153430Sbostic /*-
2*61160Sbostic * Copyright (c) 1992, 1993
3*61160Sbostic * The Regents of the University of California. All rights reserved.
453430Sbostic *
553794Sbostic * This software was developed by the Computer Systems Engineering group
653794Sbostic * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
753794Sbostic * contributed to Berkeley.
853794Sbostic *
953430Sbostic * %sccs.include.redist.c%
1053430Sbostic */
1153430Sbostic
1253430Sbostic #if defined(LIBC_SCCS) && !defined(lint)
13*61160Sbostic static char sccsid[] = "@(#)muldi3.c 8.1 (Berkeley) 06/04/93";
1453430Sbostic #endif /* LIBC_SCCS and not lint */
1553430Sbostic
1653794Sbostic #include "quad.h"
1753459Sbostic
1853794Sbostic /*
1953794Sbostic * Multiply two quads.
2053794Sbostic *
2153794Sbostic * Our algorithm is based on the following. Split incoming quad values
2253794Sbostic * u and v (where u,v >= 0) into
2353794Sbostic *
2453794Sbostic * u = 2^n u1 * u0 (n = number of bits in `u_long', usu. 32)
2553794Sbostic *
2653794Sbostic * and
2753794Sbostic *
2853794Sbostic * v = 2^n v1 * v0
2953794Sbostic *
3053794Sbostic * Then
3153794Sbostic *
3253794Sbostic * uv = 2^2n u1 v1 + 2^n u1 v0 + 2^n v1 u0 + u0 v0
3353794Sbostic * = 2^2n u1 v1 + 2^n (u1 v0 + v1 u0) + u0 v0
3453794Sbostic *
3553794Sbostic * Now add 2^n u1 v1 to the first term and subtract it from the middle,
3653794Sbostic * and add 2^n u0 v0 to the last term and subtract it from the middle.
3753794Sbostic * This gives:
3853794Sbostic *
3953794Sbostic * uv = (2^2n + 2^n) (u1 v1) +
4053794Sbostic * (2^n) (u1 v0 - u1 v1 + u0 v1 - u0 v0) +
4153794Sbostic * (2^n + 1) (u0 v0)
4253794Sbostic *
4353794Sbostic * Factoring the middle a bit gives us:
4453794Sbostic *
4553794Sbostic * uv = (2^2n + 2^n) (u1 v1) + [u1v1 = high]
4653794Sbostic * (2^n) (u1 - u0) (v0 - v1) + [(u1-u0)... = mid]
4753794Sbostic * (2^n + 1) (u0 v0) [u0v0 = low]
4853794Sbostic *
4953794Sbostic * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
5053794Sbostic * in just half the precision of the original. (Note that either or both
5153794Sbostic * of (u1 - u0) or (v0 - v1) may be negative.)
5253794Sbostic *
5353794Sbostic * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
5453794Sbostic *
5553794Sbostic * Since C does not give us a `long * long = quad' operator, we split
5653794Sbostic * our input quads into two longs, then split the two longs into two
5753794Sbostic * shorts. We can then calculate `short * short = long' in native
5853794Sbostic * arithmetic.
5953794Sbostic *
6053794Sbostic * Our product should, strictly speaking, be a `long quad', with 128
6153794Sbostic * bits, but we are going to discard the upper 64. In other words,
6253794Sbostic * we are not interested in uv, but rather in (uv mod 2^2n). This
6353794Sbostic * makes some of the terms above vanish, and we get:
6453794Sbostic *
6553794Sbostic * (2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
6653794Sbostic *
6753794Sbostic * or
6853794Sbostic *
6953794Sbostic * (2^n)(high + mid + low) + low
7053794Sbostic *
7153794Sbostic * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
7253794Sbostic * of 2^n in either one will also vanish. Only `low' need be computed
7353794Sbostic * mod 2^2n, and only because of the final term above.
7453794Sbostic */
7554431Sbostic static quad_t __lmulq(u_long, u_long);
7653459Sbostic
7754431Sbostic quad_t
__muldi3(a,b)7854431Sbostic __muldi3(a, b)
7954431Sbostic quad_t a, b;
8053794Sbostic {
8153794Sbostic union uu u, v, low, prod;
8253794Sbostic register u_long high, mid, udiff, vdiff;
8353794Sbostic register int negall, negmid;
8453794Sbostic #define u1 u.ul[H]
8553794Sbostic #define u0 u.ul[L]
8653794Sbostic #define v1 v.ul[H]
8753794Sbostic #define v0 v.ul[L]
8853459Sbostic
8953794Sbostic /*
9053794Sbostic * Get u and v such that u, v >= 0. When this is finished,
9153794Sbostic * u1, u0, v1, and v0 will be directly accessible through the
9253794Sbostic * longword fields.
9353794Sbostic */
9453794Sbostic if (a >= 0)
9553794Sbostic u.q = a, negall = 0;
9653794Sbostic else
9753794Sbostic u.q = -a, negall = 1;
9853794Sbostic if (b >= 0)
9953794Sbostic v.q = b;
10053794Sbostic else
10153794Sbostic v.q = -b, negall ^= 1;
10253459Sbostic
10353794Sbostic if (u1 == 0 && v1 == 0) {
10453794Sbostic /*
10553794Sbostic * An (I hope) important optimization occurs when u1 and v1
10653794Sbostic * are both 0. This should be common since most numbers
10753794Sbostic * are small. Here the product is just u0*v0.
10853794Sbostic */
10953794Sbostic prod.q = __lmulq(u0, v0);
11053794Sbostic } else {
11153794Sbostic /*
11253794Sbostic * Compute the three intermediate products, remembering
11353794Sbostic * whether the middle term is negative. We can discard
11453794Sbostic * any upper bits in high and mid, so we can use native
11553794Sbostic * u_long * u_long => u_long arithmetic.
11653794Sbostic */
11753794Sbostic low.q = __lmulq(u0, v0);
11853459Sbostic
11953794Sbostic if (u1 >= u0)
12053794Sbostic negmid = 0, udiff = u1 - u0;
12153794Sbostic else
12253794Sbostic negmid = 1, udiff = u0 - u1;
12353794Sbostic if (v0 >= v1)
12453794Sbostic vdiff = v0 - v1;
12553794Sbostic else
12653794Sbostic vdiff = v1 - v0, negmid ^= 1;
12753794Sbostic mid = udiff * vdiff;
12853459Sbostic
12953794Sbostic high = u1 * v1;
13051749Smckusick
13153794Sbostic /*
13253794Sbostic * Assemble the final product.
13353794Sbostic */
13453794Sbostic prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
13553794Sbostic low.ul[H];
13653794Sbostic prod.ul[L] = low.ul[L];
13753794Sbostic }
13853794Sbostic return (negall ? -prod.q : prod.q);
13953794Sbostic #undef u1
14053794Sbostic #undef u0
14153794Sbostic #undef v1
14253794Sbostic #undef v0
14353794Sbostic }
14451749Smckusick
14553794Sbostic /*
14653794Sbostic * Multiply two 2N-bit longs to produce a 4N-bit quad, where N is half
14753794Sbostic * the number of bits in a long (whatever that is---the code below
14853794Sbostic * does not care as long as quad.h does its part of the bargain---but
14953794Sbostic * typically N==16).
15053794Sbostic *
15153794Sbostic * We use the same algorithm from Knuth, but this time the modulo refinement
15253794Sbostic * does not apply. On the other hand, since N is half the size of a long,
15353794Sbostic * we can get away with native multiplication---none of our input terms
15453794Sbostic * exceeds (ULONG_MAX >> 1).
15553794Sbostic *
15653794Sbostic * Note that, for u_long l, the quad-precision result
15753794Sbostic *
15853794Sbostic * l << N
15953794Sbostic *
16053794Sbostic * splits into high and low longs as HHALF(l) and LHUP(l) respectively.
16153794Sbostic */
16254431Sbostic static quad_t
__lmulq(u_long u,u_long v)16353794Sbostic __lmulq(u_long u, u_long v)
16451749Smckusick {
16553794Sbostic u_long u1, u0, v1, v0, udiff, vdiff, high, mid, low;
16653794Sbostic u_long prodh, prodl, was;
16753794Sbostic union uu prod;
16853794Sbostic int neg;
16951749Smckusick
17053794Sbostic u1 = HHALF(u);
17153794Sbostic u0 = LHALF(u);
17253794Sbostic v1 = HHALF(v);
17353794Sbostic v0 = LHALF(v);
17451749Smckusick
17553794Sbostic low = u0 * v0;
17651749Smckusick
17753794Sbostic /* This is the same small-number optimization as before. */
17853794Sbostic if (u1 == 0 && v1 == 0)
17953794Sbostic return (low);
18051749Smckusick
18153794Sbostic if (u1 >= u0)
18253794Sbostic udiff = u1 - u0, neg = 0;
18353794Sbostic else
18453794Sbostic udiff = u0 - u1, neg = 1;
18553794Sbostic if (v0 >= v1)
18653794Sbostic vdiff = v0 - v1;
18753794Sbostic else
18853794Sbostic vdiff = v1 - v0, neg ^= 1;
18953794Sbostic mid = udiff * vdiff;
19051749Smckusick
19153794Sbostic high = u1 * v1;
19251749Smckusick
19353794Sbostic /* prod = (high << 2N) + (high << N); */
19453794Sbostic prodh = high + HHALF(high);
19553794Sbostic prodl = LHUP(high);
19651749Smckusick
19753794Sbostic /* if (neg) prod -= mid << N; else prod += mid << N; */
19853794Sbostic if (neg) {
19953794Sbostic was = prodl;
20053794Sbostic prodl -= LHUP(mid);
20153794Sbostic prodh -= HHALF(mid) + (prodl > was);
20253794Sbostic } else {
20353794Sbostic was = prodl;
20453794Sbostic prodl += LHUP(mid);
20553824Storek prodh += HHALF(mid) + (prodl < was);
20653794Sbostic }
20751750Smckusick
20853794Sbostic /* prod += low << N */
20953794Sbostic was = prodl;
21053794Sbostic prodl += LHUP(low);
21153794Sbostic prodh += HHALF(low) + (prodl < was);
21253794Sbostic /* ... + low; */
21353794Sbostic if ((prodl += low) < low)
21453794Sbostic prodh++;
21553794Sbostic
21653794Sbostic /* return 4N-bit product */
21753794Sbostic prod.ul[H] = prodh;
21853794Sbostic prod.ul[L] = prodl;
21953794Sbostic return (prod.q);
22051749Smckusick }
221