153430Sbostic /*- 253430Sbostic * Copyright (c) 1992 The Regents of the University of California. 353430Sbostic * All rights reserved. 453430Sbostic * 5*53794Sbostic * This software was developed by the Computer Systems Engineering group 6*53794Sbostic * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 7*53794Sbostic * contributed to Berkeley. 8*53794Sbostic * 953430Sbostic * %sccs.include.redist.c% 1053430Sbostic */ 1153430Sbostic 1253430Sbostic #if defined(LIBC_SCCS) && !defined(lint) 13*53794Sbostic static char sccsid[] = "@(#)qdivrem.c 5.6 (Berkeley) 06/02/92"; 1453430Sbostic #endif /* LIBC_SCCS and not lint */ 1553430Sbostic 16*53794Sbostic /* 17*53794Sbostic * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), 18*53794Sbostic * section 4.3.1, pp. 257--259. 19*53794Sbostic */ 2053459Sbostic 21*53794Sbostic #include "quad.h" 2253459Sbostic 23*53794Sbostic #define B (1 << HALF_BITS) /* digit base */ 2453459Sbostic 25*53794Sbostic /* Combine two `digits' to make a single two-digit number. */ 26*53794Sbostic #define COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b)) 2753459Sbostic 28*53794Sbostic /* select a type for digits in base B: use unsigned short if they fit */ 29*53794Sbostic #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff 30*53794Sbostic typedef unsigned short digit; 3153455Sbostic #else 32*53794Sbostic typedef u_long digit; 3353455Sbostic #endif 3451748Smckusick 35*53794Sbostic /* 36*53794Sbostic * Shift p[0]..p[len] left `sh' bits, ignoring any bits that 37*53794Sbostic * `fall out' the left (there never will be any such anyway). 38*53794Sbostic * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. 39*53794Sbostic */ 40*53794Sbostic static void 41*53794Sbostic shl(register digit *p, register int len, register int sh) 42*53794Sbostic { 43*53794Sbostic register int i; 4451748Smckusick 45*53794Sbostic for (i = 0; i < len; i++) 46*53794Sbostic p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); 47*53794Sbostic p[i] = LHALF(p[i] << sh); 48*53794Sbostic } 4951748Smckusick 50*53794Sbostic /* 51*53794Sbostic * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. 52*53794Sbostic * 53*53794Sbostic * We do this in base 2-sup-HALF_BITS, so that all intermediate products 54*53794Sbostic * fit within u_long. As a consequence, the maximum length dividend and 55*53794Sbostic * divisor are 4 `digits' in this base (they are shorter if they have 56*53794Sbostic * leading zeros). 57*53794Sbostic */ 58*53794Sbostic u_quad 59*53794Sbostic __qdivrem(u_quad uq, u_quad vq, u_quad *arq) 60*53794Sbostic { 61*53794Sbostic union uu tmp; 62*53794Sbostic digit *u, *v, *q; 63*53794Sbostic register digit v1, v2; 64*53794Sbostic u_long qhat, rhat, t; 65*53794Sbostic int m, n, d, j, i; 66*53794Sbostic digit uspace[5], vspace[5], qspace[5]; 6751748Smckusick 68*53794Sbostic /* 69*53794Sbostic * Take care of special cases: divide by zero, and u < v. 70*53794Sbostic */ 71*53794Sbostic if (vq == 0) { 72*53794Sbostic /* divide by zero. */ 73*53794Sbostic static volatile const unsigned int zero = 0; 7451748Smckusick 75*53794Sbostic tmp.ul[H] = tmp.ul[L] = 1 / zero; 76*53794Sbostic if (arq) 77*53794Sbostic *arq = uq; 78*53794Sbostic return (tmp.q); 7951748Smckusick } 80*53794Sbostic if (uq < vq) { 81*53794Sbostic if (arq) 82*53794Sbostic *arq = uq; 83*53794Sbostic return (0); 84*53794Sbostic } 85*53794Sbostic u = &uspace[0]; 86*53794Sbostic v = &vspace[0]; 87*53794Sbostic q = &qspace[0]; 8851748Smckusick 89*53794Sbostic /* 90*53794Sbostic * Break dividend and divisor into digits in base B, then 91*53794Sbostic * count leading zeros to determine m and n. When done, we 92*53794Sbostic * will have: 93*53794Sbostic * u = (u[1]u[2]...u[m+n]) sub B 94*53794Sbostic * v = (v[1]v[2]...v[n]) sub B 95*53794Sbostic * v[1] != 0 96*53794Sbostic * 1 < n <= 4 (if n = 1, we use a different division algorithm) 97*53794Sbostic * m >= 0 (otherwise u < v, which we already checked) 98*53794Sbostic * m + n = 4 99*53794Sbostic * and thus 100*53794Sbostic * m = 4 - n <= 2 101*53794Sbostic */ 102*53794Sbostic tmp.uq = uq; 103*53794Sbostic u[0] = 0; 104*53794Sbostic u[1] = HHALF(tmp.ul[H]); 105*53794Sbostic u[2] = LHALF(tmp.ul[H]); 106*53794Sbostic u[3] = HHALF(tmp.ul[L]); 107*53794Sbostic u[4] = LHALF(tmp.ul[L]); 108*53794Sbostic tmp.uq = vq; 109*53794Sbostic v[1] = HHALF(tmp.ul[H]); 110*53794Sbostic v[2] = LHALF(tmp.ul[H]); 111*53794Sbostic v[3] = HHALF(tmp.ul[L]); 112*53794Sbostic v[4] = LHALF(tmp.ul[L]); 113*53794Sbostic for (n = 4; v[1] == 0; v++) { 114*53794Sbostic if (--n == 1) { 115*53794Sbostic u_long rbj; /* r*B+u[j] (not root boy jim) */ 116*53794Sbostic digit q1, q2, q3, q4; 11751748Smckusick 118*53794Sbostic /* 119*53794Sbostic * Change of plan, per exercise 16. 120*53794Sbostic * r = 0; 121*53794Sbostic * for j = 1..4: 122*53794Sbostic * q[j] = floor((r*B + u[j]) / v), 123*53794Sbostic * r = (r*B + u[j]) % v; 124*53794Sbostic * We unroll this completely here. 125*53794Sbostic */ 126*53794Sbostic t = v[2]; /* nonzero, by definition */ 127*53794Sbostic q1 = u[1] / t; 128*53794Sbostic rbj = COMBINE(u[1] % t, u[2]); 129*53794Sbostic q2 = rbj / t; 130*53794Sbostic rbj = COMBINE(rbj % t, u[3]); 131*53794Sbostic q3 = rbj / t; 132*53794Sbostic rbj = COMBINE(rbj % t, u[4]); 133*53794Sbostic q4 = rbj / t; 134*53794Sbostic if (arq) 135*53794Sbostic *arq = rbj % t; 136*53794Sbostic tmp.ul[H] = COMBINE(q1, q2); 137*53794Sbostic tmp.ul[L] = COMBINE(q3, q4); 138*53794Sbostic return (tmp.q); 139*53794Sbostic } 14051748Smckusick } 14151748Smckusick 142*53794Sbostic /* 143*53794Sbostic * By adjusting q once we determine m, we can guarantee that 144*53794Sbostic * there is a complete four-digit quotient at &qspace[1] when 145*53794Sbostic * we finally stop. 146*53794Sbostic */ 147*53794Sbostic for (m = 4 - n; u[1] == 0; u++) 148*53794Sbostic m--; 149*53794Sbostic for (i = 4 - m; --i >= 0;) 150*53794Sbostic q[i] = 0; 151*53794Sbostic q += 4 - m; 15251748Smckusick 153*53794Sbostic /* 154*53794Sbostic * Here we run Program D, translated from MIX to C and acquiring 155*53794Sbostic * a few minor changes. 156*53794Sbostic * 157*53794Sbostic * D1: choose multiplier 1 << d to ensure v[1] >= B/2. 158*53794Sbostic */ 159*53794Sbostic d = 0; 160*53794Sbostic for (t = v[1]; t < B / 2; t <<= 1) 161*53794Sbostic d++; 162*53794Sbostic if (d > 0) { 163*53794Sbostic shl(&u[0], m + n, d); /* u <<= d */ 164*53794Sbostic shl(&v[1], n - 1, d); /* v <<= d */ 16551748Smckusick } 166*53794Sbostic /* 167*53794Sbostic * D2: j = 0. 168*53794Sbostic */ 169*53794Sbostic j = 0; 170*53794Sbostic v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ 171*53794Sbostic v2 = v[2]; /* for D3 */ 172*53794Sbostic do { 173*53794Sbostic register digit uj0, uj1, uj2; 174*53794Sbostic 175*53794Sbostic /* 176*53794Sbostic * D3: Calculate qhat (\^q, in TeX notation). 177*53794Sbostic * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and 178*53794Sbostic * let rhat = (u[j]*B + u[j+1]) mod v[1]. 179*53794Sbostic * While rhat < B and v[2]*qhat > rhat*B+u[j+2], 180*53794Sbostic * decrement qhat and increase rhat correspondingly. 181*53794Sbostic * Note that if rhat >= B, v[2]*qhat < rhat*B. 182*53794Sbostic */ 183*53794Sbostic uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ 184*53794Sbostic uj1 = u[j + 1]; /* for D3 only */ 185*53794Sbostic uj2 = u[j + 2]; /* for D3 only */ 186*53794Sbostic if (uj0 == v1) { 187*53794Sbostic qhat = B; 188*53794Sbostic rhat = uj1; 189*53794Sbostic goto qhat_too_big; 190*53794Sbostic } else { 191*53794Sbostic u_long n = COMBINE(uj0, uj1); 192*53794Sbostic qhat = n / v1; 193*53794Sbostic rhat = n % v1; 194*53794Sbostic } 195*53794Sbostic while (v2 * qhat > COMBINE(rhat, uj2)) { 196*53794Sbostic qhat_too_big: 197*53794Sbostic qhat--; 198*53794Sbostic if ((rhat += v1) >= B) 199*53794Sbostic break; 200*53794Sbostic } 201*53794Sbostic /* 202*53794Sbostic * D4: Multiply and subtract. 203*53794Sbostic * The variable `t' holds any borrows across the loop. 204*53794Sbostic * We split this up so that we do not require v[0] = 0, 205*53794Sbostic * and to eliminate a final special case. 206*53794Sbostic */ 207*53794Sbostic for (t = 0, i = n; i > 0; i--) { 208*53794Sbostic t = u[i + j] - v[i] * qhat - t; 209*53794Sbostic u[i + j] = LHALF(t); 210*53794Sbostic t = (B - HHALF(t)) & (B - 1); 211*53794Sbostic } 212*53794Sbostic t = u[j] - t; 213*53794Sbostic u[j] = LHALF(t); 214*53794Sbostic /* 215*53794Sbostic * D5: test remainder. 216*53794Sbostic * There is a borrow if and only if HHALF(t) is nonzero; 217*53794Sbostic * in that (rare) case, qhat was too large (by exactly 1). 218*53794Sbostic * Fix it by adding v[1..n] to u[j..j+n]. 219*53794Sbostic */ 220*53794Sbostic if (HHALF(t)) { 221*53794Sbostic qhat--; 222*53794Sbostic for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ 223*53794Sbostic t += u[i + j] + v[i]; 224*53794Sbostic u[i + j] = LHALF(t); 225*53794Sbostic t = HHALF(t); 226*53794Sbostic } 227*53794Sbostic u[j] = LHALF(u[j] + t); 228*53794Sbostic } 229*53794Sbostic q[j] = qhat; 230*53794Sbostic } while (++j <= m); /* D7: loop on j. */ 23151748Smckusick 232*53794Sbostic /* 233*53794Sbostic * If caller wants the remainder, we have to calculate it as 234*53794Sbostic * u[m..m+n] >> d (this is at most n digits and thus fits in 235*53794Sbostic * u[m+1..m+n], but we may need more source digits). 236*53794Sbostic */ 237*53794Sbostic if (arq) { 238*53794Sbostic if (d) { 239*53794Sbostic for (i = m + n; i > m; --i) 240*53794Sbostic u[i] = (u[i] >> d) | 241*53794Sbostic LHALF(u[i - 1] << (HALF_BITS - d)); 242*53794Sbostic u[i] = 0; 243*53794Sbostic } 244*53794Sbostic tmp.ul[H] = COMBINE(uspace[1], uspace[2]); 245*53794Sbostic tmp.ul[L] = COMBINE(uspace[3], uspace[4]); 246*53794Sbostic *arq = tmp.q; 24751748Smckusick } 24851748Smckusick 249*53794Sbostic tmp.ul[H] = COMBINE(qspace[1], qspace[2]); 250*53794Sbostic tmp.ul[L] = COMBINE(qspace[3], qspace[4]); 251*53794Sbostic return (tmp.q); 25251748Smckusick } 253