NG on 8/13/85.
320*24582Szliu  *
321*24582Szliu  *	   		    x*x
322*24582Szliu  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
323*24582Szliu  *	  		     2
324*24582Szliu  * PI is the rounded value of pi in machine precision :
325*24582Szliu  *
326*24582Szliu  *	Decimal:
327*24582Szliu  *		pi = 3.141592653589793 23846264338327 .....
328*24582Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
329*24582Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
330*24582Szliu  *
331*24582Szliu  *	Hexadecimal:
332*24582Szliu  *		pi = 3.243F6A8885A308D313198A2E....
333*24582Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
334*24582Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
335*24582Szliu  *
336*24582Szliu  *
337*24582Szliu  * Method:
338*24582Szliu  *	1. Let z=x*x. Create a polynomial approximation to
339*24582Szliu  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
340*24582Szliu  *	then
341*24582Szliu  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
342*24582Szliu  *
343*24582Szliu  *	The coefficient C's are obtained by a special Remez algorithm.
344*24582Szliu  *
345*24582Szliu  * Accuracy:
346*24582Szliu  *	In the absence of rounding error, the approximation has absolute error
347*24582Szliu  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
348*24582Szliu  *
349*24582Szliu  *
350*24582Szliu  * Constants:
351*24582Szliu  * The hexadecimal values are the intended ones for the following constants.
352*24582Szliu  * The decimal values may be used, provided that the compiler will convert
353*24582Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
354*24582Szliu  * shown.
355*24582Szliu  *
356*24582Szliu  */
357*24582Szliu 
358*24582Szliu #ifdef VAX
359*24582Szliu /*C0     =  4.1666666666666504759E-2    , Hex  2^ -4   *  .AAAAAAAAAAA9F0 */
360*24582Szliu /*C1     = -1.3888888888865302059E-3    , Hex  2^ -9   * -.B60B60B60A0CCA */
361*24582Szliu /*C2     =  2.4801587285601038265E-5    , Hex  2^-15   *  .D00D00CDCD098F */
362*24582Szliu /*C3     = -2.7557313470902390219E-7    , Hex  2^-21   * -.93F27BB593E805 */
363*24582Szliu /*C4     =  2.0875623401082232009E-9    , Hex  2^-28   *  .8F74C8FA1E3FF0 */
364*24582Szliu /*C5     = -1.1355178117642986178E-11   ; Hex  2^-36   * -.C7C32D0A5C5A63 */
365*24582Szliu static long        C0x[] = { 0xaaaa3e2a, 0xa9f0aaaa};
366*24582Szliu #define       C0    (*(double*)C0x)
367*24582Szliu static long        C1x[] = { 0x0b60bbb6, 0x0ccab60a};
368*24582Szliu #define       C1    (*(double*)C1x)
369*24582Szliu static long        C2x[] = { 0x0d0038d0, 0x098fcdcd};
370*24582Szliu #define       C2    (*(double*)C2x)
371*24582Szliu static long        C3x[] = { 0xf27bb593, 0xe805b593};
372*24582Szliu #define       C3    (*(double*)C3x)
373*24582Szliu static long        C4x[] = { 0x74c8320f, 0x3ff0fa1e};
374*24582Szliu #define       C4    (*(double*)C4x)
375*24582Szliu static long        C5x[] = { 0xc32dae47, 0x5a630a5c};
376*24582Szliu #define       C5    (*(double*)C5x)
377*24582Szliu #else	/* IEEE double  */
378*24582Szliu static double
379*24582Szliu C0     =  4.1666666666666504759E-2    , /*Hex  2^ -5   *  1.555555555553E */
380*24582Szliu C1     = -1.3888888888865301516E-3    , /*Hex  2^-10   * -1.6C16C16C14199 */
381*24582Szliu C2     =  2.4801587269650015769E-5    , /*Hex  2^-16   *  1.A01A01971CAEB */
382*24582Szliu C3     = -2.7557304623183959811E-7    , /*Hex  2^-22   * -1.27E4F1314AD1A */
383*24582Szliu C4     =  2.0873958177697780076E-9    , /*Hex  2^-29   *  1.1EE3B60DDDC8C */
384*24582Szliu C5     = -1.1250289076471311557E-11   ; /*Hex  2^-37   * -1.8BD5986B2A52E */
385*24582Szliu #endif
386*24582Szliu 
387*24582Szliu static double cos__C(z)
388*24582Szliu double z;
389*24582Szliu {
390*24582Szliu 	return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))));
391*24582Szliu }
392