xref: /csrg-svn/lib/libc/db/btree/btree.h (revision 51104)
1 /*-
2  * Copyright (c) 1991 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)btree.h	5.4 (Berkeley) 09/12/91
11  */
12 
13 #include <mpool.h>
14 
15 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
16 #define	MINCACHE	(5)		/* Minimum cached pages */
17 #define	MINPSIZE	(512)		/* Minimum page size */
18 
19 /*
20  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
21  * used as an out-of-band page, i.e. page pointers that point to nowhere point
22  * to page 0.  Page 1 is the root of the btree.
23  */
24 #define	P_INVALID	 0		/* Invalid tree page number. */
25 #define	P_META		 0		/* Tree metadata page number. */
26 #define	P_ROOT		 1		/* Tree root page number. */
27 
28 /*
29  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
30  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
31  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
32  * This implementation requires that longs within structures are NOT padded.
33  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
34  * to do some work to get this package to run.
35  */
36 typedef struct PAGE {
37 	pgno_t	pgno;			/* this page's page number */
38 	pgno_t	prevpg;			/* left sibling */
39 	pgno_t	nextpg;			/* right sibling */
40 
41 #define	P_BINTERNAL	0x01		/* btree internal page */
42 #define	P_BLEAF		0x02		/* leaf page */
43 #define	P_OVERFLOW	0x04		/* overflow page */
44 #define	P_RINTERNAL	0x08		/* recno internal page */
45 #define	P_RLEAF		0x10		/* leaf page */
46 #define P_TYPE		0x1f		/* type mask */
47 
48 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
49 	u_long	flags;
50 
51 	index_t	lower;			/* lower bound of free space on page */
52 	index_t	upper;			/* upper bound of free space on page */
53 	index_t	linp[1];		/* long-aligned VARIABLE LENGTH DATA */
54 } PAGE;
55 
56 /* First and next index. */
57 #define	BTDATAOFF	(sizeof(PAGE) - sizeof(index_t))
58 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(index_t))
59 
60 /*
61  * For pages other than overflow pages, there is an array of offsets into the
62  * rest of the page immediately following the page header.  Each offset is to
63  * an item which is unique to the type of page.  The h_lower offset is just
64  * past the last filled-in index.  The h_upper offset is the first item on the
65  * page.  Offsets are from the beginning of the page.
66  *
67  * If an item is too big to store on a single page, a flag is set and the item
68  * is a { page, size } pair such that the page is the first page of an overflow
69  * chain with size bytes of item.  Overflow pages are simply bytes without any
70  * external structure.
71  *
72  * The size and page number fields in the items are long aligned so they can be
73  * manipulated without copying.
74  */
75 #define	LALIGN(n)	(((n) + sizeof(u_long) - 1) & ~(sizeof(u_long) - 1))
76 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(size_t))
77 
78 /*
79  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
80  * pairs, such that the key compares less than or equal to all of the records
81  * on that page.  For a tree without duplicate keys, an internal page with two
82  * consecutive keys, a and b, will have all records greater than or equal to a
83  * and less than b stored on the page associated with a.  Duplicate keys are
84  * somewhat special and can cause duplicate internal and leaf page records and
85  * some minor modifications of the above rule.
86  */
87 typedef struct BINTERNAL {
88 	size_t	ksize;			/* key size */
89 	pgno_t	pgno;			/* page number stored on */
90 #define	P_BIGDATA	0x01		/* overflow data */
91 #define	P_BIGKEY	0x02		/* overflow key */
92 	u_char	flags;
93 	char	bytes[1];		/* data */
94 } BINTERNAL;
95 
96 /* Get the page's BINTERNAL structure at index indx. */
97 #define	GETBINTERNAL(pg, indx) \
98 	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
99 
100 /* Get the number of bytes in the entry. */
101 #define NBINTERNAL(len) \
102 	LALIGN(sizeof(size_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
103 
104 /* Copy a BINTERNAL entry to the page. */
105 #define	WR_BINTERNAL(p, size, pgno, flags) { \
106 	*((size_t *)p)++ = size; \
107 	*((pgno_t *)p)++ = pgno; \
108 	*((u_char *)p)++ = flags; \
109 }
110 
111 /*
112  * For the recno internal pages, the item is a page number with the number of
113  * keys found on that page and below.
114  */
115 typedef struct RINTERNAL {
116 	recno_t	nrecs;			/* number of records */
117 	pgno_t	pgno;			/* page number stored below */
118 } RINTERNAL;
119 
120 /* Get the page's RINTERNAL structure at index indx. */
121 #define	GETRINTERNAL(pg, indx) \
122 	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
123 
124 /* Get the number of bytes in the entry. */
125 #define NRINTERNAL \
126 	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
127 
128 /* Copy a RINTERAL entry to the page. */
129 #define	WR_RINTERNAL(p, nrecs, pgno) { \
130 	*((recno_t *)p)++ = nrecs; \
131 	*(pgno_t *)p = pgno; \
132 }
133 
134 /* For the btree leaf pages, the item is a key and data pair. */
135 typedef struct BLEAF {
136 	size_t	ksize;			/* size of key */
137 	size_t	dsize;			/* size of data */
138 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
139 	char	bytes[1];		/* data */
140 } BLEAF;
141 
142 /* Get the page's BLEAF structure at index indx. */
143 #define	GETBLEAF(pg, indx) \
144 	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
145 
146 /* Get the number of bytes in the entry. */
147 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
148 
149 /* Get the number of bytes in the user's key/data pair. */
150 #define NBLEAFDBT(ksize, dsize) \
151 	LALIGN(sizeof(size_t) + sizeof(size_t) + sizeof(u_char) + \
152 	    (ksize) + (dsize))
153 
154 /* Copy a BLEAF entry to the page. */
155 #define	WR_BLEAF(p, key, data, flags) { \
156 	*((size_t *)p)++ = key->size; \
157 	*((size_t *)p)++ = data->size; \
158 	*((u_char *)p)++ = flags; \
159 	bcopy(key->data, p, key->size); \
160 	p += key->size; \
161 	bcopy(data->data, p, data->size); \
162 }
163 
164 /* For the recno leaf pages, the item is a data entry. */
165 typedef struct RLEAF {
166 	size_t	dsize;			/* size of data */
167 	u_char	flags;			/* P_BIGDATA */
168 	char	bytes[1];
169 } RLEAF;
170 
171 /* Get the page's RLEAF structure at index indx. */
172 #define	GETRLEAF(pg, indx) \
173 	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
174 
175 /* Get the number of bytes in the entry. */
176 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
177 
178 /* Get the number of bytes from the user's data. */
179 #define	NRLEAFDBT(dsize) \
180 	LALIGN(sizeof(size_t) + sizeof(u_char) + (dsize))
181 
182 /* Copy a RLEAF entry to the page. */
183 #define	WR_RLEAF(p, data, flags) { \
184 	*((size_t *)p)++ = data->size; \
185 	*((u_char *)p)++ = flags; \
186 	bcopy(data->data, p, data->size); \
187 }
188 
189 /*
190  * A record in the tree is either a pointer to a page and an index in the page
191  * or a page number and an index.  These structures are used as a cursor, stack
192  * entry and search returns as well as to pass records to other routines.
193  *
194  * One comment about searches.  Internal page searches must find the largest
195  * record less than key in the tree so that descents work.  Leaf page searches
196  * must find the smallest record greater than key so that the returned index
197  * is the record's correct position for insertion.
198  *
199  * One comment about cursors.  The cursor key is never removed from the tree,
200  * even if deleted.  This is because it is quite difficult to decide where the
201  * cursor should be when other keys have been inserted/deleted in the tree;
202  * duplicate keys make it impossible.  This scheme does require extra work
203  * though, to make sure that we don't perform an operation on a deleted key.
204  */
205 typedef struct EPGNO {
206 	pgno_t	pgno;			/* the page number */
207 	index_t	index;			/* the index on the page */
208 } EPGNO;
209 
210 typedef struct EPG {
211 	PAGE	*page;			/* the (pinned) page */
212 	index_t	 index;			/* the index on the page */
213 } EPG;
214 
215 /*
216  * The metadata of the tree.  The m_nrecs field is used only by the RECNO code.
217  * This is because the btree doesn't really need it and it requires that every
218  * put or delete call modify the metadata.
219  */
220 typedef struct BTMETA {
221 	u_long	m_magic;		/* magic number */
222 	u_long	m_version;		/* version */
223 	u_long	m_psize;		/* page size */
224 	u_long	m_free;			/* page number of first free page */
225 	u_long	m_nrecs;		/* R: number of records */
226 #define	SAVEMETA	(BTF_NODUPS | BTF_RECNO)
227 	u_long	m_flags;		/* bt_flags & SAVEMETA */
228 	u_long	m_lorder;		/* byte order */
229 } BTMETA;
230 
231 /* The in-memory btree/recno data structure. */
232 typedef struct BTREE {
233 	MPOOL	*bt_mp;			/* memory pool cookie */
234 
235 	DB	*bt_dbp;		/* pointer to enclosing DB */
236 
237 	EPGNO	bt_bcursor;		/* B: btree cursor */
238 	recno_t	bt_rcursor;		/* R: recno cursor (1-based) */
239 
240 #define	BT_POP(t)	(t->bt_sp ? t->bt_stack + --t->bt_sp : NULL)
241 #define	BT_CLR(t)	(t->bt_sp = 0)
242 	EPGNO	*bt_stack;		/* stack of parent pages */
243 	u_int	bt_sp;			/* current stack pointer */
244 	u_int	bt_maxstack;		/* largest stack */
245 
246 	char	*bt_kbuf;		/* key buffer */
247 	size_t	bt_kbufsz;		/* key buffer size */
248 	char	*bt_dbuf;		/* data buffer */
249 	size_t	bt_dbufsz;		/* data buffer size */
250 
251 	int	bt_fd;			/* tree file descriptor */
252 	FILE	*bt_rfp;		/* R: record FILE pointer */
253 	int	bt_rfd;			/* R: record file descriptor */
254 
255 	pgno_t	bt_free;		/* XXX next free page */
256 	index_t	bt_psize;		/* page size */
257 	index_t	bt_ovflsize;		/* cut-off for key/data overflow */
258 	int	bt_lorder;		/* byte order */
259 					/* sorted order */
260 	enum { NOT, BACK, FORWARD, } bt_order;
261 	EPGNO	bt_last;		/* last insert */
262 
263 					/* B: key comparison function */
264 	int	(*bt_cmp) __P((const DBT *, const DBT *));
265 					/* B: prefix comparison function */
266 	int	(*bt_pfx) __P((const DBT *, const DBT *));
267 					/* R: recno input function */
268 	int	(*bt_irec) __P((struct BTREE *, recno_t));
269 	recno_t	bt_nrecs;		/* R: number of records */
270 	caddr_t	bt_smap;		/* R: start of mapped space */
271 	caddr_t bt_emap;		/* R: end of mapped space */
272 	size_t	bt_reclen;		/* R: fixed record length */
273 	u_char	bt_bval;		/* R: delimiting byte/pad character */
274 
275 #define	BTF_DELCRSR	0x001		/* cursor has been deleted */
276 #define	BTF_FIXEDLEN	0x002		/* fixed length records */
277 #define	BTF_INMEM	0x004		/* in-memory tree */
278 #define	BTF_METADIRTY	0x008		/* B: need to write metadata */
279 #define	BTF_MODIFIED	0x010		/* tree modified */
280 #define	BTF_NODUPS	0x020		/* B: no duplicate keys permitted */
281 #define	BTF_RDONLY	0x040		/* read-only tree */
282 #define	BTF_RECNO	0x080		/* record oriented tree */
283 #define	BTF_SEQINIT	0x100		/* sequential scan initialized */
284 	u_long		bt_flags;	/* btree state */
285 } BTREE;
286 
287 #define	ISSET(t, f)	((t)->bt_flags & (f))
288 #define	NOTSET(t, f)	(!((t)->bt_flags & (f)))
289 #define	SET(t, f)	((t)->bt_flags |= (f))
290 #define	UNSET(t, f)	((t)->bt_flags &= ~(f))
291 
292 #include "extern.h"
293