xref: /csrg-svn/lib/libm/common/atan2.c (revision 34928)
134127Sbostic /*
224578Szliu  * Copyright (c) 1985 Regents of the University of California.
334127Sbostic  * All rights reserved.
434127Sbostic  *
534127Sbostic  * Redistribution and use in source and binary forms are permitted
6*34928Sbostic  * provided that the above copyright notice and this paragraph are
7*34928Sbostic  * duplicated in all such forms and that any documentation,
8*34928Sbostic  * advertising materials, and other materials related to such
9*34928Sbostic  * distribution and use acknowledge that the software was developed
10*34928Sbostic  * by the University of California, Berkeley.  The name of the
11*34928Sbostic  * University may not be used to endorse or promote products derived
12*34928Sbostic  * from this software without specific prior written permission.
13*34928Sbostic  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14*34928Sbostic  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15*34928Sbostic  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
1634127Sbostic  *
1734127Sbostic  * All recipients should regard themselves as participants in an ongoing
1834127Sbostic  * research project and hence should feel obligated to report their
1934127Sbostic  * experiences (good or bad) with these elementary function codes, using
2034127Sbostic  * the sendbug(8) program, to the authors.
2124578Szliu  */
2224578Szliu 
2324578Szliu #ifndef lint
24*34928Sbostic static char sccsid[] = "@(#)atan2.c	5.3 (Berkeley) 06/30/88";
2534127Sbostic #endif /* not lint */
2624578Szliu 
2724578Szliu /* ATAN2(Y,X)
2824578Szliu  * RETURN ARG (X+iY)
2924578Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
3024578Szliu  * CODED IN C BY K.C. NG, 1/8/85;
3124578Szliu  * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
3224578Szliu  *
3324578Szliu  * Required system supported functions :
3424578Szliu  *	copysign(x,y)
3524578Szliu  *	scalb(x,y)
3624578Szliu  *	logb(x)
3724578Szliu  *
3824578Szliu  * Method :
3924578Szliu  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
4024578Szliu  *	2. Reduce x to positive by (if x and y are unexceptional):
4124578Szliu  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
4224578Szliu  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
4324578Szliu  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
4424578Szliu  *	   is further reduced to one of the following intervals and the
4524578Szliu  *	   arctangent of y/x is evaluated by the corresponding formula:
4624578Szliu  *
4724578Szliu  *         [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
4824578Szliu  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
4924578Szliu  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
5024578Szliu  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
5124578Szliu  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
5224578Szliu  *
5324578Szliu  * Special cases:
5424578Szliu  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
5524578Szliu  *
5624578Szliu  *	ARG( NAN , (anything) ) is NaN;
5724578Szliu  *	ARG( (anything), NaN ) is NaN;
5824578Szliu  *	ARG(+(anything but NaN), +-0) is +-0  ;
5924578Szliu  *	ARG(-(anything but NaN), +-0) is +-PI ;
6024578Szliu  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
6124578Szliu  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
6224578Szliu  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
6324578Szliu  *	ARG( +INF,+-INF ) is +-PI/4 ;
6424578Szliu  *	ARG( -INF,+-INF ) is +-3PI/4;
6524578Szliu  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
6624578Szliu  *
6724578Szliu  * Accuracy:
6824578Szliu  *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
6924578Szliu  *	where
7024578Szliu  *
7124578Szliu  *	in decimal:
7224578Szliu  *		pi = 3.141592653589793 23846264338327 .....
7324578Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
7424578Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
7524578Szliu  *
7624578Szliu  *	in hexadecimal:
7724578Szliu  *		pi = 3.243F6A8885A308D313198A2E....
7824578Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
7924578Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
8024578Szliu  *
8124578Szliu  *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
8224578Szliu  *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
8324578Szliu  *	compared with (PI/pi)*(the exact ARG(x+iy)).
8424578Szliu  *
8524578Szliu  * Note:
8624578Szliu  *	We use machine PI (the true pi rounded) in place of the actual
8724578Szliu  *	value of pi for all the trig and inverse trig functions. In general,
8824578Szliu  *	if trig is one of sin, cos, tan, then computed trig(y) returns the
8924578Szliu  *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
9024578Szliu  *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
9124578Szliu  *	trig functions have period PI, and trig(arctrig(x)) returns x for
9224578Szliu  *	all critical values x.
9324578Szliu  *
9424578Szliu  * Constants:
9524578Szliu  * The hexadecimal values are the intended ones for the following constants.
9624578Szliu  * The decimal values may be used, provided that the compiler will convert
9724578Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
9824578Szliu  * shown.
9924578Szliu  */
10024578Szliu 
10131855Szliu #if defined(vax)||defined(tahoe) 	/* VAX D format */
10231855Szliu #ifdef vax
10331822Szliu #define _0x(A,B)	0x/**/A/**/B
10431855Szliu #else	/* vax */
10531822Szliu #define _0x(A,B)	0x/**/B/**/A
10631855Szliu #endif	/* vax */
10731822Szliu /*static double */
10831822Szliu /*athfhi =  4.6364760900080611433E-1    , /*Hex  2^ -1   *  .ED63382B0DDA7B */
10931822Szliu /*athflo =  1.9338828231967579916E-19   , /*Hex  2^-62   *  .E450059CFE92C0 */
11031822Szliu /*PIo4   =  7.8539816339744830676E-1    , /*Hex  2^  0   *  .C90FDAA22168C2 */
11131822Szliu /*at1fhi =  9.8279372324732906796E-1    , /*Hex  2^  0   *  .FB985E940FB4D9 */
11231822Szliu /*at1flo = -3.5540295636764633916E-18   , /*Hex  2^-57   * -.831EDC34D6EAEA */
11331822Szliu /*PIo2   =  1.5707963267948966135E0     , /*Hex  2^  1   *  .C90FDAA22168C2 */
11431822Szliu /*PI     =  3.1415926535897932270E0     , /*Hex  2^  2   *  .C90FDAA22168C2 */
11531822Szliu /*a1     =  3.3333333333333473730E-1    , /*Hex  2^ -1   *  .AAAAAAAAAAAB75 */
11631822Szliu /*a2     = -2.0000000000017730678E-1    , /*Hex  2^ -2   * -.CCCCCCCCCD946E */
11731822Szliu /*a3     =  1.4285714286694640301E-1    , /*Hex  2^ -2   *  .92492492744262 */
11831822Szliu /*a4     = -1.1111111135032672795E-1    , /*Hex  2^ -3   * -.E38E38EBC66292 */
11931822Szliu /*a5     =  9.0909091380563043783E-2    , /*Hex  2^ -3   *  .BA2E8BB31BD70C */
12031822Szliu /*a6     = -7.6922954286089459397E-2    , /*Hex  2^ -3   * -.9D89C827C37F18 */
12131822Szliu /*a7     =  6.6663180891693915586E-2    , /*Hex  2^ -3   *  .8886B4AE379E58 */
12231822Szliu /*a8     = -5.8772703698290408927E-2    , /*Hex  2^ -4   * -.F0BBA58481A942 */
12331822Szliu /*a9     =  5.2170707402812969804E-2    , /*Hex  2^ -4   *  .D5B0F3A1AB13AB */
12431822Szliu /*a10    = -4.4895863157820361210E-2    , /*Hex  2^ -4   * -.B7E4B97FD1048F */
12531822Szliu /*a11    =  3.3006147437343875094E-2    , /*Hex  2^ -4   *  .8731743CF72D87 */
12631822Szliu /*a12    = -1.4614844866464185439E-2    ; /*Hex  2^ -6   * -.EF731A2F3476D9 */
12731822Szliu static long athfhix[] = { _0x(6338,3fed), _0x(da7b,2b0d)};
12831822Szliu #define athfhi	(*(double *)athfhix)
12931822Szliu static long athflox[] = { _0x(5005,2164), _0x(92c0,9cfe)};
13031822Szliu #define athflo	(*(double *)athflox)
13131822Szliu static long   PIo4x[] = { _0x(0fda,4049), _0x(68c2,a221)};
13231822Szliu #define   PIo4	(*(double *)PIo4x)
13331822Szliu static long at1fhix[] = { _0x(985e,407b), _0x(b4d9,940f)};
13431822Szliu #define at1fhi	(*(double *)at1fhix)
13531822Szliu static long at1flox[] = { _0x(1edc,a383), _0x(eaea,34d6)};
13631822Szliu #define at1flo	(*(double *)at1flox)
13731822Szliu static long   PIo2x[] = { _0x(0fda,40c9), _0x(68c2,a221)};
13831822Szliu #define   PIo2	(*(double *)PIo2x)
13931822Szliu static long     PIx[] = { _0x(0fda,4149), _0x(68c2,a221)};
14031822Szliu #define     PI	(*(double *)PIx)
14131822Szliu static long     a1x[] = { _0x(aaaa,3faa), _0x(ab75,aaaa)};
14231822Szliu #define     a1	(*(double *)a1x)
14331822Szliu static long     a2x[] = { _0x(cccc,bf4c), _0x(946e,cccd)};
14431822Szliu #define     a2	(*(double *)a2x)
14531822Szliu static long     a3x[] = { _0x(4924,3f12), _0x(4262,9274)};
14631822Szliu #define     a3	(*(double *)a3x)
14731822Szliu static long     a4x[] = { _0x(8e38,bee3), _0x(6292,ebc6)};
14831822Szliu #define     a4	(*(double *)a4x)
14931822Szliu static long     a5x[] = { _0x(2e8b,3eba), _0x(d70c,b31b)};
15031822Szliu #define     a5	(*(double *)a5x)
15131822Szliu static long     a6x[] = { _0x(89c8,be9d), _0x(7f18,27c3)};
15231822Szliu #define     a6	(*(double *)a6x)
15331822Szliu static long     a7x[] = { _0x(86b4,3e88), _0x(9e58,ae37)};
15431822Szliu #define     a7	(*(double *)a7x)
15531822Szliu static long     a8x[] = { _0x(bba5,be70), _0x(a942,8481)};
15631822Szliu #define     a8	(*(double *)a8x)
15731822Szliu static long     a9x[] = { _0x(b0f3,3e55), _0x(13ab,a1ab)};
15831822Szliu #define     a9	(*(double *)a9x)
15931822Szliu static long    a10x[] = { _0x(e4b9,be37), _0x(048f,7fd1)};
16031822Szliu #define    a10	(*(double *)a10x)
16131822Szliu static long    a11x[] = { _0x(3174,3e07), _0x(2d87,3cf7)};
16231822Szliu #define    a11	(*(double *)a11x)
16331822Szliu static long    a12x[] = { _0x(731a,bd6f), _0x(76d9,2f34)};
16431822Szliu #define    a12	(*(double *)a12x)
16531855Szliu #else 	/* defined(vax)||defined(tahoe) */
16631822Szliu static double
16724578Szliu athfhi =  4.6364760900080609352E-1    , /*Hex  2^ -2   *  1.DAC670561BB4F */
16824578Szliu athflo =  4.6249969567426939759E-18   , /*Hex  2^-58   *  1.5543B8F253271 */
16924578Szliu PIo4   =  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
17024578Szliu at1fhi =  9.8279372324732905408E-1    , /*Hex  2^ -1   *  1.F730BD281F69B */
17124578Szliu at1flo = -2.4407677060164810007E-17   , /*Hex  2^-56   * -1.C23DFEFEAE6B5 */
17224578Szliu PIo2   =  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
17324578Szliu PI     =  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
17424578Szliu a1     =  3.3333333333333942106E-1    , /*Hex  2^ -2   *  1.55555555555C3 */
17524578Szliu a2     = -1.9999999999979536924E-1    , /*Hex  2^ -3   * -1.9999999997CCD */
17624578Szliu a3     =  1.4285714278004377209E-1    , /*Hex  2^ -3   *  1.24924921EC1D7 */
17724578Szliu a4     = -1.1111110579344973814E-1    , /*Hex  2^ -4   * -1.C71C7059AF280 */
17824578Szliu a5     =  9.0908906105474668324E-2    , /*Hex  2^ -4   *  1.745CE5AA35DB2 */
17924578Szliu a6     = -7.6919217767468239799E-2    , /*Hex  2^ -4   * -1.3B0FA54BEC400 */
18024578Szliu a7     =  6.6614695906082474486E-2    , /*Hex  2^ -4   *  1.10DA924597FFF */
18124578Szliu a8     = -5.8358371008508623523E-2    , /*Hex  2^ -5   * -1.DE125FDDBD793 */
18224578Szliu a9     =  4.9850617156082015213E-2    , /*Hex  2^ -5   *  1.9860524BDD807 */
18324578Szliu a10    = -3.6700606902093604877E-2    , /*Hex  2^ -5   * -1.2CA6C04C6937A */
18424578Szliu a11    =  1.6438029044759730479E-2    ; /*Hex  2^ -6   *  1.0D52174A1BB54 */
18531855Szliu #endif 	/* defined(vax)||defined(tahoe) */
18624578Szliu 
18724578Szliu double atan2(y,x)
18824578Szliu double  y,x;
18924578Szliu {
19024578Szliu 	static double zero=0, one=1, small=1.0E-9, big=1.0E18;
19124578Szliu 	double copysign(),logb(),scalb(),t,z,signy,signx,hi,lo;
19224578Szliu 	int finite(), k,m;
19324578Szliu 
19431855Szliu #if !defined(vax)&&!defined(tahoe)
19524578Szliu     /* if x or y is NAN */
19624578Szliu 	if(x!=x) return(x); if(y!=y) return(y);
19731855Szliu #endif	/* !defined(vax)&&!defined(tahoe) */
19824578Szliu 
19924578Szliu     /* copy down the sign of y and x */
20024578Szliu 	signy = copysign(one,y) ;
20124578Szliu 	signx = copysign(one,x) ;
20224578Szliu 
20324578Szliu     /* if x is 1.0, goto begin */
20424578Szliu 	if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
20524578Szliu 
20624578Szliu     /* when y = 0 */
20724578Szliu 	if(y==zero) return((signx==one)?y:copysign(PI,signy));
20824578Szliu 
20924578Szliu     /* when x = 0 */
21024578Szliu 	if(x==zero) return(copysign(PIo2,signy));
21124578Szliu 
21224578Szliu     /* when x is INF */
21324578Szliu 	if(!finite(x))
21424578Szliu 	    if(!finite(y))
21524578Szliu 		return(copysign((signx==one)?PIo4:3*PIo4,signy));
21624578Szliu 	    else
21724578Szliu 		return(copysign((signx==one)?zero:PI,signy));
21824578Szliu 
21924578Szliu     /* when y is INF */
22024578Szliu 	if(!finite(y)) return(copysign(PIo2,signy));
22124578Szliu 
22224578Szliu     /* compute y/x */
22324578Szliu 	x=copysign(x,one);
22424578Szliu 	y=copysign(y,one);
22524578Szliu 	if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
22624578Szliu 	    else if(m < -80 ) t=y/x;
22724578Szliu 	    else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
22824578Szliu 
22924578Szliu     /* begin argument reduction */
23024578Szliu begin:
23124578Szliu 	if (t < 2.4375) {
23224578Szliu 
23324578Szliu 	/* truncate 4(t+1/16) to integer for branching */
23424578Szliu 	    k = 4 * (t+0.0625);
23524578Szliu 	    switch (k) {
23624578Szliu 
23724578Szliu 	    /* t is in [0,7/16] */
23824578Szliu 	    case 0:
23924578Szliu 	    case 1:
24024578Szliu 		if (t < small)
24124578Szliu 		    { big + small ;  /* raise inexact flag */
24224578Szliu 		      return (copysign((signx>zero)?t:PI-t,signy)); }
24324578Szliu 
24424578Szliu 		hi = zero;  lo = zero;  break;
24524578Szliu 
24624578Szliu 	    /* t is in [7/16,11/16] */
24724578Szliu 	    case 2:
24824578Szliu 		hi = athfhi; lo = athflo;
24924578Szliu 		z = x+x;
25024578Szliu 		t = ( (y+y) - x ) / ( z +  y ); break;
25124578Szliu 
25224578Szliu 	    /* t is in [11/16,19/16] */
25324578Szliu 	    case 3:
25424578Szliu 	    case 4:
25524578Szliu 		hi = PIo4; lo = zero;
25624578Szliu 		t = ( y - x ) / ( x + y ); break;
25724578Szliu 
25824578Szliu 	    /* t is in [19/16,39/16] */
25924578Szliu 	    default:
26024578Szliu 		hi = at1fhi; lo = at1flo;
26124578Szliu 		z = y-x; y=y+y+y; t = x+x;
26224578Szliu 		t = ( (z+z)-x ) / ( t + y ); break;
26324578Szliu 	    }
26424578Szliu 	}
26524578Szliu 	/* end of if (t < 2.4375) */
26624578Szliu 
26724578Szliu 	else
26824578Szliu 	{
26924578Szliu 	    hi = PIo2; lo = zero;
27024578Szliu 
27124578Szliu 	    /* t is in [2.4375, big] */
27224578Szliu 	    if (t <= big)  t = - x / y;
27324578Szliu 
27424578Szliu 	    /* t is in [big, INF] */
27524578Szliu 	    else
27624578Szliu 	      { big+small;	/* raise inexact flag */
27724578Szliu 		t = zero; }
27824578Szliu 	}
27924578Szliu     /* end of argument reduction */
28024578Szliu 
28124578Szliu     /* compute atan(t) for t in [-.4375, .4375] */
28224578Szliu 	z = t*t;
28331855Szliu #if defined(vax)||defined(tahoe)
28424578Szliu 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
28524578Szliu 			z*(a9+z*(a10+z*(a11+z*a12))))))))))));
28631855Szliu #else	/* defined(vax)||defined(tahoe) */
28724578Szliu 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
28824578Szliu 			z*(a9+z*(a10+z*a11)))))))))));
28931855Szliu #endif	/* defined(vax)||defined(tahoe) */
29024578Szliu 	z = lo - z; z += t; z += hi;
29124578Szliu 
29224578Szliu 	return(copysign((signx>zero)?z:PI-z,signy));
29324578Szliu }
294