1*24578Szliu /* 2*24578Szliu * Copyright (c) 1985 Regents of the University of California. 3*24578Szliu * 4*24578Szliu * Use and reproduction of this software are granted in accordance with 5*24578Szliu * the terms and conditions specified in the Berkeley Software License 6*24578Szliu * Agreement (in particular, this entails acknowledgement of the programs' 7*24578Szliu * source, and inclusion of this notice) with the additional understanding 8*24578Szliu * that all recipients should regard themselves as participants in an 9*24578Szliu * ongoing research project and hence should feel obligated to report 10*24578Szliu * their experiences (good or bad) with these elementary function codes, 11*24578Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors. 12*24578Szliu */ 13*24578Szliu 14*24578Szliu #ifndef lint 15*24578Szliu static char sccsid[] = "@(#)atan2.c 1.1 (ELEFUNT) 09/06/85"; 16*24578Szliu #endif not lint 17*24578Szliu 18*24578Szliu /* ATAN2(Y,X) 19*24578Szliu * RETURN ARG (X+iY) 20*24578Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 21*24578Szliu * CODED IN C BY K.C. NG, 1/8/85; 22*24578Szliu * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85. 23*24578Szliu * 24*24578Szliu * Required system supported functions : 25*24578Szliu * copysign(x,y) 26*24578Szliu * scalb(x,y) 27*24578Szliu * logb(x) 28*24578Szliu * 29*24578Szliu * Method : 30*24578Szliu * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). 31*24578Szliu * 2. Reduce x to positive by (if x and y are unexceptional): 32*24578Szliu * ARG (x+iy) = arctan(y/x) ... if x > 0, 33*24578Szliu * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, 34*24578Szliu * 3. According to the integer k=4t+0.25 truncated , t=y/x, the argument 35*24578Szliu * is further reduced to one of the following intervals and the 36*24578Szliu * arctangent of y/x is evaluated by the corresponding formula: 37*24578Szliu * 38*24578Szliu * [0,7/16] atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) 39*24578Szliu * [7/16,11/16] atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) ) 40*24578Szliu * [11/16.19/16] atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) ) 41*24578Szliu * [19/16,39/16] atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) ) 42*24578Szliu * [39/16,INF] atan(y/x) = atan(INF) + atan( -x/y ) 43*24578Szliu * 44*24578Szliu * Special cases: 45*24578Szliu * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y). 46*24578Szliu * 47*24578Szliu * ARG( NAN , (anything) ) is NaN; 48*24578Szliu * ARG( (anything), NaN ) is NaN; 49*24578Szliu * ARG(+(anything but NaN), +-0) is +-0 ; 50*24578Szliu * ARG(-(anything but NaN), +-0) is +-PI ; 51*24578Szliu * ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2; 52*24578Szliu * ARG( +INF,+-(anything but INF and NaN) ) is +-0 ; 53*24578Szliu * ARG( -INF,+-(anything but INF and NaN) ) is +-PI; 54*24578Szliu * ARG( +INF,+-INF ) is +-PI/4 ; 55*24578Szliu * ARG( -INF,+-INF ) is +-3PI/4; 56*24578Szliu * ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2; 57*24578Szliu * 58*24578Szliu * Accuracy: 59*24578Szliu * atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded, 60*24578Szliu * where 61*24578Szliu * 62*24578Szliu * in decimal: 63*24578Szliu * pi = 3.141592653589793 23846264338327 ..... 64*24578Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 65*24578Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 66*24578Szliu * 67*24578Szliu * in hexadecimal: 68*24578Szliu * pi = 3.243F6A8885A308D313198A2E.... 69*24578Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps 70*24578Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps 71*24578Szliu * 72*24578Szliu * In a test run with 356,000 random argument on [-1,1] * [-1,1] on a 73*24578Szliu * VAX, the maximum observed error was 1.41 ulps (units of the last place) 74*24578Szliu * compared with (PI/pi)*(the exact ARG(x+iy)). 75*24578Szliu * 76*24578Szliu * Note: 77*24578Szliu * We use machine PI (the true pi rounded) in place of the actual 78*24578Szliu * value of pi for all the trig and inverse trig functions. In general, 79*24578Szliu * if trig is one of sin, cos, tan, then computed trig(y) returns the 80*24578Szliu * exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig 81*24578Szliu * returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the 82*24578Szliu * trig functions have period PI, and trig(arctrig(x)) returns x for 83*24578Szliu * all critical values x. 84*24578Szliu * 85*24578Szliu * Constants: 86*24578Szliu * The hexadecimal values are the intended ones for the following constants. 87*24578Szliu * The decimal values may be used, provided that the compiler will convert 88*24578Szliu * from decimal to binary accurately enough to produce the hexadecimal values 89*24578Szliu * shown. 90*24578Szliu */ 91*24578Szliu 92*24578Szliu static double 93*24578Szliu #ifdef VAX /* VAX D format */ 94*24578Szliu athfhi = 4.6364760900080611433E-1 , /*Hex 2^ -1 * .ED63382B0DDA7B */ 95*24578Szliu athflo = 1.9338828231967579916E-19 , /*Hex 2^-62 * .E450059CFE92C0 */ 96*24578Szliu PIo4 = 7.8539816339744830676E-1 , /*Hex 2^ 0 * .C90FDAA22168C2 */ 97*24578Szliu at1fhi = 9.8279372324732906796E-1 , /*Hex 2^ 0 * .FB985E940FB4D9 */ 98*24578Szliu at1flo = -3.5540295636764633916E-18 , /*Hex 2^-57 * -.831EDC34D6EAEA */ 99*24578Szliu PIo2 = 1.5707963267948966135E0 , /*Hex 2^ 1 * .C90FDAA22168C2 */ 100*24578Szliu PI = 3.1415926535897932270E0 , /*Hex 2^ 2 * .C90FDAA22168C2 */ 101*24578Szliu a1 = 3.3333333333333473730E-1 , /*Hex 2^ -1 * .AAAAAAAAAAAB75 */ 102*24578Szliu a2 = -2.0000000000017730678E-1 , /*Hex 2^ -2 * -.CCCCCCCCCD946E */ 103*24578Szliu a3 = 1.4285714286694640301E-1 , /*Hex 2^ -2 * .92492492744262 */ 104*24578Szliu a4 = -1.1111111135032672795E-1 , /*Hex 2^ -3 * -.E38E38EBC66292 */ 105*24578Szliu a5 = 9.0909091380563043783E-2 , /*Hex 2^ -3 * .BA2E8BB31BD70C */ 106*24578Szliu a6 = -7.6922954286089459397E-2 , /*Hex 2^ -3 * -.9D89C827C37F18 */ 107*24578Szliu a7 = 6.6663180891693915586E-2 , /*Hex 2^ -3 * .8886B4AE379E58 */ 108*24578Szliu a8 = -5.8772703698290408927E-2 , /*Hex 2^ -4 * -.F0BBA58481A942 */ 109*24578Szliu a9 = 5.2170707402812969804E-2 , /*Hex 2^ -4 * .D5B0F3A1AB13AB */ 110*24578Szliu a10 = -4.4895863157820361210E-2 , /*Hex 2^ -4 * -.B7E4B97FD1048F */ 111*24578Szliu a11 = 3.3006147437343875094E-2 , /*Hex 2^ -4 * .8731743CF72D87 */ 112*24578Szliu a12 = -1.4614844866464185439E-2 ; /*Hex 2^ -6 * -.EF731A2F3476D9 */ 113*24578Szliu #else /* IEEE double */ 114*24578Szliu athfhi = 4.6364760900080609352E-1 , /*Hex 2^ -2 * 1.DAC670561BB4F */ 115*24578Szliu athflo = 4.6249969567426939759E-18 , /*Hex 2^-58 * 1.5543B8F253271 */ 116*24578Szliu PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */ 117*24578Szliu at1fhi = 9.8279372324732905408E-1 , /*Hex 2^ -1 * 1.F730BD281F69B */ 118*24578Szliu at1flo = -2.4407677060164810007E-17 , /*Hex 2^-56 * -1.C23DFEFEAE6B5 */ 119*24578Szliu PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */ 120*24578Szliu PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */ 121*24578Szliu a1 = 3.3333333333333942106E-1 , /*Hex 2^ -2 * 1.55555555555C3 */ 122*24578Szliu a2 = -1.9999999999979536924E-1 , /*Hex 2^ -3 * -1.9999999997CCD */ 123*24578Szliu a3 = 1.4285714278004377209E-1 , /*Hex 2^ -3 * 1.24924921EC1D7 */ 124*24578Szliu a4 = -1.1111110579344973814E-1 , /*Hex 2^ -4 * -1.C71C7059AF280 */ 125*24578Szliu a5 = 9.0908906105474668324E-2 , /*Hex 2^ -4 * 1.745CE5AA35DB2 */ 126*24578Szliu a6 = -7.6919217767468239799E-2 , /*Hex 2^ -4 * -1.3B0FA54BEC400 */ 127*24578Szliu a7 = 6.6614695906082474486E-2 , /*Hex 2^ -4 * 1.10DA924597FFF */ 128*24578Szliu a8 = -5.8358371008508623523E-2 , /*Hex 2^ -5 * -1.DE125FDDBD793 */ 129*24578Szliu a9 = 4.9850617156082015213E-2 , /*Hex 2^ -5 * 1.9860524BDD807 */ 130*24578Szliu a10 = -3.6700606902093604877E-2 , /*Hex 2^ -5 * -1.2CA6C04C6937A */ 131*24578Szliu a11 = 1.6438029044759730479E-2 ; /*Hex 2^ -6 * 1.0D52174A1BB54 */ 132*24578Szliu #endif 133*24578Szliu 134*24578Szliu double atan2(y,x) 135*24578Szliu double y,x; 136*24578Szliu { 137*24578Szliu static double zero=0, one=1, small=1.0E-9, big=1.0E18; 138*24578Szliu double copysign(),logb(),scalb(),t,z,signy,signx,hi,lo; 139*24578Szliu int finite(), k,m; 140*24578Szliu 141*24578Szliu /* if x or y is NAN */ 142*24578Szliu if(x!=x) return(x); if(y!=y) return(y); 143*24578Szliu 144*24578Szliu /* copy down the sign of y and x */ 145*24578Szliu signy = copysign(one,y) ; 146*24578Szliu signx = copysign(one,x) ; 147*24578Szliu 148*24578Szliu /* if x is 1.0, goto begin */ 149*24578Szliu if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;} 150*24578Szliu 151*24578Szliu /* when y = 0 */ 152*24578Szliu if(y==zero) return((signx==one)?y:copysign(PI,signy)); 153*24578Szliu 154*24578Szliu /* when x = 0 */ 155*24578Szliu if(x==zero) return(copysign(PIo2,signy)); 156*24578Szliu 157*24578Szliu /* when x is INF */ 158*24578Szliu if(!finite(x)) 159*24578Szliu if(!finite(y)) 160*24578Szliu return(copysign((signx==one)?PIo4:3*PIo4,signy)); 161*24578Szliu else 162*24578Szliu return(copysign((signx==one)?zero:PI,signy)); 163*24578Szliu 164*24578Szliu /* when y is INF */ 165*24578Szliu if(!finite(y)) return(copysign(PIo2,signy)); 166*24578Szliu 167*24578Szliu 168*24578Szliu /* compute y/x */ 169*24578Szliu x=copysign(x,one); 170*24578Szliu y=copysign(y,one); 171*24578Szliu if((m=(k=logb(y))-logb(x)) > 60) t=big+big; 172*24578Szliu else if(m < -80 ) t=y/x; 173*24578Szliu else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); } 174*24578Szliu 175*24578Szliu /* begin argument reduction */ 176*24578Szliu begin: 177*24578Szliu if (t < 2.4375) { 178*24578Szliu 179*24578Szliu /* truncate 4(t+1/16) to integer for branching */ 180*24578Szliu k = 4 * (t+0.0625); 181*24578Szliu switch (k) { 182*24578Szliu 183*24578Szliu /* t is in [0,7/16] */ 184*24578Szliu case 0: 185*24578Szliu case 1: 186*24578Szliu if (t < small) 187*24578Szliu { big + small ; /* raise inexact flag */ 188*24578Szliu return (copysign((signx>zero)?t:PI-t,signy)); } 189*24578Szliu 190*24578Szliu hi = zero; lo = zero; break; 191*24578Szliu 192*24578Szliu /* t is in [7/16,11/16] */ 193*24578Szliu case 2: 194*24578Szliu hi = athfhi; lo = athflo; 195*24578Szliu z = x+x; 196*24578Szliu t = ( (y+y) - x ) / ( z + y ); break; 197*24578Szliu 198*24578Szliu /* t is in [11/16,19/16] */ 199*24578Szliu case 3: 200*24578Szliu case 4: 201*24578Szliu hi = PIo4; lo = zero; 202*24578Szliu t = ( y - x ) / ( x + y ); break; 203*24578Szliu 204*24578Szliu /* t is in [19/16,39/16] */ 205*24578Szliu default: 206*24578Szliu hi = at1fhi; lo = at1flo; 207*24578Szliu z = y-x; y=y+y+y; t = x+x; 208*24578Szliu t = ( (z+z)-x ) / ( t + y ); break; 209*24578Szliu } 210*24578Szliu } 211*24578Szliu /* end of if (t < 2.4375) */ 212*24578Szliu 213*24578Szliu else 214*24578Szliu { 215*24578Szliu hi = PIo2; lo = zero; 216*24578Szliu 217*24578Szliu /* t is in [2.4375, big] */ 218*24578Szliu if (t <= big) t = - x / y; 219*24578Szliu 220*24578Szliu /* t is in [big, INF] */ 221*24578Szliu else 222*24578Szliu { big+small; /* raise inexact flag */ 223*24578Szliu t = zero; } 224*24578Szliu } 225*24578Szliu /* end of argument reduction */ 226*24578Szliu 227*24578Szliu /* compute atan(t) for t in [-.4375, .4375] */ 228*24578Szliu z = t*t; 229*24578Szliu #ifdef VAX 230*24578Szliu z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+ 231*24578Szliu z*(a9+z*(a10+z*(a11+z*a12)))))))))))); 232*24578Szliu #else /* IEEE double */ 233*24578Szliu z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+ 234*24578Szliu z*(a9+z*(a10+z*a11))))))))))); 235*24578Szliu #endif 236*24578Szliu z = lo - z; z += t; z += hi; 237*24578Szliu 238*24578Szliu return(copysign((signx>zero)?z:PI-z,signy)); 239*24578Szliu } 240