xref: /csrg-svn/lib/libm/common/atan2.c (revision 35680)
134127Sbostic /*
224578Szliu  * Copyright (c) 1985 Regents of the University of California.
334127Sbostic  * All rights reserved.
434127Sbostic  *
534127Sbostic  * Redistribution and use in source and binary forms are permitted
634928Sbostic  * provided that the above copyright notice and this paragraph are
734928Sbostic  * duplicated in all such forms and that any documentation,
834928Sbostic  * advertising materials, and other materials related to such
934928Sbostic  * distribution and use acknowledge that the software was developed
1034928Sbostic  * by the University of California, Berkeley.  The name of the
1134928Sbostic  * University may not be used to endorse or promote products derived
1234928Sbostic  * from this software without specific prior written permission.
1334928Sbostic  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
1434928Sbostic  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
1534928Sbostic  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
1634127Sbostic  *
1734127Sbostic  * All recipients should regard themselves as participants in an ongoing
1834127Sbostic  * research project and hence should feel obligated to report their
1934127Sbostic  * experiences (good or bad) with these elementary function codes, using
2034127Sbostic  * the sendbug(8) program, to the authors.
2124578Szliu  */
2224578Szliu 
2324578Szliu #ifndef lint
24*35680Sbostic static char sccsid[] = "@(#)atan2.c	5.4 (Berkeley) 09/22/88";
2534127Sbostic #endif /* not lint */
2624578Szliu 
2724578Szliu /* ATAN2(Y,X)
2824578Szliu  * RETURN ARG (X+iY)
2924578Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
3024578Szliu  * CODED IN C BY K.C. NG, 1/8/85;
3124578Szliu  * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
3224578Szliu  *
3324578Szliu  * Required system supported functions :
3424578Szliu  *	copysign(x,y)
3524578Szliu  *	scalb(x,y)
3624578Szliu  *	logb(x)
3724578Szliu  *
3824578Szliu  * Method :
3924578Szliu  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
4024578Szliu  *	2. Reduce x to positive by (if x and y are unexceptional):
4124578Szliu  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
4224578Szliu  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
4324578Szliu  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
4424578Szliu  *	   is further reduced to one of the following intervals and the
4524578Szliu  *	   arctangent of y/x is evaluated by the corresponding formula:
4624578Szliu  *
4724578Szliu  *         [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
4824578Szliu  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
4924578Szliu  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
5024578Szliu  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
5124578Szliu  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
5224578Szliu  *
5324578Szliu  * Special cases:
5424578Szliu  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
5524578Szliu  *
5624578Szliu  *	ARG( NAN , (anything) ) is NaN;
5724578Szliu  *	ARG( (anything), NaN ) is NaN;
5824578Szliu  *	ARG(+(anything but NaN), +-0) is +-0  ;
5924578Szliu  *	ARG(-(anything but NaN), +-0) is +-PI ;
6024578Szliu  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
6124578Szliu  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
6224578Szliu  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
6324578Szliu  *	ARG( +INF,+-INF ) is +-PI/4 ;
6424578Szliu  *	ARG( -INF,+-INF ) is +-3PI/4;
6524578Szliu  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
6624578Szliu  *
6724578Szliu  * Accuracy:
6824578Szliu  *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
6924578Szliu  *	where
7024578Szliu  *
7124578Szliu  *	in decimal:
7224578Szliu  *		pi = 3.141592653589793 23846264338327 .....
7324578Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
7424578Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
7524578Szliu  *
7624578Szliu  *	in hexadecimal:
7724578Szliu  *		pi = 3.243F6A8885A308D313198A2E....
7824578Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
7924578Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
8024578Szliu  *
8124578Szliu  *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
8224578Szliu  *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
8324578Szliu  *	compared with (PI/pi)*(the exact ARG(x+iy)).
8424578Szliu  *
8524578Szliu  * Note:
8624578Szliu  *	We use machine PI (the true pi rounded) in place of the actual
8724578Szliu  *	value of pi for all the trig and inverse trig functions. In general,
8824578Szliu  *	if trig is one of sin, cos, tan, then computed trig(y) returns the
8924578Szliu  *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
9024578Szliu  *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
9124578Szliu  *	trig functions have period PI, and trig(arctrig(x)) returns x for
9224578Szliu  *	all critical values x.
9324578Szliu  *
9424578Szliu  * Constants:
9524578Szliu  * The hexadecimal values are the intended ones for the following constants.
9624578Szliu  * The decimal values may be used, provided that the compiler will convert
9724578Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
9824578Szliu  * shown.
9924578Szliu  */
10024578Szliu 
101*35680Sbostic #include "mathimpl.h"
10224578Szliu 
103*35680Sbostic vc(athfhi, 4.6364760900080611433E-1  ,6338,3fed,da7b,2b0d,  -1, .ED63382B0DDA7B)
104*35680Sbostic vc(athflo, 1.9338828231967579916E-19 ,5005,2164,92c0,9cfe, -62, .E450059CFE92C0)
105*35680Sbostic vc(PIo4,   7.8539816339744830676E-1  ,0fda,4049,68c2,a221,   0, .C90FDAA22168C2)
106*35680Sbostic vc(at1fhi, 9.8279372324732906796E-1  ,985e,407b,b4d9,940f,   0, .FB985E940FB4D9)
107*35680Sbostic vc(at1flo,-3.5540295636764633916E-18 ,1edc,a383,eaea,34d6, -57,-.831EDC34D6EAEA)
108*35680Sbostic vc(PIo2,   1.5707963267948966135E0   ,0fda,40c9,68c2,a221,   1, .C90FDAA22168C2)
109*35680Sbostic vc(PI,     3.1415926535897932270E0   ,0fda,4149,68c2,a221,   2, .C90FDAA22168C2)
110*35680Sbostic vc(a1,     3.3333333333333473730E-1  ,aaaa,3faa,ab75,aaaa,  -1, .AAAAAAAAAAAB75)
111*35680Sbostic vc(a2,    -2.0000000000017730678E-1  ,cccc,bf4c,946e,cccd,  -2,-.CCCCCCCCCD946E)
112*35680Sbostic vc(a3,     1.4285714286694640301E-1  ,4924,3f12,4262,9274,  -2, .92492492744262)
113*35680Sbostic vc(a4,    -1.1111111135032672795E-1  ,8e38,bee3,6292,ebc6,  -3,-.E38E38EBC66292)
114*35680Sbostic vc(a5,     9.0909091380563043783E-2  ,2e8b,3eba,d70c,b31b,  -3, .BA2E8BB31BD70C)
115*35680Sbostic vc(a6,    -7.6922954286089459397E-2  ,89c8,be9d,7f18,27c3,  -3,-.9D89C827C37F18)
116*35680Sbostic vc(a7,     6.6663180891693915586E-2  ,86b4,3e88,9e58,ae37,  -3, .8886B4AE379E58)
117*35680Sbostic vc(a8,    -5.8772703698290408927E-2  ,bba5,be70,a942,8481,  -4,-.F0BBA58481A942)
118*35680Sbostic vc(a9,     5.2170707402812969804E-2  ,b0f3,3e55,13ab,a1ab,  -4, .D5B0F3A1AB13AB)
119*35680Sbostic vc(a10,   -4.4895863157820361210E-2  ,e4b9,be37,048f,7fd1,  -4,-.B7E4B97FD1048F)
120*35680Sbostic vc(a11,    3.3006147437343875094E-2  ,3174,3e07,2d87,3cf7,  -4, .8731743CF72D87)
121*35680Sbostic vc(a12,   -1.4614844866464185439E-2  ,731a,bd6f,76d9,2f34,  -6,-.EF731A2F3476D9)
122*35680Sbostic 
123*35680Sbostic ic(athfhi, 4.6364760900080609352E-1  ,  -2,  1.DAC670561BB4F)
124*35680Sbostic ic(athflo, 4.6249969567426939759E-18 , -58,  1.5543B8F253271)
125*35680Sbostic ic(PIo4,   7.8539816339744827900E-1  ,  -1,  1.921FB54442D18)
126*35680Sbostic ic(at1fhi, 9.8279372324732905408E-1  ,  -1,  1.F730BD281F69B)
127*35680Sbostic ic(at1flo,-2.4407677060164810007E-17 , -56, -1.C23DFEFEAE6B5)
128*35680Sbostic ic(PIo2,   1.5707963267948965580E0   ,   0,  1.921FB54442D18)
129*35680Sbostic ic(PI,     3.1415926535897931160E0   ,   1,  1.921FB54442D18)
130*35680Sbostic ic(a1,     3.3333333333333942106E-1  ,  -2,  1.55555555555C3)
131*35680Sbostic ic(a2,    -1.9999999999979536924E-1  ,  -3, -1.9999999997CCD)
132*35680Sbostic ic(a3,     1.4285714278004377209E-1  ,  -3,  1.24924921EC1D7)
133*35680Sbostic ic(a4,    -1.1111110579344973814E-1  ,  -4, -1.C71C7059AF280)
134*35680Sbostic ic(a5,     9.0908906105474668324E-2  ,  -4,  1.745CE5AA35DB2)
135*35680Sbostic ic(a6,    -7.6919217767468239799E-2  ,  -4, -1.3B0FA54BEC400)
136*35680Sbostic ic(a7,     6.6614695906082474486E-2  ,  -4,  1.10DA924597FFF)
137*35680Sbostic ic(a8,    -5.8358371008508623523E-2  ,  -5, -1.DE125FDDBD793)
138*35680Sbostic ic(a9,     4.9850617156082015213E-2  ,  -5,  1.9860524BDD807)
139*35680Sbostic ic(a10,   -3.6700606902093604877E-2  ,  -5, -1.2CA6C04C6937A)
140*35680Sbostic ic(a11,    1.6438029044759730479E-2  ,  -6,  1.0D52174A1BB54)
141*35680Sbostic 
142*35680Sbostic #ifdef vccast
143*35680Sbostic #define	athfhi	vccast(athfhi)
144*35680Sbostic #define	athflo	vccast(athflo)
145*35680Sbostic #define	PIo4	vccast(PIo4)
146*35680Sbostic #define	at1fhi	vccast(at1fhi)
147*35680Sbostic #define	at1flo	vccast(at1flo)
148*35680Sbostic #define	PIo2	vccast(PIo2)
149*35680Sbostic #define	PI	vccast(PI)
150*35680Sbostic #define	a1	vccast(a1)
151*35680Sbostic #define	a2	vccast(a2)
152*35680Sbostic #define	a3	vccast(a3)
153*35680Sbostic #define	a4	vccast(a4)
154*35680Sbostic #define	a5	vccast(a5)
155*35680Sbostic #define	a6	vccast(a6)
156*35680Sbostic #define	a7	vccast(a7)
157*35680Sbostic #define	a8	vccast(a8)
158*35680Sbostic #define	a9	vccast(a9)
159*35680Sbostic #define	a10	vccast(a10)
160*35680Sbostic #define	a11	vccast(a11)
161*35680Sbostic #define	a12	vccast(a12)
162*35680Sbostic #endif
163*35680Sbostic 
16424578Szliu double atan2(y,x)
16524578Szliu double  y,x;
16624578Szliu {
167*35680Sbostic 	static const double zero=0, one=1, small=1.0E-9, big=1.0E18;
168*35680Sbostic 	double t,z,signy,signx,hi,lo;
169*35680Sbostic 	int k,m;
17024578Szliu 
17131855Szliu #if !defined(vax)&&!defined(tahoe)
17224578Szliu     /* if x or y is NAN */
17324578Szliu 	if(x!=x) return(x); if(y!=y) return(y);
17431855Szliu #endif	/* !defined(vax)&&!defined(tahoe) */
17524578Szliu 
17624578Szliu     /* copy down the sign of y and x */
17724578Szliu 	signy = copysign(one,y) ;
17824578Szliu 	signx = copysign(one,x) ;
17924578Szliu 
18024578Szliu     /* if x is 1.0, goto begin */
18124578Szliu 	if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
18224578Szliu 
18324578Szliu     /* when y = 0 */
18424578Szliu 	if(y==zero) return((signx==one)?y:copysign(PI,signy));
18524578Szliu 
18624578Szliu     /* when x = 0 */
18724578Szliu 	if(x==zero) return(copysign(PIo2,signy));
18824578Szliu 
18924578Szliu     /* when x is INF */
19024578Szliu 	if(!finite(x))
19124578Szliu 	    if(!finite(y))
19224578Szliu 		return(copysign((signx==one)?PIo4:3*PIo4,signy));
19324578Szliu 	    else
19424578Szliu 		return(copysign((signx==one)?zero:PI,signy));
19524578Szliu 
19624578Szliu     /* when y is INF */
19724578Szliu 	if(!finite(y)) return(copysign(PIo2,signy));
19824578Szliu 
19924578Szliu     /* compute y/x */
20024578Szliu 	x=copysign(x,one);
20124578Szliu 	y=copysign(y,one);
20224578Szliu 	if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
20324578Szliu 	    else if(m < -80 ) t=y/x;
20424578Szliu 	    else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
20524578Szliu 
20624578Szliu     /* begin argument reduction */
20724578Szliu begin:
20824578Szliu 	if (t < 2.4375) {
20924578Szliu 
21024578Szliu 	/* truncate 4(t+1/16) to integer for branching */
21124578Szliu 	    k = 4 * (t+0.0625);
21224578Szliu 	    switch (k) {
21324578Szliu 
21424578Szliu 	    /* t is in [0,7/16] */
21524578Szliu 	    case 0:
21624578Szliu 	    case 1:
21724578Szliu 		if (t < small)
21824578Szliu 		    { big + small ;  /* raise inexact flag */
21924578Szliu 		      return (copysign((signx>zero)?t:PI-t,signy)); }
22024578Szliu 
22124578Szliu 		hi = zero;  lo = zero;  break;
22224578Szliu 
22324578Szliu 	    /* t is in [7/16,11/16] */
22424578Szliu 	    case 2:
22524578Szliu 		hi = athfhi; lo = athflo;
22624578Szliu 		z = x+x;
22724578Szliu 		t = ( (y+y) - x ) / ( z +  y ); break;
22824578Szliu 
22924578Szliu 	    /* t is in [11/16,19/16] */
23024578Szliu 	    case 3:
23124578Szliu 	    case 4:
23224578Szliu 		hi = PIo4; lo = zero;
23324578Szliu 		t = ( y - x ) / ( x + y ); break;
23424578Szliu 
23524578Szliu 	    /* t is in [19/16,39/16] */
23624578Szliu 	    default:
23724578Szliu 		hi = at1fhi; lo = at1flo;
23824578Szliu 		z = y-x; y=y+y+y; t = x+x;
23924578Szliu 		t = ( (z+z)-x ) / ( t + y ); break;
24024578Szliu 	    }
24124578Szliu 	}
24224578Szliu 	/* end of if (t < 2.4375) */
24324578Szliu 
24424578Szliu 	else
24524578Szliu 	{
24624578Szliu 	    hi = PIo2; lo = zero;
24724578Szliu 
24824578Szliu 	    /* t is in [2.4375, big] */
24924578Szliu 	    if (t <= big)  t = - x / y;
25024578Szliu 
25124578Szliu 	    /* t is in [big, INF] */
25224578Szliu 	    else
25324578Szliu 	      { big+small;	/* raise inexact flag */
25424578Szliu 		t = zero; }
25524578Szliu 	}
25624578Szliu     /* end of argument reduction */
25724578Szliu 
25824578Szliu     /* compute atan(t) for t in [-.4375, .4375] */
25924578Szliu 	z = t*t;
26031855Szliu #if defined(vax)||defined(tahoe)
26124578Szliu 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
26224578Szliu 			z*(a9+z*(a10+z*(a11+z*a12))))))))))));
26331855Szliu #else	/* defined(vax)||defined(tahoe) */
26424578Szliu 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
26524578Szliu 			z*(a9+z*(a10+z*a11)))))))))));
26631855Szliu #endif	/* defined(vax)||defined(tahoe) */
26724578Szliu 	z = lo - z; z += t; z += hi;
26824578Szliu 
26924578Szliu 	return(copysign((signx>zero)?z:PI-z,signy));
27024578Szliu }
271