17dd7cddfSDavid du Colombier /* 27dd7cddfSDavid du Colombier * jidctfst.c 37dd7cddfSDavid du Colombier * 4*593dc095SDavid du Colombier * Copyright (C) 1994-1998, Thomas G. Lane. 57dd7cddfSDavid du Colombier * This file is part of the Independent JPEG Group's software. 67dd7cddfSDavid du Colombier * For conditions of distribution and use, see the accompanying README file. 77dd7cddfSDavid du Colombier * 87dd7cddfSDavid du Colombier * This file contains a fast, not so accurate integer implementation of the 97dd7cddfSDavid du Colombier * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine 107dd7cddfSDavid du Colombier * must also perform dequantization of the input coefficients. 117dd7cddfSDavid du Colombier * 127dd7cddfSDavid du Colombier * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT 137dd7cddfSDavid du Colombier * on each row (or vice versa, but it's more convenient to emit a row at 147dd7cddfSDavid du Colombier * a time). Direct algorithms are also available, but they are much more 157dd7cddfSDavid du Colombier * complex and seem not to be any faster when reduced to code. 167dd7cddfSDavid du Colombier * 177dd7cddfSDavid du Colombier * This implementation is based on Arai, Agui, and Nakajima's algorithm for 187dd7cddfSDavid du Colombier * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 197dd7cddfSDavid du Colombier * Japanese, but the algorithm is described in the Pennebaker & Mitchell 207dd7cddfSDavid du Colombier * JPEG textbook (see REFERENCES section in file README). The following code 217dd7cddfSDavid du Colombier * is based directly on figure 4-8 in P&M. 227dd7cddfSDavid du Colombier * While an 8-point DCT cannot be done in less than 11 multiplies, it is 237dd7cddfSDavid du Colombier * possible to arrange the computation so that many of the multiplies are 247dd7cddfSDavid du Colombier * simple scalings of the final outputs. These multiplies can then be 257dd7cddfSDavid du Colombier * folded into the multiplications or divisions by the JPEG quantization 267dd7cddfSDavid du Colombier * table entries. The AA&N method leaves only 5 multiplies and 29 adds 277dd7cddfSDavid du Colombier * to be done in the DCT itself. 287dd7cddfSDavid du Colombier * The primary disadvantage of this method is that with fixed-point math, 297dd7cddfSDavid du Colombier * accuracy is lost due to imprecise representation of the scaled 307dd7cddfSDavid du Colombier * quantization values. The smaller the quantization table entry, the less 317dd7cddfSDavid du Colombier * precise the scaled value, so this implementation does worse with high- 327dd7cddfSDavid du Colombier * quality-setting files than with low-quality ones. 337dd7cddfSDavid du Colombier */ 347dd7cddfSDavid du Colombier 357dd7cddfSDavid du Colombier #define JPEG_INTERNALS 367dd7cddfSDavid du Colombier #include "jinclude.h" 377dd7cddfSDavid du Colombier #include "jpeglib.h" 387dd7cddfSDavid du Colombier #include "jdct.h" /* Private declarations for DCT subsystem */ 397dd7cddfSDavid du Colombier 407dd7cddfSDavid du Colombier #ifdef DCT_IFAST_SUPPORTED 417dd7cddfSDavid du Colombier 427dd7cddfSDavid du Colombier 437dd7cddfSDavid du Colombier /* 447dd7cddfSDavid du Colombier * This module is specialized to the case DCTSIZE = 8. 457dd7cddfSDavid du Colombier */ 467dd7cddfSDavid du Colombier 477dd7cddfSDavid du Colombier #if DCTSIZE != 8 487dd7cddfSDavid du Colombier Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 497dd7cddfSDavid du Colombier #endif 507dd7cddfSDavid du Colombier 517dd7cddfSDavid du Colombier 527dd7cddfSDavid du Colombier /* Scaling decisions are generally the same as in the LL&M algorithm; 537dd7cddfSDavid du Colombier * see jidctint.c for more details. However, we choose to descale 547dd7cddfSDavid du Colombier * (right shift) multiplication products as soon as they are formed, 557dd7cddfSDavid du Colombier * rather than carrying additional fractional bits into subsequent additions. 567dd7cddfSDavid du Colombier * This compromises accuracy slightly, but it lets us save a few shifts. 577dd7cddfSDavid du Colombier * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) 587dd7cddfSDavid du Colombier * everywhere except in the multiplications proper; this saves a good deal 597dd7cddfSDavid du Colombier * of work on 16-bit-int machines. 607dd7cddfSDavid du Colombier * 617dd7cddfSDavid du Colombier * The dequantized coefficients are not integers because the AA&N scaling 627dd7cddfSDavid du Colombier * factors have been incorporated. We represent them scaled up by PASS1_BITS, 637dd7cddfSDavid du Colombier * so that the first and second IDCT rounds have the same input scaling. 647dd7cddfSDavid du Colombier * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to 657dd7cddfSDavid du Colombier * avoid a descaling shift; this compromises accuracy rather drastically 667dd7cddfSDavid du Colombier * for small quantization table entries, but it saves a lot of shifts. 677dd7cddfSDavid du Colombier * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, 687dd7cddfSDavid du Colombier * so we use a much larger scaling factor to preserve accuracy. 697dd7cddfSDavid du Colombier * 707dd7cddfSDavid du Colombier * A final compromise is to represent the multiplicative constants to only 717dd7cddfSDavid du Colombier * 8 fractional bits, rather than 13. This saves some shifting work on some 727dd7cddfSDavid du Colombier * machines, and may also reduce the cost of multiplication (since there 737dd7cddfSDavid du Colombier * are fewer one-bits in the constants). 747dd7cddfSDavid du Colombier */ 757dd7cddfSDavid du Colombier 767dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8 777dd7cddfSDavid du Colombier #define CONST_BITS 8 787dd7cddfSDavid du Colombier #define PASS1_BITS 2 797dd7cddfSDavid du Colombier #else 807dd7cddfSDavid du Colombier #define CONST_BITS 8 817dd7cddfSDavid du Colombier #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ 827dd7cddfSDavid du Colombier #endif 837dd7cddfSDavid du Colombier 847dd7cddfSDavid du Colombier /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 857dd7cddfSDavid du Colombier * causing a lot of useless floating-point operations at run time. 867dd7cddfSDavid du Colombier * To get around this we use the following pre-calculated constants. 877dd7cddfSDavid du Colombier * If you change CONST_BITS you may want to add appropriate values. 887dd7cddfSDavid du Colombier * (With a reasonable C compiler, you can just rely on the FIX() macro...) 897dd7cddfSDavid du Colombier */ 907dd7cddfSDavid du Colombier 917dd7cddfSDavid du Colombier #if CONST_BITS == 8 927dd7cddfSDavid du Colombier #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ 937dd7cddfSDavid du Colombier #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ 947dd7cddfSDavid du Colombier #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ 957dd7cddfSDavid du Colombier #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ 967dd7cddfSDavid du Colombier #else 977dd7cddfSDavid du Colombier #define FIX_1_082392200 FIX(1.082392200) 987dd7cddfSDavid du Colombier #define FIX_1_414213562 FIX(1.414213562) 997dd7cddfSDavid du Colombier #define FIX_1_847759065 FIX(1.847759065) 1007dd7cddfSDavid du Colombier #define FIX_2_613125930 FIX(2.613125930) 1017dd7cddfSDavid du Colombier #endif 1027dd7cddfSDavid du Colombier 1037dd7cddfSDavid du Colombier 1047dd7cddfSDavid du Colombier /* We can gain a little more speed, with a further compromise in accuracy, 1057dd7cddfSDavid du Colombier * by omitting the addition in a descaling shift. This yields an incorrectly 1067dd7cddfSDavid du Colombier * rounded result half the time... 1077dd7cddfSDavid du Colombier */ 1087dd7cddfSDavid du Colombier 1097dd7cddfSDavid du Colombier #ifndef USE_ACCURATE_ROUNDING 1107dd7cddfSDavid du Colombier #undef DESCALE 1117dd7cddfSDavid du Colombier #define DESCALE(x,n) RIGHT_SHIFT(x, n) 1127dd7cddfSDavid du Colombier #endif 1137dd7cddfSDavid du Colombier 1147dd7cddfSDavid du Colombier 1157dd7cddfSDavid du Colombier /* Multiply a DCTELEM variable by an INT32 constant, and immediately 1167dd7cddfSDavid du Colombier * descale to yield a DCTELEM result. 1177dd7cddfSDavid du Colombier */ 1187dd7cddfSDavid du Colombier 1197dd7cddfSDavid du Colombier #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 1207dd7cddfSDavid du Colombier 1217dd7cddfSDavid du Colombier 1227dd7cddfSDavid du Colombier /* Dequantize a coefficient by multiplying it by the multiplier-table 1237dd7cddfSDavid du Colombier * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 1247dd7cddfSDavid du Colombier * multiplication will do. For 12-bit data, the multiplier table is 1257dd7cddfSDavid du Colombier * declared INT32, so a 32-bit multiply will be used. 1267dd7cddfSDavid du Colombier */ 1277dd7cddfSDavid du Colombier 1287dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8 1297dd7cddfSDavid du Colombier #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) 1307dd7cddfSDavid du Colombier #else 1317dd7cddfSDavid du Colombier #define DEQUANTIZE(coef,quantval) \ 1327dd7cddfSDavid du Colombier DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) 1337dd7cddfSDavid du Colombier #endif 1347dd7cddfSDavid du Colombier 1357dd7cddfSDavid du Colombier 1367dd7cddfSDavid du Colombier /* Like DESCALE, but applies to a DCTELEM and produces an int. 1377dd7cddfSDavid du Colombier * We assume that int right shift is unsigned if INT32 right shift is. 1387dd7cddfSDavid du Colombier */ 1397dd7cddfSDavid du Colombier 1407dd7cddfSDavid du Colombier #ifdef RIGHT_SHIFT_IS_UNSIGNED 1417dd7cddfSDavid du Colombier #define ISHIFT_TEMPS DCTELEM ishift_temp; 1427dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8 1437dd7cddfSDavid du Colombier #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ 1447dd7cddfSDavid du Colombier #else 1457dd7cddfSDavid du Colombier #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ 1467dd7cddfSDavid du Colombier #endif 1477dd7cddfSDavid du Colombier #define IRIGHT_SHIFT(x,shft) \ 1487dd7cddfSDavid du Colombier ((ishift_temp = (x)) < 0 ? \ 1497dd7cddfSDavid du Colombier (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ 1507dd7cddfSDavid du Colombier (ishift_temp >> (shft))) 1517dd7cddfSDavid du Colombier #else 1527dd7cddfSDavid du Colombier #define ISHIFT_TEMPS 1537dd7cddfSDavid du Colombier #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) 1547dd7cddfSDavid du Colombier #endif 1557dd7cddfSDavid du Colombier 1567dd7cddfSDavid du Colombier #ifdef USE_ACCURATE_ROUNDING 1577dd7cddfSDavid du Colombier #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) 1587dd7cddfSDavid du Colombier #else 1597dd7cddfSDavid du Colombier #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) 1607dd7cddfSDavid du Colombier #endif 1617dd7cddfSDavid du Colombier 1627dd7cddfSDavid du Colombier 1637dd7cddfSDavid du Colombier /* 1647dd7cddfSDavid du Colombier * Perform dequantization and inverse DCT on one block of coefficients. 1657dd7cddfSDavid du Colombier */ 1667dd7cddfSDavid du Colombier 1677dd7cddfSDavid du Colombier GLOBAL(void) 1687dd7cddfSDavid du Colombier jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, 1697dd7cddfSDavid du Colombier JCOEFPTR coef_block, 1707dd7cddfSDavid du Colombier JSAMPARRAY output_buf, JDIMENSION output_col) 1717dd7cddfSDavid du Colombier { 1727dd7cddfSDavid du Colombier DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 1737dd7cddfSDavid du Colombier DCTELEM tmp10, tmp11, tmp12, tmp13; 1747dd7cddfSDavid du Colombier DCTELEM z5, z10, z11, z12, z13; 1757dd7cddfSDavid du Colombier JCOEFPTR inptr; 1767dd7cddfSDavid du Colombier IFAST_MULT_TYPE * quantptr; 1777dd7cddfSDavid du Colombier int * wsptr; 1787dd7cddfSDavid du Colombier JSAMPROW outptr; 1797dd7cddfSDavid du Colombier JSAMPLE *range_limit = IDCT_range_limit(cinfo); 1807dd7cddfSDavid du Colombier int ctr; 1817dd7cddfSDavid du Colombier int workspace[DCTSIZE2]; /* buffers data between passes */ 1827dd7cddfSDavid du Colombier SHIFT_TEMPS /* for DESCALE */ 1837dd7cddfSDavid du Colombier ISHIFT_TEMPS /* for IDESCALE */ 1847dd7cddfSDavid du Colombier 1857dd7cddfSDavid du Colombier /* Pass 1: process columns from input, store into work array. */ 1867dd7cddfSDavid du Colombier 1877dd7cddfSDavid du Colombier inptr = coef_block; 1887dd7cddfSDavid du Colombier quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; 1897dd7cddfSDavid du Colombier wsptr = workspace; 1907dd7cddfSDavid du Colombier for (ctr = DCTSIZE; ctr > 0; ctr--) { 1917dd7cddfSDavid du Colombier /* Due to quantization, we will usually find that many of the input 1927dd7cddfSDavid du Colombier * coefficients are zero, especially the AC terms. We can exploit this 1937dd7cddfSDavid du Colombier * by short-circuiting the IDCT calculation for any column in which all 1947dd7cddfSDavid du Colombier * the AC terms are zero. In that case each output is equal to the 1957dd7cddfSDavid du Colombier * DC coefficient (with scale factor as needed). 1967dd7cddfSDavid du Colombier * With typical images and quantization tables, half or more of the 1977dd7cddfSDavid du Colombier * column DCT calculations can be simplified this way. 1987dd7cddfSDavid du Colombier */ 1997dd7cddfSDavid du Colombier 200*593dc095SDavid du Colombier if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && 201*593dc095SDavid du Colombier inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && 202*593dc095SDavid du Colombier inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && 203*593dc095SDavid du Colombier inptr[DCTSIZE*7] == 0) { 2047dd7cddfSDavid du Colombier /* AC terms all zero */ 2057dd7cddfSDavid du Colombier int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); 2067dd7cddfSDavid du Colombier 2077dd7cddfSDavid du Colombier wsptr[DCTSIZE*0] = dcval; 2087dd7cddfSDavid du Colombier wsptr[DCTSIZE*1] = dcval; 2097dd7cddfSDavid du Colombier wsptr[DCTSIZE*2] = dcval; 2107dd7cddfSDavid du Colombier wsptr[DCTSIZE*3] = dcval; 2117dd7cddfSDavid du Colombier wsptr[DCTSIZE*4] = dcval; 2127dd7cddfSDavid du Colombier wsptr[DCTSIZE*5] = dcval; 2137dd7cddfSDavid du Colombier wsptr[DCTSIZE*6] = dcval; 2147dd7cddfSDavid du Colombier wsptr[DCTSIZE*7] = dcval; 2157dd7cddfSDavid du Colombier 2167dd7cddfSDavid du Colombier inptr++; /* advance pointers to next column */ 2177dd7cddfSDavid du Colombier quantptr++; 2187dd7cddfSDavid du Colombier wsptr++; 2197dd7cddfSDavid du Colombier continue; 2207dd7cddfSDavid du Colombier } 2217dd7cddfSDavid du Colombier 2227dd7cddfSDavid du Colombier /* Even part */ 2237dd7cddfSDavid du Colombier 2247dd7cddfSDavid du Colombier tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); 2257dd7cddfSDavid du Colombier tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); 2267dd7cddfSDavid du Colombier tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); 2277dd7cddfSDavid du Colombier tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); 2287dd7cddfSDavid du Colombier 2297dd7cddfSDavid du Colombier tmp10 = tmp0 + tmp2; /* phase 3 */ 2307dd7cddfSDavid du Colombier tmp11 = tmp0 - tmp2; 2317dd7cddfSDavid du Colombier 2327dd7cddfSDavid du Colombier tmp13 = tmp1 + tmp3; /* phases 5-3 */ 2337dd7cddfSDavid du Colombier tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ 2347dd7cddfSDavid du Colombier 2357dd7cddfSDavid du Colombier tmp0 = tmp10 + tmp13; /* phase 2 */ 2367dd7cddfSDavid du Colombier tmp3 = tmp10 - tmp13; 2377dd7cddfSDavid du Colombier tmp1 = tmp11 + tmp12; 2387dd7cddfSDavid du Colombier tmp2 = tmp11 - tmp12; 2397dd7cddfSDavid du Colombier 2407dd7cddfSDavid du Colombier /* Odd part */ 2417dd7cddfSDavid du Colombier 2427dd7cddfSDavid du Colombier tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); 2437dd7cddfSDavid du Colombier tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); 2447dd7cddfSDavid du Colombier tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); 2457dd7cddfSDavid du Colombier tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); 2467dd7cddfSDavid du Colombier 2477dd7cddfSDavid du Colombier z13 = tmp6 + tmp5; /* phase 6 */ 2487dd7cddfSDavid du Colombier z10 = tmp6 - tmp5; 2497dd7cddfSDavid du Colombier z11 = tmp4 + tmp7; 2507dd7cddfSDavid du Colombier z12 = tmp4 - tmp7; 2517dd7cddfSDavid du Colombier 2527dd7cddfSDavid du Colombier tmp7 = z11 + z13; /* phase 5 */ 2537dd7cddfSDavid du Colombier tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ 2547dd7cddfSDavid du Colombier 2557dd7cddfSDavid du Colombier z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ 2567dd7cddfSDavid du Colombier tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ 2577dd7cddfSDavid du Colombier tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ 2587dd7cddfSDavid du Colombier 2597dd7cddfSDavid du Colombier tmp6 = tmp12 - tmp7; /* phase 2 */ 2607dd7cddfSDavid du Colombier tmp5 = tmp11 - tmp6; 2617dd7cddfSDavid du Colombier tmp4 = tmp10 + tmp5; 2627dd7cddfSDavid du Colombier 2637dd7cddfSDavid du Colombier wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); 2647dd7cddfSDavid du Colombier wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); 2657dd7cddfSDavid du Colombier wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); 2667dd7cddfSDavid du Colombier wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); 2677dd7cddfSDavid du Colombier wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); 2687dd7cddfSDavid du Colombier wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); 2697dd7cddfSDavid du Colombier wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); 2707dd7cddfSDavid du Colombier wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); 2717dd7cddfSDavid du Colombier 2727dd7cddfSDavid du Colombier inptr++; /* advance pointers to next column */ 2737dd7cddfSDavid du Colombier quantptr++; 2747dd7cddfSDavid du Colombier wsptr++; 2757dd7cddfSDavid du Colombier } 2767dd7cddfSDavid du Colombier 2777dd7cddfSDavid du Colombier /* Pass 2: process rows from work array, store into output array. */ 2787dd7cddfSDavid du Colombier /* Note that we must descale the results by a factor of 8 == 2**3, */ 2797dd7cddfSDavid du Colombier /* and also undo the PASS1_BITS scaling. */ 2807dd7cddfSDavid du Colombier 2817dd7cddfSDavid du Colombier wsptr = workspace; 2827dd7cddfSDavid du Colombier for (ctr = 0; ctr < DCTSIZE; ctr++) { 2837dd7cddfSDavid du Colombier outptr = output_buf[ctr] + output_col; 2847dd7cddfSDavid du Colombier /* Rows of zeroes can be exploited in the same way as we did with columns. 2857dd7cddfSDavid du Colombier * However, the column calculation has created many nonzero AC terms, so 2867dd7cddfSDavid du Colombier * the simplification applies less often (typically 5% to 10% of the time). 2877dd7cddfSDavid du Colombier * On machines with very fast multiplication, it's possible that the 2887dd7cddfSDavid du Colombier * test takes more time than it's worth. In that case this section 2897dd7cddfSDavid du Colombier * may be commented out. 2907dd7cddfSDavid du Colombier */ 2917dd7cddfSDavid du Colombier 2927dd7cddfSDavid du Colombier #ifndef NO_ZERO_ROW_TEST 293*593dc095SDavid du Colombier if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && 294*593dc095SDavid du Colombier wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { 2957dd7cddfSDavid du Colombier /* AC terms all zero */ 2967dd7cddfSDavid du Colombier JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) 2977dd7cddfSDavid du Colombier & RANGE_MASK]; 2987dd7cddfSDavid du Colombier 2997dd7cddfSDavid du Colombier outptr[0] = dcval; 3007dd7cddfSDavid du Colombier outptr[1] = dcval; 3017dd7cddfSDavid du Colombier outptr[2] = dcval; 3027dd7cddfSDavid du Colombier outptr[3] = dcval; 3037dd7cddfSDavid du Colombier outptr[4] = dcval; 3047dd7cddfSDavid du Colombier outptr[5] = dcval; 3057dd7cddfSDavid du Colombier outptr[6] = dcval; 3067dd7cddfSDavid du Colombier outptr[7] = dcval; 3077dd7cddfSDavid du Colombier 3087dd7cddfSDavid du Colombier wsptr += DCTSIZE; /* advance pointer to next row */ 3097dd7cddfSDavid du Colombier continue; 3107dd7cddfSDavid du Colombier } 3117dd7cddfSDavid du Colombier #endif 3127dd7cddfSDavid du Colombier 3137dd7cddfSDavid du Colombier /* Even part */ 3147dd7cddfSDavid du Colombier 3157dd7cddfSDavid du Colombier tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); 3167dd7cddfSDavid du Colombier tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); 3177dd7cddfSDavid du Colombier 3187dd7cddfSDavid du Colombier tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); 3197dd7cddfSDavid du Colombier tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) 3207dd7cddfSDavid du Colombier - tmp13; 3217dd7cddfSDavid du Colombier 3227dd7cddfSDavid du Colombier tmp0 = tmp10 + tmp13; 3237dd7cddfSDavid du Colombier tmp3 = tmp10 - tmp13; 3247dd7cddfSDavid du Colombier tmp1 = tmp11 + tmp12; 3257dd7cddfSDavid du Colombier tmp2 = tmp11 - tmp12; 3267dd7cddfSDavid du Colombier 3277dd7cddfSDavid du Colombier /* Odd part */ 3287dd7cddfSDavid du Colombier 3297dd7cddfSDavid du Colombier z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; 3307dd7cddfSDavid du Colombier z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; 3317dd7cddfSDavid du Colombier z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; 3327dd7cddfSDavid du Colombier z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; 3337dd7cddfSDavid du Colombier 3347dd7cddfSDavid du Colombier tmp7 = z11 + z13; /* phase 5 */ 3357dd7cddfSDavid du Colombier tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ 3367dd7cddfSDavid du Colombier 3377dd7cddfSDavid du Colombier z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ 3387dd7cddfSDavid du Colombier tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ 3397dd7cddfSDavid du Colombier tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ 3407dd7cddfSDavid du Colombier 3417dd7cddfSDavid du Colombier tmp6 = tmp12 - tmp7; /* phase 2 */ 3427dd7cddfSDavid du Colombier tmp5 = tmp11 - tmp6; 3437dd7cddfSDavid du Colombier tmp4 = tmp10 + tmp5; 3447dd7cddfSDavid du Colombier 3457dd7cddfSDavid du Colombier /* Final output stage: scale down by a factor of 8 and range-limit */ 3467dd7cddfSDavid du Colombier 3477dd7cddfSDavid du Colombier outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) 3487dd7cddfSDavid du Colombier & RANGE_MASK]; 3497dd7cddfSDavid du Colombier outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) 3507dd7cddfSDavid du Colombier & RANGE_MASK]; 3517dd7cddfSDavid du Colombier outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) 3527dd7cddfSDavid du Colombier & RANGE_MASK]; 3537dd7cddfSDavid du Colombier outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) 3547dd7cddfSDavid du Colombier & RANGE_MASK]; 3557dd7cddfSDavid du Colombier outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) 3567dd7cddfSDavid du Colombier & RANGE_MASK]; 3577dd7cddfSDavid du Colombier outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) 3587dd7cddfSDavid du Colombier & RANGE_MASK]; 3597dd7cddfSDavid du Colombier outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) 3607dd7cddfSDavid du Colombier & RANGE_MASK]; 3617dd7cddfSDavid du Colombier outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) 3627dd7cddfSDavid du Colombier & RANGE_MASK]; 3637dd7cddfSDavid du Colombier 3647dd7cddfSDavid du Colombier wsptr += DCTSIZE; /* advance pointer to next row */ 3657dd7cddfSDavid du Colombier } 3667dd7cddfSDavid du Colombier } 3677dd7cddfSDavid du Colombier 3687dd7cddfSDavid du Colombier #endif /* DCT_IFAST_SUPPORTED */ 369