153430Sbostic /*- 253430Sbostic * Copyright (c) 1992 The Regents of the University of California. 353430Sbostic * All rights reserved. 453430Sbostic * 553794Sbostic * This software was developed by the Computer Systems Engineering group 653794Sbostic * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 753794Sbostic * contributed to Berkeley. 853794Sbostic * 953430Sbostic * %sccs.include.redist.c% 1053430Sbostic */ 1153430Sbostic 1253430Sbostic #if defined(LIBC_SCCS) && !defined(lint) 13*54431Sbostic static char sccsid[] = "@(#)qdivrem.c 5.7 (Berkeley) 06/25/92"; 1453430Sbostic #endif /* LIBC_SCCS and not lint */ 1553430Sbostic 1653794Sbostic /* 1753794Sbostic * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), 1853794Sbostic * section 4.3.1, pp. 257--259. 1953794Sbostic */ 2053459Sbostic 2153794Sbostic #include "quad.h" 2253459Sbostic 2353794Sbostic #define B (1 << HALF_BITS) /* digit base */ 2453459Sbostic 2553794Sbostic /* Combine two `digits' to make a single two-digit number. */ 2653794Sbostic #define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b)) 2753459Sbostic 2853794Sbostic /* select a type for digits in base B: use unsigned short if they fit */ 2953794Sbostic #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff 3053794Sbostic typedef unsigned short digit; 3153455Sbostic #else 3253794Sbostic typedef u_long digit; 3353455Sbostic #endif 3451748Smckusick 3553794Sbostic /* 3653794Sbostic * Shift p[0]..p[len] left `sh' bits, ignoring any bits that 3753794Sbostic * `fall out' the left (there never will be any such anyway). 3853794Sbostic * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. 3953794Sbostic */ 4053794Sbostic static void 4153794Sbostic shl(register digit *p, register int len, register int sh) 4253794Sbostic { 4353794Sbostic register int i; 4451748Smckusick 4553794Sbostic for (i = 0; i < len; i++) 4653794Sbostic p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); 4753794Sbostic p[i] = LHALF(p[i] << sh); 4853794Sbostic } 4951748Smckusick 5053794Sbostic /* 5153794Sbostic * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. 5253794Sbostic * 5353794Sbostic * We do this in base 2-sup-HALF_BITS, so that all intermediate products 5453794Sbostic * fit within u_long. As a consequence, the maximum length dividend and 5553794Sbostic * divisor are 4 `digits' in this base (they are shorter if they have 5653794Sbostic * leading zeros). 5753794Sbostic */ 58*54431Sbostic u_quad_t 59*54431Sbostic __qdivrem(uq, vq, arq) 60*54431Sbostic u_quad_t uq, vq, *arq; 6153794Sbostic { 6253794Sbostic union uu tmp; 6353794Sbostic digit *u, *v, *q; 6453794Sbostic register digit v1, v2; 6553794Sbostic u_long qhat, rhat, t; 6653794Sbostic int m, n, d, j, i; 6753794Sbostic digit uspace[5], vspace[5], qspace[5]; 6851748Smckusick 6953794Sbostic /* 7053794Sbostic * Take care of special cases: divide by zero, and u < v. 7153794Sbostic */ 7253794Sbostic if (vq == 0) { 7353794Sbostic /* divide by zero. */ 7453794Sbostic static volatile const unsigned int zero = 0; 7551748Smckusick 7653794Sbostic tmp.ul[H] = tmp.ul[L] = 1 / zero; 7753794Sbostic if (arq) 7853794Sbostic *arq = uq; 7953794Sbostic return (tmp.q); 8051748Smckusick } 8153794Sbostic if (uq < vq) { 8253794Sbostic if (arq) 8353794Sbostic *arq = uq; 8453794Sbostic return (0); 8553794Sbostic } 8653794Sbostic u = &uspace[0]; 8753794Sbostic v = &vspace[0]; 8853794Sbostic q = &qspace[0]; 8951748Smckusick 9053794Sbostic /* 9153794Sbostic * Break dividend and divisor into digits in base B, then 9253794Sbostic * count leading zeros to determine m and n. When done, we 9353794Sbostic * will have: 9453794Sbostic * u = (u[1]u[2]...u[m+n]) sub B 9553794Sbostic * v = (v[1]v[2]...v[n]) sub B 9653794Sbostic * v[1] != 0 9753794Sbostic * 1 < n <= 4 (if n = 1, we use a different division algorithm) 9853794Sbostic * m >= 0 (otherwise u < v, which we already checked) 9953794Sbostic * m + n = 4 10053794Sbostic * and thus 10153794Sbostic * m = 4 - n <= 2 10253794Sbostic */ 10353794Sbostic tmp.uq = uq; 10453794Sbostic u[0] = 0; 10553794Sbostic u[1] = HHALF(tmp.ul[H]); 10653794Sbostic u[2] = LHALF(tmp.ul[H]); 10753794Sbostic u[3] = HHALF(tmp.ul[L]); 10853794Sbostic u[4] = LHALF(tmp.ul[L]); 10953794Sbostic tmp.uq = vq; 11053794Sbostic v[1] = HHALF(tmp.ul[H]); 11153794Sbostic v[2] = LHALF(tmp.ul[H]); 11253794Sbostic v[3] = HHALF(tmp.ul[L]); 11353794Sbostic v[4] = LHALF(tmp.ul[L]); 11453794Sbostic for (n = 4; v[1] == 0; v++) { 11553794Sbostic if (--n == 1) { 11653794Sbostic u_long rbj; /* r*B+u[j] (not root boy jim) */ 11753794Sbostic digit q1, q2, q3, q4; 11851748Smckusick 11953794Sbostic /* 12053794Sbostic * Change of plan, per exercise 16. 12153794Sbostic * r = 0; 12253794Sbostic * for j = 1..4: 12353794Sbostic * q[j] = floor((r*B + u[j]) / v), 12453794Sbostic * r = (r*B + u[j]) % v; 12553794Sbostic * We unroll this completely here. 12653794Sbostic */ 12753794Sbostic t = v[2]; /* nonzero, by definition */ 12853794Sbostic q1 = u[1] / t; 12953794Sbostic rbj = COMBINE(u[1] % t, u[2]); 13053794Sbostic q2 = rbj / t; 13153794Sbostic rbj = COMBINE(rbj % t, u[3]); 13253794Sbostic q3 = rbj / t; 13353794Sbostic rbj = COMBINE(rbj % t, u[4]); 13453794Sbostic q4 = rbj / t; 13553794Sbostic if (arq) 13653794Sbostic *arq = rbj % t; 13753794Sbostic tmp.ul[H] = COMBINE(q1, q2); 13853794Sbostic tmp.ul[L] = COMBINE(q3, q4); 13953794Sbostic return (tmp.q); 14053794Sbostic } 14151748Smckusick } 14251748Smckusick 14353794Sbostic /* 14453794Sbostic * By adjusting q once we determine m, we can guarantee that 14553794Sbostic * there is a complete four-digit quotient at &qspace[1] when 14653794Sbostic * we finally stop. 14753794Sbostic */ 14853794Sbostic for (m = 4 - n; u[1] == 0; u++) 14953794Sbostic m--; 15053794Sbostic for (i = 4 - m; --i >= 0;) 15153794Sbostic q[i] = 0; 15253794Sbostic q += 4 - m; 15351748Smckusick 15453794Sbostic /* 15553794Sbostic * Here we run Program D, translated from MIX to C and acquiring 15653794Sbostic * a few minor changes. 15753794Sbostic * 15853794Sbostic * D1: choose multiplier 1 << d to ensure v[1] >= B/2. 15953794Sbostic */ 16053794Sbostic d = 0; 16153794Sbostic for (t = v[1]; t < B / 2; t <<= 1) 16253794Sbostic d++; 16353794Sbostic if (d > 0) { 16453794Sbostic shl(&u[0], m + n, d); /* u <<= d */ 16553794Sbostic shl(&v[1], n - 1, d); /* v <<= d */ 16651748Smckusick } 16753794Sbostic /* 16853794Sbostic * D2: j = 0. 16953794Sbostic */ 17053794Sbostic j = 0; 17153794Sbostic v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ 17253794Sbostic v2 = v[2]; /* for D3 */ 17353794Sbostic do { 17453794Sbostic register digit uj0, uj1, uj2; 17553794Sbostic 17653794Sbostic /* 17753794Sbostic * D3: Calculate qhat (\^q, in TeX notation). 17853794Sbostic * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and 17953794Sbostic * let rhat = (u[j]*B + u[j+1]) mod v[1]. 18053794Sbostic * While rhat < B and v[2]*qhat > rhat*B+u[j+2], 18153794Sbostic * decrement qhat and increase rhat correspondingly. 18253794Sbostic * Note that if rhat >= B, v[2]*qhat < rhat*B. 18353794Sbostic */ 18453794Sbostic uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ 18553794Sbostic uj1 = u[j + 1]; /* for D3 only */ 18653794Sbostic uj2 = u[j + 2]; /* for D3 only */ 18753794Sbostic if (uj0 == v1) { 18853794Sbostic qhat = B; 18953794Sbostic rhat = uj1; 19053794Sbostic goto qhat_too_big; 19153794Sbostic } else { 19253794Sbostic u_long n = COMBINE(uj0, uj1); 19353794Sbostic qhat = n / v1; 19453794Sbostic rhat = n % v1; 19553794Sbostic } 19653794Sbostic while (v2 * qhat > COMBINE(rhat, uj2)) { 19753794Sbostic qhat_too_big: 19853794Sbostic qhat--; 19953794Sbostic if ((rhat += v1) >= B) 20053794Sbostic break; 20153794Sbostic } 20253794Sbostic /* 20353794Sbostic * D4: Multiply and subtract. 20453794Sbostic * The variable `t' holds any borrows across the loop. 20553794Sbostic * We split this up so that we do not require v[0] = 0, 20653794Sbostic * and to eliminate a final special case. 20753794Sbostic */ 20853794Sbostic for (t = 0, i = n; i > 0; i--) { 20953794Sbostic t = u[i + j] - v[i] * qhat - t; 21053794Sbostic u[i + j] = LHALF(t); 21153794Sbostic t = (B - HHALF(t)) & (B - 1); 21253794Sbostic } 21353794Sbostic t = u[j] - t; 21453794Sbostic u[j] = LHALF(t); 21553794Sbostic /* 21653794Sbostic * D5: test remainder. 21753794Sbostic * There is a borrow if and only if HHALF(t) is nonzero; 21853794Sbostic * in that (rare) case, qhat was too large (by exactly 1). 21953794Sbostic * Fix it by adding v[1..n] to u[j..j+n]. 22053794Sbostic */ 22153794Sbostic if (HHALF(t)) { 22253794Sbostic qhat--; 22353794Sbostic for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ 22453794Sbostic t += u[i + j] + v[i]; 22553794Sbostic u[i + j] = LHALF(t); 22653794Sbostic t = HHALF(t); 22753794Sbostic } 22853794Sbostic u[j] = LHALF(u[j] + t); 22953794Sbostic } 23053794Sbostic q[j] = qhat; 23153794Sbostic } while (++j <= m); /* D7: loop on j. */ 23251748Smckusick 23353794Sbostic /* 23453794Sbostic * If caller wants the remainder, we have to calculate it as 23553794Sbostic * u[m..m+n] >> d (this is at most n digits and thus fits in 23653794Sbostic * u[m+1..m+n], but we may need more source digits). 23753794Sbostic */ 23853794Sbostic if (arq) { 23953794Sbostic if (d) { 24053794Sbostic for (i = m + n; i > m; --i) 24153794Sbostic u[i] = (u[i] >> d) | 24253794Sbostic LHALF(u[i - 1] << (HALF_BITS - d)); 24353794Sbostic u[i] = 0; 24453794Sbostic } 24553794Sbostic tmp.ul[H] = COMBINE(uspace[1], uspace[2]); 24653794Sbostic tmp.ul[L] = COMBINE(uspace[3], uspace[4]); 24753794Sbostic *arq = tmp.q; 24851748Smckusick } 24951748Smckusick 25053794Sbostic tmp.ul[H] = COMBINE(qspace[1], qspace[2]); 25153794Sbostic tmp.ul[L] = COMBINE(qspace[3], qspace[4]); 25253794Sbostic return (tmp.q); 25351748Smckusick } 254