xref: /csrg-svn/lib/libc/quad/muldi3.c (revision 61160)
153430Sbostic /*-
2*61160Sbostic  * Copyright (c) 1992, 1993
3*61160Sbostic  *	The Regents of the University of California.  All rights reserved.
453430Sbostic  *
553794Sbostic  * This software was developed by the Computer Systems Engineering group
653794Sbostic  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
753794Sbostic  * contributed to Berkeley.
853794Sbostic  *
953430Sbostic  * %sccs.include.redist.c%
1053430Sbostic  */
1153430Sbostic 
1253430Sbostic #if defined(LIBC_SCCS) && !defined(lint)
13*61160Sbostic static char sccsid[] = "@(#)muldi3.c	8.1 (Berkeley) 06/04/93";
1453430Sbostic #endif /* LIBC_SCCS and not lint */
1553430Sbostic 
1653794Sbostic #include "quad.h"
1753459Sbostic 
1853794Sbostic /*
1953794Sbostic  * Multiply two quads.
2053794Sbostic  *
2153794Sbostic  * Our algorithm is based on the following.  Split incoming quad values
2253794Sbostic  * u and v (where u,v >= 0) into
2353794Sbostic  *
2453794Sbostic  *	u = 2^n u1  *  u0	(n = number of bits in `u_long', usu. 32)
2553794Sbostic  *
2653794Sbostic  * and
2753794Sbostic  *
2853794Sbostic  *	v = 2^n v1  *  v0
2953794Sbostic  *
3053794Sbostic  * Then
3153794Sbostic  *
3253794Sbostic  *	uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
3353794Sbostic  *	   = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
3453794Sbostic  *
3553794Sbostic  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
3653794Sbostic  * and add 2^n u0 v0 to the last term and subtract it from the middle.
3753794Sbostic  * This gives:
3853794Sbostic  *
3953794Sbostic  *	uv = (2^2n + 2^n) (u1 v1)  +
4053794Sbostic  *	         (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
4153794Sbostic  *	       (2^n + 1)  (u0 v0)
4253794Sbostic  *
4353794Sbostic  * Factoring the middle a bit gives us:
4453794Sbostic  *
4553794Sbostic  *	uv = (2^2n + 2^n) (u1 v1)  +			[u1v1 = high]
4653794Sbostic  *		 (2^n)    (u1 - u0) (v0 - v1)  +	[(u1-u0)... = mid]
4753794Sbostic  *	       (2^n + 1)  (u0 v0)			[u0v0 = low]
4853794Sbostic  *
4953794Sbostic  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
5053794Sbostic  * in just half the precision of the original.  (Note that either or both
5153794Sbostic  * of (u1 - u0) or (v0 - v1) may be negative.)
5253794Sbostic  *
5353794Sbostic  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
5453794Sbostic  *
5553794Sbostic  * Since C does not give us a `long * long = quad' operator, we split
5653794Sbostic  * our input quads into two longs, then split the two longs into two
5753794Sbostic  * shorts.  We can then calculate `short * short = long' in native
5853794Sbostic  * arithmetic.
5953794Sbostic  *
6053794Sbostic  * Our product should, strictly speaking, be a `long quad', with 128
6153794Sbostic  * bits, but we are going to discard the upper 64.  In other words,
6253794Sbostic  * we are not interested in uv, but rather in (uv mod 2^2n).  This
6353794Sbostic  * makes some of the terms above vanish, and we get:
6453794Sbostic  *
6553794Sbostic  *	(2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
6653794Sbostic  *
6753794Sbostic  * or
6853794Sbostic  *
6953794Sbostic  *	(2^n)(high + mid + low) + low
7053794Sbostic  *
7153794Sbostic  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
7253794Sbostic  * of 2^n in either one will also vanish.  Only `low' need be computed
7353794Sbostic  * mod 2^2n, and only because of the final term above.
7453794Sbostic  */
7554431Sbostic static quad_t __lmulq(u_long, u_long);
7653459Sbostic 
7754431Sbostic quad_t
__muldi3(a,b)7854431Sbostic __muldi3(a, b)
7954431Sbostic 	quad_t a, b;
8053794Sbostic {
8153794Sbostic 	union uu u, v, low, prod;
8253794Sbostic 	register u_long high, mid, udiff, vdiff;
8353794Sbostic 	register int negall, negmid;
8453794Sbostic #define	u1	u.ul[H]
8553794Sbostic #define	u0	u.ul[L]
8653794Sbostic #define	v1	v.ul[H]
8753794Sbostic #define	v0	v.ul[L]
8853459Sbostic 
8953794Sbostic 	/*
9053794Sbostic 	 * Get u and v such that u, v >= 0.  When this is finished,
9153794Sbostic 	 * u1, u0, v1, and v0 will be directly accessible through the
9253794Sbostic 	 * longword fields.
9353794Sbostic 	 */
9453794Sbostic 	if (a >= 0)
9553794Sbostic 		u.q = a, negall = 0;
9653794Sbostic 	else
9753794Sbostic 		u.q = -a, negall = 1;
9853794Sbostic 	if (b >= 0)
9953794Sbostic 		v.q = b;
10053794Sbostic 	else
10153794Sbostic 		v.q = -b, negall ^= 1;
10253459Sbostic 
10353794Sbostic 	if (u1 == 0 && v1 == 0) {
10453794Sbostic 		/*
10553794Sbostic 		 * An (I hope) important optimization occurs when u1 and v1
10653794Sbostic 		 * are both 0.  This should be common since most numbers
10753794Sbostic 		 * are small.  Here the product is just u0*v0.
10853794Sbostic 		 */
10953794Sbostic 		prod.q = __lmulq(u0, v0);
11053794Sbostic 	} else {
11153794Sbostic 		/*
11253794Sbostic 		 * Compute the three intermediate products, remembering
11353794Sbostic 		 * whether the middle term is negative.  We can discard
11453794Sbostic 		 * any upper bits in high and mid, so we can use native
11553794Sbostic 		 * u_long * u_long => u_long arithmetic.
11653794Sbostic 		 */
11753794Sbostic 		low.q = __lmulq(u0, v0);
11853459Sbostic 
11953794Sbostic 		if (u1 >= u0)
12053794Sbostic 			negmid = 0, udiff = u1 - u0;
12153794Sbostic 		else
12253794Sbostic 			negmid = 1, udiff = u0 - u1;
12353794Sbostic 		if (v0 >= v1)
12453794Sbostic 			vdiff = v0 - v1;
12553794Sbostic 		else
12653794Sbostic 			vdiff = v1 - v0, negmid ^= 1;
12753794Sbostic 		mid = udiff * vdiff;
12853459Sbostic 
12953794Sbostic 		high = u1 * v1;
13051749Smckusick 
13153794Sbostic 		/*
13253794Sbostic 		 * Assemble the final product.
13353794Sbostic 		 */
13453794Sbostic 		prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
13553794Sbostic 		    low.ul[H];
13653794Sbostic 		prod.ul[L] = low.ul[L];
13753794Sbostic 	}
13853794Sbostic 	return (negall ? -prod.q : prod.q);
13953794Sbostic #undef u1
14053794Sbostic #undef u0
14153794Sbostic #undef v1
14253794Sbostic #undef v0
14353794Sbostic }
14451749Smckusick 
14553794Sbostic /*
14653794Sbostic  * Multiply two 2N-bit longs to produce a 4N-bit quad, where N is half
14753794Sbostic  * the number of bits in a long (whatever that is---the code below
14853794Sbostic  * does not care as long as quad.h does its part of the bargain---but
14953794Sbostic  * typically N==16).
15053794Sbostic  *
15153794Sbostic  * We use the same algorithm from Knuth, but this time the modulo refinement
15253794Sbostic  * does not apply.  On the other hand, since N is half the size of a long,
15353794Sbostic  * we can get away with native multiplication---none of our input terms
15453794Sbostic  * exceeds (ULONG_MAX >> 1).
15553794Sbostic  *
15653794Sbostic  * Note that, for u_long l, the quad-precision result
15753794Sbostic  *
15853794Sbostic  *	l << N
15953794Sbostic  *
16053794Sbostic  * splits into high and low longs as HHALF(l) and LHUP(l) respectively.
16153794Sbostic  */
16254431Sbostic static quad_t
__lmulq(u_long u,u_long v)16353794Sbostic __lmulq(u_long u, u_long v)
16451749Smckusick {
16553794Sbostic 	u_long u1, u0, v1, v0, udiff, vdiff, high, mid, low;
16653794Sbostic 	u_long prodh, prodl, was;
16753794Sbostic 	union uu prod;
16853794Sbostic 	int neg;
16951749Smckusick 
17053794Sbostic 	u1 = HHALF(u);
17153794Sbostic 	u0 = LHALF(u);
17253794Sbostic 	v1 = HHALF(v);
17353794Sbostic 	v0 = LHALF(v);
17451749Smckusick 
17553794Sbostic 	low = u0 * v0;
17651749Smckusick 
17753794Sbostic 	/* This is the same small-number optimization as before. */
17853794Sbostic 	if (u1 == 0 && v1 == 0)
17953794Sbostic 		return (low);
18051749Smckusick 
18153794Sbostic 	if (u1 >= u0)
18253794Sbostic 		udiff = u1 - u0, neg = 0;
18353794Sbostic 	else
18453794Sbostic 		udiff = u0 - u1, neg = 1;
18553794Sbostic 	if (v0 >= v1)
18653794Sbostic 		vdiff = v0 - v1;
18753794Sbostic 	else
18853794Sbostic 		vdiff = v1 - v0, neg ^= 1;
18953794Sbostic 	mid = udiff * vdiff;
19051749Smckusick 
19153794Sbostic 	high = u1 * v1;
19251749Smckusick 
19353794Sbostic 	/* prod = (high << 2N) + (high << N); */
19453794Sbostic 	prodh = high + HHALF(high);
19553794Sbostic 	prodl = LHUP(high);
19651749Smckusick 
19753794Sbostic 	/* if (neg) prod -= mid << N; else prod += mid << N; */
19853794Sbostic 	if (neg) {
19953794Sbostic 		was = prodl;
20053794Sbostic 		prodl -= LHUP(mid);
20153794Sbostic 		prodh -= HHALF(mid) + (prodl > was);
20253794Sbostic 	} else {
20353794Sbostic 		was = prodl;
20453794Sbostic 		prodl += LHUP(mid);
20553824Storek 		prodh += HHALF(mid) + (prodl < was);
20653794Sbostic 	}
20751750Smckusick 
20853794Sbostic 	/* prod += low << N */
20953794Sbostic 	was = prodl;
21053794Sbostic 	prodl += LHUP(low);
21153794Sbostic 	prodh += HHALF(low) + (prodl < was);
21253794Sbostic 	/* ... + low; */
21353794Sbostic 	if ((prodl += low) < low)
21453794Sbostic 		prodh++;
21553794Sbostic 
21653794Sbostic 	/* return 4N-bit product */
21753794Sbostic 	prod.ul[H] = prodh;
21853794Sbostic 	prod.ul[L] = prodl;
21953794Sbostic 	return (prod.q);
22051749Smckusick }
221