xref: /plan9/sys/src/cmd/gs/jpeg/jidctfst.c (revision 593dc095aefb2a85c828727bbfa9da139a49bdf4)
17dd7cddfSDavid du Colombier /*
27dd7cddfSDavid du Colombier  * jidctfst.c
37dd7cddfSDavid du Colombier  *
4*593dc095SDavid du Colombier  * Copyright (C) 1994-1998, Thomas G. Lane.
57dd7cddfSDavid du Colombier  * This file is part of the Independent JPEG Group's software.
67dd7cddfSDavid du Colombier  * For conditions of distribution and use, see the accompanying README file.
77dd7cddfSDavid du Colombier  *
87dd7cddfSDavid du Colombier  * This file contains a fast, not so accurate integer implementation of the
97dd7cddfSDavid du Colombier  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
107dd7cddfSDavid du Colombier  * must also perform dequantization of the input coefficients.
117dd7cddfSDavid du Colombier  *
127dd7cddfSDavid du Colombier  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
137dd7cddfSDavid du Colombier  * on each row (or vice versa, but it's more convenient to emit a row at
147dd7cddfSDavid du Colombier  * a time).  Direct algorithms are also available, but they are much more
157dd7cddfSDavid du Colombier  * complex and seem not to be any faster when reduced to code.
167dd7cddfSDavid du Colombier  *
177dd7cddfSDavid du Colombier  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
187dd7cddfSDavid du Colombier  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
197dd7cddfSDavid du Colombier  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
207dd7cddfSDavid du Colombier  * JPEG textbook (see REFERENCES section in file README).  The following code
217dd7cddfSDavid du Colombier  * is based directly on figure 4-8 in P&M.
227dd7cddfSDavid du Colombier  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
237dd7cddfSDavid du Colombier  * possible to arrange the computation so that many of the multiplies are
247dd7cddfSDavid du Colombier  * simple scalings of the final outputs.  These multiplies can then be
257dd7cddfSDavid du Colombier  * folded into the multiplications or divisions by the JPEG quantization
267dd7cddfSDavid du Colombier  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
277dd7cddfSDavid du Colombier  * to be done in the DCT itself.
287dd7cddfSDavid du Colombier  * The primary disadvantage of this method is that with fixed-point math,
297dd7cddfSDavid du Colombier  * accuracy is lost due to imprecise representation of the scaled
307dd7cddfSDavid du Colombier  * quantization values.  The smaller the quantization table entry, the less
317dd7cddfSDavid du Colombier  * precise the scaled value, so this implementation does worse with high-
327dd7cddfSDavid du Colombier  * quality-setting files than with low-quality ones.
337dd7cddfSDavid du Colombier  */
347dd7cddfSDavid du Colombier 
357dd7cddfSDavid du Colombier #define JPEG_INTERNALS
367dd7cddfSDavid du Colombier #include "jinclude.h"
377dd7cddfSDavid du Colombier #include "jpeglib.h"
387dd7cddfSDavid du Colombier #include "jdct.h"		/* Private declarations for DCT subsystem */
397dd7cddfSDavid du Colombier 
407dd7cddfSDavid du Colombier #ifdef DCT_IFAST_SUPPORTED
417dd7cddfSDavid du Colombier 
427dd7cddfSDavid du Colombier 
437dd7cddfSDavid du Colombier /*
447dd7cddfSDavid du Colombier  * This module is specialized to the case DCTSIZE = 8.
457dd7cddfSDavid du Colombier  */
467dd7cddfSDavid du Colombier 
477dd7cddfSDavid du Colombier #if DCTSIZE != 8
487dd7cddfSDavid du Colombier   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
497dd7cddfSDavid du Colombier #endif
507dd7cddfSDavid du Colombier 
517dd7cddfSDavid du Colombier 
527dd7cddfSDavid du Colombier /* Scaling decisions are generally the same as in the LL&M algorithm;
537dd7cddfSDavid du Colombier  * see jidctint.c for more details.  However, we choose to descale
547dd7cddfSDavid du Colombier  * (right shift) multiplication products as soon as they are formed,
557dd7cddfSDavid du Colombier  * rather than carrying additional fractional bits into subsequent additions.
567dd7cddfSDavid du Colombier  * This compromises accuracy slightly, but it lets us save a few shifts.
577dd7cddfSDavid du Colombier  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
587dd7cddfSDavid du Colombier  * everywhere except in the multiplications proper; this saves a good deal
597dd7cddfSDavid du Colombier  * of work on 16-bit-int machines.
607dd7cddfSDavid du Colombier  *
617dd7cddfSDavid du Colombier  * The dequantized coefficients are not integers because the AA&N scaling
627dd7cddfSDavid du Colombier  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
637dd7cddfSDavid du Colombier  * so that the first and second IDCT rounds have the same input scaling.
647dd7cddfSDavid du Colombier  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
657dd7cddfSDavid du Colombier  * avoid a descaling shift; this compromises accuracy rather drastically
667dd7cddfSDavid du Colombier  * for small quantization table entries, but it saves a lot of shifts.
677dd7cddfSDavid du Colombier  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
687dd7cddfSDavid du Colombier  * so we use a much larger scaling factor to preserve accuracy.
697dd7cddfSDavid du Colombier  *
707dd7cddfSDavid du Colombier  * A final compromise is to represent the multiplicative constants to only
717dd7cddfSDavid du Colombier  * 8 fractional bits, rather than 13.  This saves some shifting work on some
727dd7cddfSDavid du Colombier  * machines, and may also reduce the cost of multiplication (since there
737dd7cddfSDavid du Colombier  * are fewer one-bits in the constants).
747dd7cddfSDavid du Colombier  */
757dd7cddfSDavid du Colombier 
767dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8
777dd7cddfSDavid du Colombier #define CONST_BITS  8
787dd7cddfSDavid du Colombier #define PASS1_BITS  2
797dd7cddfSDavid du Colombier #else
807dd7cddfSDavid du Colombier #define CONST_BITS  8
817dd7cddfSDavid du Colombier #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
827dd7cddfSDavid du Colombier #endif
837dd7cddfSDavid du Colombier 
847dd7cddfSDavid du Colombier /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
857dd7cddfSDavid du Colombier  * causing a lot of useless floating-point operations at run time.
867dd7cddfSDavid du Colombier  * To get around this we use the following pre-calculated constants.
877dd7cddfSDavid du Colombier  * If you change CONST_BITS you may want to add appropriate values.
887dd7cddfSDavid du Colombier  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
897dd7cddfSDavid du Colombier  */
907dd7cddfSDavid du Colombier 
917dd7cddfSDavid du Colombier #if CONST_BITS == 8
927dd7cddfSDavid du Colombier #define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
937dd7cddfSDavid du Colombier #define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
947dd7cddfSDavid du Colombier #define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
957dd7cddfSDavid du Colombier #define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
967dd7cddfSDavid du Colombier #else
977dd7cddfSDavid du Colombier #define FIX_1_082392200  FIX(1.082392200)
987dd7cddfSDavid du Colombier #define FIX_1_414213562  FIX(1.414213562)
997dd7cddfSDavid du Colombier #define FIX_1_847759065  FIX(1.847759065)
1007dd7cddfSDavid du Colombier #define FIX_2_613125930  FIX(2.613125930)
1017dd7cddfSDavid du Colombier #endif
1027dd7cddfSDavid du Colombier 
1037dd7cddfSDavid du Colombier 
1047dd7cddfSDavid du Colombier /* We can gain a little more speed, with a further compromise in accuracy,
1057dd7cddfSDavid du Colombier  * by omitting the addition in a descaling shift.  This yields an incorrectly
1067dd7cddfSDavid du Colombier  * rounded result half the time...
1077dd7cddfSDavid du Colombier  */
1087dd7cddfSDavid du Colombier 
1097dd7cddfSDavid du Colombier #ifndef USE_ACCURATE_ROUNDING
1107dd7cddfSDavid du Colombier #undef DESCALE
1117dd7cddfSDavid du Colombier #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
1127dd7cddfSDavid du Colombier #endif
1137dd7cddfSDavid du Colombier 
1147dd7cddfSDavid du Colombier 
1157dd7cddfSDavid du Colombier /* Multiply a DCTELEM variable by an INT32 constant, and immediately
1167dd7cddfSDavid du Colombier  * descale to yield a DCTELEM result.
1177dd7cddfSDavid du Colombier  */
1187dd7cddfSDavid du Colombier 
1197dd7cddfSDavid du Colombier #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
1207dd7cddfSDavid du Colombier 
1217dd7cddfSDavid du Colombier 
1227dd7cddfSDavid du Colombier /* Dequantize a coefficient by multiplying it by the multiplier-table
1237dd7cddfSDavid du Colombier  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
1247dd7cddfSDavid du Colombier  * multiplication will do.  For 12-bit data, the multiplier table is
1257dd7cddfSDavid du Colombier  * declared INT32, so a 32-bit multiply will be used.
1267dd7cddfSDavid du Colombier  */
1277dd7cddfSDavid du Colombier 
1287dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8
1297dd7cddfSDavid du Colombier #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
1307dd7cddfSDavid du Colombier #else
1317dd7cddfSDavid du Colombier #define DEQUANTIZE(coef,quantval)  \
1327dd7cddfSDavid du Colombier 	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
1337dd7cddfSDavid du Colombier #endif
1347dd7cddfSDavid du Colombier 
1357dd7cddfSDavid du Colombier 
1367dd7cddfSDavid du Colombier /* Like DESCALE, but applies to a DCTELEM and produces an int.
1377dd7cddfSDavid du Colombier  * We assume that int right shift is unsigned if INT32 right shift is.
1387dd7cddfSDavid du Colombier  */
1397dd7cddfSDavid du Colombier 
1407dd7cddfSDavid du Colombier #ifdef RIGHT_SHIFT_IS_UNSIGNED
1417dd7cddfSDavid du Colombier #define ISHIFT_TEMPS	DCTELEM ishift_temp;
1427dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8
1437dd7cddfSDavid du Colombier #define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
1447dd7cddfSDavid du Colombier #else
1457dd7cddfSDavid du Colombier #define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
1467dd7cddfSDavid du Colombier #endif
1477dd7cddfSDavid du Colombier #define IRIGHT_SHIFT(x,shft)  \
1487dd7cddfSDavid du Colombier     ((ishift_temp = (x)) < 0 ? \
1497dd7cddfSDavid du Colombier      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
1507dd7cddfSDavid du Colombier      (ishift_temp >> (shft)))
1517dd7cddfSDavid du Colombier #else
1527dd7cddfSDavid du Colombier #define ISHIFT_TEMPS
1537dd7cddfSDavid du Colombier #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
1547dd7cddfSDavid du Colombier #endif
1557dd7cddfSDavid du Colombier 
1567dd7cddfSDavid du Colombier #ifdef USE_ACCURATE_ROUNDING
1577dd7cddfSDavid du Colombier #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
1587dd7cddfSDavid du Colombier #else
1597dd7cddfSDavid du Colombier #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
1607dd7cddfSDavid du Colombier #endif
1617dd7cddfSDavid du Colombier 
1627dd7cddfSDavid du Colombier 
1637dd7cddfSDavid du Colombier /*
1647dd7cddfSDavid du Colombier  * Perform dequantization and inverse DCT on one block of coefficients.
1657dd7cddfSDavid du Colombier  */
1667dd7cddfSDavid du Colombier 
1677dd7cddfSDavid du Colombier GLOBAL(void)
1687dd7cddfSDavid du Colombier jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
1697dd7cddfSDavid du Colombier 		 JCOEFPTR coef_block,
1707dd7cddfSDavid du Colombier 		 JSAMPARRAY output_buf, JDIMENSION output_col)
1717dd7cddfSDavid du Colombier {
1727dd7cddfSDavid du Colombier   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
1737dd7cddfSDavid du Colombier   DCTELEM tmp10, tmp11, tmp12, tmp13;
1747dd7cddfSDavid du Colombier   DCTELEM z5, z10, z11, z12, z13;
1757dd7cddfSDavid du Colombier   JCOEFPTR inptr;
1767dd7cddfSDavid du Colombier   IFAST_MULT_TYPE * quantptr;
1777dd7cddfSDavid du Colombier   int * wsptr;
1787dd7cddfSDavid du Colombier   JSAMPROW outptr;
1797dd7cddfSDavid du Colombier   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
1807dd7cddfSDavid du Colombier   int ctr;
1817dd7cddfSDavid du Colombier   int workspace[DCTSIZE2];	/* buffers data between passes */
1827dd7cddfSDavid du Colombier   SHIFT_TEMPS			/* for DESCALE */
1837dd7cddfSDavid du Colombier   ISHIFT_TEMPS			/* for IDESCALE */
1847dd7cddfSDavid du Colombier 
1857dd7cddfSDavid du Colombier   /* Pass 1: process columns from input, store into work array. */
1867dd7cddfSDavid du Colombier 
1877dd7cddfSDavid du Colombier   inptr = coef_block;
1887dd7cddfSDavid du Colombier   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
1897dd7cddfSDavid du Colombier   wsptr = workspace;
1907dd7cddfSDavid du Colombier   for (ctr = DCTSIZE; ctr > 0; ctr--) {
1917dd7cddfSDavid du Colombier     /* Due to quantization, we will usually find that many of the input
1927dd7cddfSDavid du Colombier      * coefficients are zero, especially the AC terms.  We can exploit this
1937dd7cddfSDavid du Colombier      * by short-circuiting the IDCT calculation for any column in which all
1947dd7cddfSDavid du Colombier      * the AC terms are zero.  In that case each output is equal to the
1957dd7cddfSDavid du Colombier      * DC coefficient (with scale factor as needed).
1967dd7cddfSDavid du Colombier      * With typical images and quantization tables, half or more of the
1977dd7cddfSDavid du Colombier      * column DCT calculations can be simplified this way.
1987dd7cddfSDavid du Colombier      */
1997dd7cddfSDavid du Colombier 
200*593dc095SDavid du Colombier     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
201*593dc095SDavid du Colombier 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
202*593dc095SDavid du Colombier 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
203*593dc095SDavid du Colombier 	inptr[DCTSIZE*7] == 0) {
2047dd7cddfSDavid du Colombier       /* AC terms all zero */
2057dd7cddfSDavid du Colombier       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
2067dd7cddfSDavid du Colombier 
2077dd7cddfSDavid du Colombier       wsptr[DCTSIZE*0] = dcval;
2087dd7cddfSDavid du Colombier       wsptr[DCTSIZE*1] = dcval;
2097dd7cddfSDavid du Colombier       wsptr[DCTSIZE*2] = dcval;
2107dd7cddfSDavid du Colombier       wsptr[DCTSIZE*3] = dcval;
2117dd7cddfSDavid du Colombier       wsptr[DCTSIZE*4] = dcval;
2127dd7cddfSDavid du Colombier       wsptr[DCTSIZE*5] = dcval;
2137dd7cddfSDavid du Colombier       wsptr[DCTSIZE*6] = dcval;
2147dd7cddfSDavid du Colombier       wsptr[DCTSIZE*7] = dcval;
2157dd7cddfSDavid du Colombier 
2167dd7cddfSDavid du Colombier       inptr++;			/* advance pointers to next column */
2177dd7cddfSDavid du Colombier       quantptr++;
2187dd7cddfSDavid du Colombier       wsptr++;
2197dd7cddfSDavid du Colombier       continue;
2207dd7cddfSDavid du Colombier     }
2217dd7cddfSDavid du Colombier 
2227dd7cddfSDavid du Colombier     /* Even part */
2237dd7cddfSDavid du Colombier 
2247dd7cddfSDavid du Colombier     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
2257dd7cddfSDavid du Colombier     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
2267dd7cddfSDavid du Colombier     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
2277dd7cddfSDavid du Colombier     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
2287dd7cddfSDavid du Colombier 
2297dd7cddfSDavid du Colombier     tmp10 = tmp0 + tmp2;	/* phase 3 */
2307dd7cddfSDavid du Colombier     tmp11 = tmp0 - tmp2;
2317dd7cddfSDavid du Colombier 
2327dd7cddfSDavid du Colombier     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
2337dd7cddfSDavid du Colombier     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
2347dd7cddfSDavid du Colombier 
2357dd7cddfSDavid du Colombier     tmp0 = tmp10 + tmp13;	/* phase 2 */
2367dd7cddfSDavid du Colombier     tmp3 = tmp10 - tmp13;
2377dd7cddfSDavid du Colombier     tmp1 = tmp11 + tmp12;
2387dd7cddfSDavid du Colombier     tmp2 = tmp11 - tmp12;
2397dd7cddfSDavid du Colombier 
2407dd7cddfSDavid du Colombier     /* Odd part */
2417dd7cddfSDavid du Colombier 
2427dd7cddfSDavid du Colombier     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
2437dd7cddfSDavid du Colombier     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
2447dd7cddfSDavid du Colombier     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
2457dd7cddfSDavid du Colombier     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
2467dd7cddfSDavid du Colombier 
2477dd7cddfSDavid du Colombier     z13 = tmp6 + tmp5;		/* phase 6 */
2487dd7cddfSDavid du Colombier     z10 = tmp6 - tmp5;
2497dd7cddfSDavid du Colombier     z11 = tmp4 + tmp7;
2507dd7cddfSDavid du Colombier     z12 = tmp4 - tmp7;
2517dd7cddfSDavid du Colombier 
2527dd7cddfSDavid du Colombier     tmp7 = z11 + z13;		/* phase 5 */
2537dd7cddfSDavid du Colombier     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
2547dd7cddfSDavid du Colombier 
2557dd7cddfSDavid du Colombier     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
2567dd7cddfSDavid du Colombier     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
2577dd7cddfSDavid du Colombier     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
2587dd7cddfSDavid du Colombier 
2597dd7cddfSDavid du Colombier     tmp6 = tmp12 - tmp7;	/* phase 2 */
2607dd7cddfSDavid du Colombier     tmp5 = tmp11 - tmp6;
2617dd7cddfSDavid du Colombier     tmp4 = tmp10 + tmp5;
2627dd7cddfSDavid du Colombier 
2637dd7cddfSDavid du Colombier     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
2647dd7cddfSDavid du Colombier     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
2657dd7cddfSDavid du Colombier     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
2667dd7cddfSDavid du Colombier     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
2677dd7cddfSDavid du Colombier     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
2687dd7cddfSDavid du Colombier     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
2697dd7cddfSDavid du Colombier     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
2707dd7cddfSDavid du Colombier     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
2717dd7cddfSDavid du Colombier 
2727dd7cddfSDavid du Colombier     inptr++;			/* advance pointers to next column */
2737dd7cddfSDavid du Colombier     quantptr++;
2747dd7cddfSDavid du Colombier     wsptr++;
2757dd7cddfSDavid du Colombier   }
2767dd7cddfSDavid du Colombier 
2777dd7cddfSDavid du Colombier   /* Pass 2: process rows from work array, store into output array. */
2787dd7cddfSDavid du Colombier   /* Note that we must descale the results by a factor of 8 == 2**3, */
2797dd7cddfSDavid du Colombier   /* and also undo the PASS1_BITS scaling. */
2807dd7cddfSDavid du Colombier 
2817dd7cddfSDavid du Colombier   wsptr = workspace;
2827dd7cddfSDavid du Colombier   for (ctr = 0; ctr < DCTSIZE; ctr++) {
2837dd7cddfSDavid du Colombier     outptr = output_buf[ctr] + output_col;
2847dd7cddfSDavid du Colombier     /* Rows of zeroes can be exploited in the same way as we did with columns.
2857dd7cddfSDavid du Colombier      * However, the column calculation has created many nonzero AC terms, so
2867dd7cddfSDavid du Colombier      * the simplification applies less often (typically 5% to 10% of the time).
2877dd7cddfSDavid du Colombier      * On machines with very fast multiplication, it's possible that the
2887dd7cddfSDavid du Colombier      * test takes more time than it's worth.  In that case this section
2897dd7cddfSDavid du Colombier      * may be commented out.
2907dd7cddfSDavid du Colombier      */
2917dd7cddfSDavid du Colombier 
2927dd7cddfSDavid du Colombier #ifndef NO_ZERO_ROW_TEST
293*593dc095SDavid du Colombier     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
294*593dc095SDavid du Colombier 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
2957dd7cddfSDavid du Colombier       /* AC terms all zero */
2967dd7cddfSDavid du Colombier       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
2977dd7cddfSDavid du Colombier 				  & RANGE_MASK];
2987dd7cddfSDavid du Colombier 
2997dd7cddfSDavid du Colombier       outptr[0] = dcval;
3007dd7cddfSDavid du Colombier       outptr[1] = dcval;
3017dd7cddfSDavid du Colombier       outptr[2] = dcval;
3027dd7cddfSDavid du Colombier       outptr[3] = dcval;
3037dd7cddfSDavid du Colombier       outptr[4] = dcval;
3047dd7cddfSDavid du Colombier       outptr[5] = dcval;
3057dd7cddfSDavid du Colombier       outptr[6] = dcval;
3067dd7cddfSDavid du Colombier       outptr[7] = dcval;
3077dd7cddfSDavid du Colombier 
3087dd7cddfSDavid du Colombier       wsptr += DCTSIZE;		/* advance pointer to next row */
3097dd7cddfSDavid du Colombier       continue;
3107dd7cddfSDavid du Colombier     }
3117dd7cddfSDavid du Colombier #endif
3127dd7cddfSDavid du Colombier 
3137dd7cddfSDavid du Colombier     /* Even part */
3147dd7cddfSDavid du Colombier 
3157dd7cddfSDavid du Colombier     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
3167dd7cddfSDavid du Colombier     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
3177dd7cddfSDavid du Colombier 
3187dd7cddfSDavid du Colombier     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
3197dd7cddfSDavid du Colombier     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
3207dd7cddfSDavid du Colombier 	    - tmp13;
3217dd7cddfSDavid du Colombier 
3227dd7cddfSDavid du Colombier     tmp0 = tmp10 + tmp13;
3237dd7cddfSDavid du Colombier     tmp3 = tmp10 - tmp13;
3247dd7cddfSDavid du Colombier     tmp1 = tmp11 + tmp12;
3257dd7cddfSDavid du Colombier     tmp2 = tmp11 - tmp12;
3267dd7cddfSDavid du Colombier 
3277dd7cddfSDavid du Colombier     /* Odd part */
3287dd7cddfSDavid du Colombier 
3297dd7cddfSDavid du Colombier     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
3307dd7cddfSDavid du Colombier     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
3317dd7cddfSDavid du Colombier     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
3327dd7cddfSDavid du Colombier     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
3337dd7cddfSDavid du Colombier 
3347dd7cddfSDavid du Colombier     tmp7 = z11 + z13;		/* phase 5 */
3357dd7cddfSDavid du Colombier     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
3367dd7cddfSDavid du Colombier 
3377dd7cddfSDavid du Colombier     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
3387dd7cddfSDavid du Colombier     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
3397dd7cddfSDavid du Colombier     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
3407dd7cddfSDavid du Colombier 
3417dd7cddfSDavid du Colombier     tmp6 = tmp12 - tmp7;	/* phase 2 */
3427dd7cddfSDavid du Colombier     tmp5 = tmp11 - tmp6;
3437dd7cddfSDavid du Colombier     tmp4 = tmp10 + tmp5;
3447dd7cddfSDavid du Colombier 
3457dd7cddfSDavid du Colombier     /* Final output stage: scale down by a factor of 8 and range-limit */
3467dd7cddfSDavid du Colombier 
3477dd7cddfSDavid du Colombier     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
3487dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3497dd7cddfSDavid du Colombier     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
3507dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3517dd7cddfSDavid du Colombier     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
3527dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3537dd7cddfSDavid du Colombier     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
3547dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3557dd7cddfSDavid du Colombier     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
3567dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3577dd7cddfSDavid du Colombier     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
3587dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3597dd7cddfSDavid du Colombier     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
3607dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3617dd7cddfSDavid du Colombier     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
3627dd7cddfSDavid du Colombier 			    & RANGE_MASK];
3637dd7cddfSDavid du Colombier 
3647dd7cddfSDavid du Colombier     wsptr += DCTSIZE;		/* advance pointer to next row */
3657dd7cddfSDavid du Colombier   }
3667dd7cddfSDavid du Colombier }
3677dd7cddfSDavid du Colombier 
3687dd7cddfSDavid du Colombier #endif /* DCT_IFAST_SUPPORTED */
369