xref: /csrg-svn/lib/libm/common/atan2.c (revision 24578)
1*24578Szliu /*
2*24578Szliu  * Copyright (c) 1985 Regents of the University of California.
3*24578Szliu  *
4*24578Szliu  * Use and reproduction of this software are granted  in  accordance  with
5*24578Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
6*24578Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
7*24578Szliu  * source, and inclusion of this notice) with the additional understanding
8*24578Szliu  * that  all  recipients  should regard themselves as participants  in  an
9*24578Szliu  * ongoing  research  project and hence should  feel  obligated  to report
10*24578Szliu  * their  experiences (good or bad) with these elementary function  codes,
11*24578Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12*24578Szliu  */
13*24578Szliu 
14*24578Szliu #ifndef lint
15*24578Szliu static char sccsid[] = "@(#)atan2.c	1.1 (ELEFUNT) 09/06/85";
16*24578Szliu #endif not lint
17*24578Szliu 
18*24578Szliu /* ATAN2(Y,X)
19*24578Szliu  * RETURN ARG (X+iY)
20*24578Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
21*24578Szliu  * CODED IN C BY K.C. NG, 1/8/85;
22*24578Szliu  * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
23*24578Szliu  *
24*24578Szliu  * Required system supported functions :
25*24578Szliu  *	copysign(x,y)
26*24578Szliu  *	scalb(x,y)
27*24578Szliu  *	logb(x)
28*24578Szliu  *
29*24578Szliu  * Method :
30*24578Szliu  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
31*24578Szliu  *	2. Reduce x to positive by (if x and y are unexceptional):
32*24578Szliu  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
33*24578Szliu  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
34*24578Szliu  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
35*24578Szliu  *	   is further reduced to one of the following intervals and the
36*24578Szliu  *	   arctangent of y/x is evaluated by the corresponding formula:
37*24578Szliu  *
38*24578Szliu  *         [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
39*24578Szliu  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
40*24578Szliu  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
41*24578Szliu  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
42*24578Szliu  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
43*24578Szliu  *
44*24578Szliu  * Special cases:
45*24578Szliu  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
46*24578Szliu  *
47*24578Szliu  *	ARG( NAN , (anything) ) is NaN;
48*24578Szliu  *	ARG( (anything), NaN ) is NaN;
49*24578Szliu  *	ARG(+(anything but NaN), +-0) is +-0  ;
50*24578Szliu  *	ARG(-(anything but NaN), +-0) is +-PI ;
51*24578Szliu  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
52*24578Szliu  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
53*24578Szliu  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
54*24578Szliu  *	ARG( +INF,+-INF ) is +-PI/4 ;
55*24578Szliu  *	ARG( -INF,+-INF ) is +-3PI/4;
56*24578Szliu  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
57*24578Szliu  *
58*24578Szliu  * Accuracy:
59*24578Szliu  *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
60*24578Szliu  *	where
61*24578Szliu  *
62*24578Szliu  *	in decimal:
63*24578Szliu  *		pi = 3.141592653589793 23846264338327 .....
64*24578Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
65*24578Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
66*24578Szliu  *
67*24578Szliu  *	in hexadecimal:
68*24578Szliu  *		pi = 3.243F6A8885A308D313198A2E....
69*24578Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
70*24578Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
71*24578Szliu  *
72*24578Szliu  *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
73*24578Szliu  *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
74*24578Szliu  *	compared with (PI/pi)*(the exact ARG(x+iy)).
75*24578Szliu  *
76*24578Szliu  * Note:
77*24578Szliu  *	We use machine PI (the true pi rounded) in place of the actual
78*24578Szliu  *	value of pi for all the trig and inverse trig functions. In general,
79*24578Szliu  *	if trig is one of sin, cos, tan, then computed trig(y) returns the
80*24578Szliu  *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
81*24578Szliu  *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
82*24578Szliu  *	trig functions have period PI, and trig(arctrig(x)) returns x for
83*24578Szliu  *	all critical values x.
84*24578Szliu  *
85*24578Szliu  * Constants:
86*24578Szliu  * The hexadecimal values are the intended ones for the following constants.
87*24578Szliu  * The decimal values may be used, provided that the compiler will convert
88*24578Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
89*24578Szliu  * shown.
90*24578Szliu  */
91*24578Szliu 
92*24578Szliu static double
93*24578Szliu #ifdef VAX 	/* VAX D format */
94*24578Szliu athfhi =  4.6364760900080611433E-1    , /*Hex  2^ -1   *  .ED63382B0DDA7B */
95*24578Szliu athflo =  1.9338828231967579916E-19   , /*Hex  2^-62   *  .E450059CFE92C0 */
96*24578Szliu PIo4   =  7.8539816339744830676E-1    , /*Hex  2^  0   *  .C90FDAA22168C2 */
97*24578Szliu at1fhi =  9.8279372324732906796E-1    , /*Hex  2^  0   *  .FB985E940FB4D9 */
98*24578Szliu at1flo = -3.5540295636764633916E-18   , /*Hex  2^-57   * -.831EDC34D6EAEA */
99*24578Szliu PIo2   =  1.5707963267948966135E0     , /*Hex  2^  1   *  .C90FDAA22168C2 */
100*24578Szliu PI     =  3.1415926535897932270E0     , /*Hex  2^  2   *  .C90FDAA22168C2 */
101*24578Szliu a1     =  3.3333333333333473730E-1    , /*Hex  2^ -1   *  .AAAAAAAAAAAB75 */
102*24578Szliu a2     = -2.0000000000017730678E-1    , /*Hex  2^ -2   * -.CCCCCCCCCD946E */
103*24578Szliu a3     =  1.4285714286694640301E-1    , /*Hex  2^ -2   *  .92492492744262 */
104*24578Szliu a4     = -1.1111111135032672795E-1    , /*Hex  2^ -3   * -.E38E38EBC66292 */
105*24578Szliu a5     =  9.0909091380563043783E-2    , /*Hex  2^ -3   *  .BA2E8BB31BD70C */
106*24578Szliu a6     = -7.6922954286089459397E-2    , /*Hex  2^ -3   * -.9D89C827C37F18 */
107*24578Szliu a7     =  6.6663180891693915586E-2    , /*Hex  2^ -3   *  .8886B4AE379E58 */
108*24578Szliu a8     = -5.8772703698290408927E-2    , /*Hex  2^ -4   * -.F0BBA58481A942 */
109*24578Szliu a9     =  5.2170707402812969804E-2    , /*Hex  2^ -4   *  .D5B0F3A1AB13AB */
110*24578Szliu a10    = -4.4895863157820361210E-2    , /*Hex  2^ -4   * -.B7E4B97FD1048F */
111*24578Szliu a11    =  3.3006147437343875094E-2    , /*Hex  2^ -4   *  .8731743CF72D87 */
112*24578Szliu a12    = -1.4614844866464185439E-2    ; /*Hex  2^ -6   * -.EF731A2F3476D9 */
113*24578Szliu #else 	/* IEEE double */
114*24578Szliu athfhi =  4.6364760900080609352E-1    , /*Hex  2^ -2   *  1.DAC670561BB4F */
115*24578Szliu athflo =  4.6249969567426939759E-18   , /*Hex  2^-58   *  1.5543B8F253271 */
116*24578Szliu PIo4   =  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
117*24578Szliu at1fhi =  9.8279372324732905408E-1    , /*Hex  2^ -1   *  1.F730BD281F69B */
118*24578Szliu at1flo = -2.4407677060164810007E-17   , /*Hex  2^-56   * -1.C23DFEFEAE6B5 */
119*24578Szliu PIo2   =  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
120*24578Szliu PI     =  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
121*24578Szliu a1     =  3.3333333333333942106E-1    , /*Hex  2^ -2   *  1.55555555555C3 */
122*24578Szliu a2     = -1.9999999999979536924E-1    , /*Hex  2^ -3   * -1.9999999997CCD */
123*24578Szliu a3     =  1.4285714278004377209E-1    , /*Hex  2^ -3   *  1.24924921EC1D7 */
124*24578Szliu a4     = -1.1111110579344973814E-1    , /*Hex  2^ -4   * -1.C71C7059AF280 */
125*24578Szliu a5     =  9.0908906105474668324E-2    , /*Hex  2^ -4   *  1.745CE5AA35DB2 */
126*24578Szliu a6     = -7.6919217767468239799E-2    , /*Hex  2^ -4   * -1.3B0FA54BEC400 */
127*24578Szliu a7     =  6.6614695906082474486E-2    , /*Hex  2^ -4   *  1.10DA924597FFF */
128*24578Szliu a8     = -5.8358371008508623523E-2    , /*Hex  2^ -5   * -1.DE125FDDBD793 */
129*24578Szliu a9     =  4.9850617156082015213E-2    , /*Hex  2^ -5   *  1.9860524BDD807 */
130*24578Szliu a10    = -3.6700606902093604877E-2    , /*Hex  2^ -5   * -1.2CA6C04C6937A */
131*24578Szliu a11    =  1.6438029044759730479E-2    ; /*Hex  2^ -6   *  1.0D52174A1BB54 */
132*24578Szliu #endif
133*24578Szliu 
134*24578Szliu double atan2(y,x)
135*24578Szliu double  y,x;
136*24578Szliu {
137*24578Szliu 	static double zero=0, one=1, small=1.0E-9, big=1.0E18;
138*24578Szliu 	double copysign(),logb(),scalb(),t,z,signy,signx,hi,lo;
139*24578Szliu 	int finite(), k,m;
140*24578Szliu 
141*24578Szliu     /* if x or y is NAN */
142*24578Szliu 	if(x!=x) return(x); if(y!=y) return(y);
143*24578Szliu 
144*24578Szliu     /* copy down the sign of y and x */
145*24578Szliu 	signy = copysign(one,y) ;
146*24578Szliu 	signx = copysign(one,x) ;
147*24578Szliu 
148*24578Szliu     /* if x is 1.0, goto begin */
149*24578Szliu 	if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
150*24578Szliu 
151*24578Szliu     /* when y = 0 */
152*24578Szliu 	if(y==zero) return((signx==one)?y:copysign(PI,signy));
153*24578Szliu 
154*24578Szliu     /* when x = 0 */
155*24578Szliu 	if(x==zero) return(copysign(PIo2,signy));
156*24578Szliu 
157*24578Szliu     /* when x is INF */
158*24578Szliu 	if(!finite(x))
159*24578Szliu 	    if(!finite(y))
160*24578Szliu 		return(copysign((signx==one)?PIo4:3*PIo4,signy));
161*24578Szliu 	    else
162*24578Szliu 		return(copysign((signx==one)?zero:PI,signy));
163*24578Szliu 
164*24578Szliu     /* when y is INF */
165*24578Szliu 	if(!finite(y)) return(copysign(PIo2,signy));
166*24578Szliu 
167*24578Szliu 
168*24578Szliu     /* compute y/x */
169*24578Szliu 	x=copysign(x,one);
170*24578Szliu 	y=copysign(y,one);
171*24578Szliu 	if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
172*24578Szliu 	    else if(m < -80 ) t=y/x;
173*24578Szliu 	    else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
174*24578Szliu 
175*24578Szliu     /* begin argument reduction */
176*24578Szliu begin:
177*24578Szliu 	if (t < 2.4375) {
178*24578Szliu 
179*24578Szliu 	/* truncate 4(t+1/16) to integer for branching */
180*24578Szliu 	    k = 4 * (t+0.0625);
181*24578Szliu 	    switch (k) {
182*24578Szliu 
183*24578Szliu 	    /* t is in [0,7/16] */
184*24578Szliu 	    case 0:
185*24578Szliu 	    case 1:
186*24578Szliu 		if (t < small)
187*24578Szliu 		    { big + small ;  /* raise inexact flag */
188*24578Szliu 		      return (copysign((signx>zero)?t:PI-t,signy)); }
189*24578Szliu 
190*24578Szliu 		hi = zero;  lo = zero;  break;
191*24578Szliu 
192*24578Szliu 	    /* t is in [7/16,11/16] */
193*24578Szliu 	    case 2:
194*24578Szliu 		hi = athfhi; lo = athflo;
195*24578Szliu 		z = x+x;
196*24578Szliu 		t = ( (y+y) - x ) / ( z +  y ); break;
197*24578Szliu 
198*24578Szliu 	    /* t is in [11/16,19/16] */
199*24578Szliu 	    case 3:
200*24578Szliu 	    case 4:
201*24578Szliu 		hi = PIo4; lo = zero;
202*24578Szliu 		t = ( y - x ) / ( x + y ); break;
203*24578Szliu 
204*24578Szliu 	    /* t is in [19/16,39/16] */
205*24578Szliu 	    default:
206*24578Szliu 		hi = at1fhi; lo = at1flo;
207*24578Szliu 		z = y-x; y=y+y+y; t = x+x;
208*24578Szliu 		t = ( (z+z)-x ) / ( t + y ); break;
209*24578Szliu 	    }
210*24578Szliu 	}
211*24578Szliu 	/* end of if (t < 2.4375) */
212*24578Szliu 
213*24578Szliu 	else
214*24578Szliu 	{
215*24578Szliu 	    hi = PIo2; lo = zero;
216*24578Szliu 
217*24578Szliu 	    /* t is in [2.4375, big] */
218*24578Szliu 	    if (t <= big)  t = - x / y;
219*24578Szliu 
220*24578Szliu 	    /* t is in [big, INF] */
221*24578Szliu 	    else
222*24578Szliu 	      { big+small;	/* raise inexact flag */
223*24578Szliu 		t = zero; }
224*24578Szliu 	}
225*24578Szliu     /* end of argument reduction */
226*24578Szliu 
227*24578Szliu     /* compute atan(t) for t in [-.4375, .4375] */
228*24578Szliu 	z = t*t;
229*24578Szliu #ifdef VAX
230*24578Szliu 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
231*24578Szliu 			z*(a9+z*(a10+z*(a11+z*a12))))))))))));
232*24578Szliu #else	/* IEEE double */
233*24578Szliu 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
234*24578Szliu 			z*(a9+z*(a10+z*a11)))))))))));
235*24578Szliu #endif
236*24578Szliu 	z = lo - z; z += t; z += hi;
237*24578Szliu 
238*24578Szliu 	return(copysign((signx>zero)?z:PI-z,signy));
239*24578Szliu }
240