xref: /plan9/sys/src/cmd/gs/jpeg/jidctflt.c (revision 593dc095aefb2a85c828727bbfa9da139a49bdf4)
17dd7cddfSDavid du Colombier /*
27dd7cddfSDavid du Colombier  * jidctflt.c
37dd7cddfSDavid du Colombier  *
4*593dc095SDavid du Colombier  * Copyright (C) 1994-1998, Thomas G. Lane.
57dd7cddfSDavid du Colombier  * This file is part of the Independent JPEG Group's software.
67dd7cddfSDavid du Colombier  * For conditions of distribution and use, see the accompanying README file.
77dd7cddfSDavid du Colombier  *
87dd7cddfSDavid du Colombier  * This file contains a floating-point implementation of the
97dd7cddfSDavid du Colombier  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
107dd7cddfSDavid du Colombier  * must also perform dequantization of the input coefficients.
117dd7cddfSDavid du Colombier  *
127dd7cddfSDavid du Colombier  * This implementation should be more accurate than either of the integer
137dd7cddfSDavid du Colombier  * IDCT implementations.  However, it may not give the same results on all
147dd7cddfSDavid du Colombier  * machines because of differences in roundoff behavior.  Speed will depend
157dd7cddfSDavid du Colombier  * on the hardware's floating point capacity.
167dd7cddfSDavid du Colombier  *
177dd7cddfSDavid du Colombier  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
187dd7cddfSDavid du Colombier  * on each row (or vice versa, but it's more convenient to emit a row at
197dd7cddfSDavid du Colombier  * a time).  Direct algorithms are also available, but they are much more
207dd7cddfSDavid du Colombier  * complex and seem not to be any faster when reduced to code.
217dd7cddfSDavid du Colombier  *
227dd7cddfSDavid du Colombier  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
237dd7cddfSDavid du Colombier  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
247dd7cddfSDavid du Colombier  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
257dd7cddfSDavid du Colombier  * JPEG textbook (see REFERENCES section in file README).  The following code
267dd7cddfSDavid du Colombier  * is based directly on figure 4-8 in P&M.
277dd7cddfSDavid du Colombier  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
287dd7cddfSDavid du Colombier  * possible to arrange the computation so that many of the multiplies are
297dd7cddfSDavid du Colombier  * simple scalings of the final outputs.  These multiplies can then be
307dd7cddfSDavid du Colombier  * folded into the multiplications or divisions by the JPEG quantization
317dd7cddfSDavid du Colombier  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
327dd7cddfSDavid du Colombier  * to be done in the DCT itself.
337dd7cddfSDavid du Colombier  * The primary disadvantage of this method is that with a fixed-point
347dd7cddfSDavid du Colombier  * implementation, accuracy is lost due to imprecise representation of the
357dd7cddfSDavid du Colombier  * scaled quantization values.  However, that problem does not arise if
367dd7cddfSDavid du Colombier  * we use floating point arithmetic.
377dd7cddfSDavid du Colombier  */
387dd7cddfSDavid du Colombier 
397dd7cddfSDavid du Colombier #define JPEG_INTERNALS
407dd7cddfSDavid du Colombier #include "jinclude.h"
417dd7cddfSDavid du Colombier #include "jpeglib.h"
427dd7cddfSDavid du Colombier #include "jdct.h"		/* Private declarations for DCT subsystem */
437dd7cddfSDavid du Colombier 
447dd7cddfSDavid du Colombier #ifdef DCT_FLOAT_SUPPORTED
457dd7cddfSDavid du Colombier 
467dd7cddfSDavid du Colombier 
477dd7cddfSDavid du Colombier /*
487dd7cddfSDavid du Colombier  * This module is specialized to the case DCTSIZE = 8.
497dd7cddfSDavid du Colombier  */
507dd7cddfSDavid du Colombier 
517dd7cddfSDavid du Colombier #if DCTSIZE != 8
527dd7cddfSDavid du Colombier   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
537dd7cddfSDavid du Colombier #endif
547dd7cddfSDavid du Colombier 
557dd7cddfSDavid du Colombier 
567dd7cddfSDavid du Colombier /* Dequantize a coefficient by multiplying it by the multiplier-table
577dd7cddfSDavid du Colombier  * entry; produce a float result.
587dd7cddfSDavid du Colombier  */
597dd7cddfSDavid du Colombier 
607dd7cddfSDavid du Colombier #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
617dd7cddfSDavid du Colombier 
627dd7cddfSDavid du Colombier 
637dd7cddfSDavid du Colombier /*
647dd7cddfSDavid du Colombier  * Perform dequantization and inverse DCT on one block of coefficients.
657dd7cddfSDavid du Colombier  */
667dd7cddfSDavid du Colombier 
677dd7cddfSDavid du Colombier GLOBAL(void)
687dd7cddfSDavid du Colombier jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
697dd7cddfSDavid du Colombier 		 JCOEFPTR coef_block,
707dd7cddfSDavid du Colombier 		 JSAMPARRAY output_buf, JDIMENSION output_col)
717dd7cddfSDavid du Colombier {
727dd7cddfSDavid du Colombier   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
737dd7cddfSDavid du Colombier   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
747dd7cddfSDavid du Colombier   FAST_FLOAT z5, z10, z11, z12, z13;
757dd7cddfSDavid du Colombier   JCOEFPTR inptr;
767dd7cddfSDavid du Colombier   FLOAT_MULT_TYPE * quantptr;
777dd7cddfSDavid du Colombier   FAST_FLOAT * wsptr;
787dd7cddfSDavid du Colombier   JSAMPROW outptr;
797dd7cddfSDavid du Colombier   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
807dd7cddfSDavid du Colombier   int ctr;
817dd7cddfSDavid du Colombier   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
827dd7cddfSDavid du Colombier   SHIFT_TEMPS
837dd7cddfSDavid du Colombier 
847dd7cddfSDavid du Colombier   /* Pass 1: process columns from input, store into work array. */
857dd7cddfSDavid du Colombier 
867dd7cddfSDavid du Colombier   inptr = coef_block;
877dd7cddfSDavid du Colombier   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
887dd7cddfSDavid du Colombier   wsptr = workspace;
897dd7cddfSDavid du Colombier   for (ctr = DCTSIZE; ctr > 0; ctr--) {
907dd7cddfSDavid du Colombier     /* Due to quantization, we will usually find that many of the input
917dd7cddfSDavid du Colombier      * coefficients are zero, especially the AC terms.  We can exploit this
927dd7cddfSDavid du Colombier      * by short-circuiting the IDCT calculation for any column in which all
937dd7cddfSDavid du Colombier      * the AC terms are zero.  In that case each output is equal to the
947dd7cddfSDavid du Colombier      * DC coefficient (with scale factor as needed).
957dd7cddfSDavid du Colombier      * With typical images and quantization tables, half or more of the
967dd7cddfSDavid du Colombier      * column DCT calculations can be simplified this way.
977dd7cddfSDavid du Colombier      */
987dd7cddfSDavid du Colombier 
99*593dc095SDavid du Colombier     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
100*593dc095SDavid du Colombier 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
101*593dc095SDavid du Colombier 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
102*593dc095SDavid du Colombier 	inptr[DCTSIZE*7] == 0) {
1037dd7cddfSDavid du Colombier       /* AC terms all zero */
1047dd7cddfSDavid du Colombier       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
1057dd7cddfSDavid du Colombier 
1067dd7cddfSDavid du Colombier       wsptr[DCTSIZE*0] = dcval;
1077dd7cddfSDavid du Colombier       wsptr[DCTSIZE*1] = dcval;
1087dd7cddfSDavid du Colombier       wsptr[DCTSIZE*2] = dcval;
1097dd7cddfSDavid du Colombier       wsptr[DCTSIZE*3] = dcval;
1107dd7cddfSDavid du Colombier       wsptr[DCTSIZE*4] = dcval;
1117dd7cddfSDavid du Colombier       wsptr[DCTSIZE*5] = dcval;
1127dd7cddfSDavid du Colombier       wsptr[DCTSIZE*6] = dcval;
1137dd7cddfSDavid du Colombier       wsptr[DCTSIZE*7] = dcval;
1147dd7cddfSDavid du Colombier 
1157dd7cddfSDavid du Colombier       inptr++;			/* advance pointers to next column */
1167dd7cddfSDavid du Colombier       quantptr++;
1177dd7cddfSDavid du Colombier       wsptr++;
1187dd7cddfSDavid du Colombier       continue;
1197dd7cddfSDavid du Colombier     }
1207dd7cddfSDavid du Colombier 
1217dd7cddfSDavid du Colombier     /* Even part */
1227dd7cddfSDavid du Colombier 
1237dd7cddfSDavid du Colombier     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
1247dd7cddfSDavid du Colombier     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
1257dd7cddfSDavid du Colombier     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
1267dd7cddfSDavid du Colombier     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
1277dd7cddfSDavid du Colombier 
1287dd7cddfSDavid du Colombier     tmp10 = tmp0 + tmp2;	/* phase 3 */
1297dd7cddfSDavid du Colombier     tmp11 = tmp0 - tmp2;
1307dd7cddfSDavid du Colombier 
1317dd7cddfSDavid du Colombier     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
1327dd7cddfSDavid du Colombier     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
1337dd7cddfSDavid du Colombier 
1347dd7cddfSDavid du Colombier     tmp0 = tmp10 + tmp13;	/* phase 2 */
1357dd7cddfSDavid du Colombier     tmp3 = tmp10 - tmp13;
1367dd7cddfSDavid du Colombier     tmp1 = tmp11 + tmp12;
1377dd7cddfSDavid du Colombier     tmp2 = tmp11 - tmp12;
1387dd7cddfSDavid du Colombier 
1397dd7cddfSDavid du Colombier     /* Odd part */
1407dd7cddfSDavid du Colombier 
1417dd7cddfSDavid du Colombier     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
1427dd7cddfSDavid du Colombier     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
1437dd7cddfSDavid du Colombier     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
1447dd7cddfSDavid du Colombier     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
1457dd7cddfSDavid du Colombier 
1467dd7cddfSDavid du Colombier     z13 = tmp6 + tmp5;		/* phase 6 */
1477dd7cddfSDavid du Colombier     z10 = tmp6 - tmp5;
1487dd7cddfSDavid du Colombier     z11 = tmp4 + tmp7;
1497dd7cddfSDavid du Colombier     z12 = tmp4 - tmp7;
1507dd7cddfSDavid du Colombier 
1517dd7cddfSDavid du Colombier     tmp7 = z11 + z13;		/* phase 5 */
1527dd7cddfSDavid du Colombier     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
1537dd7cddfSDavid du Colombier 
1547dd7cddfSDavid du Colombier     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
1557dd7cddfSDavid du Colombier     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
1567dd7cddfSDavid du Colombier     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
1577dd7cddfSDavid du Colombier 
1587dd7cddfSDavid du Colombier     tmp6 = tmp12 - tmp7;	/* phase 2 */
1597dd7cddfSDavid du Colombier     tmp5 = tmp11 - tmp6;
1607dd7cddfSDavid du Colombier     tmp4 = tmp10 + tmp5;
1617dd7cddfSDavid du Colombier 
1627dd7cddfSDavid du Colombier     wsptr[DCTSIZE*0] = tmp0 + tmp7;
1637dd7cddfSDavid du Colombier     wsptr[DCTSIZE*7] = tmp0 - tmp7;
1647dd7cddfSDavid du Colombier     wsptr[DCTSIZE*1] = tmp1 + tmp6;
1657dd7cddfSDavid du Colombier     wsptr[DCTSIZE*6] = tmp1 - tmp6;
1667dd7cddfSDavid du Colombier     wsptr[DCTSIZE*2] = tmp2 + tmp5;
1677dd7cddfSDavid du Colombier     wsptr[DCTSIZE*5] = tmp2 - tmp5;
1687dd7cddfSDavid du Colombier     wsptr[DCTSIZE*4] = tmp3 + tmp4;
1697dd7cddfSDavid du Colombier     wsptr[DCTSIZE*3] = tmp3 - tmp4;
1707dd7cddfSDavid du Colombier 
1717dd7cddfSDavid du Colombier     inptr++;			/* advance pointers to next column */
1727dd7cddfSDavid du Colombier     quantptr++;
1737dd7cddfSDavid du Colombier     wsptr++;
1747dd7cddfSDavid du Colombier   }
1757dd7cddfSDavid du Colombier 
1767dd7cddfSDavid du Colombier   /* Pass 2: process rows from work array, store into output array. */
1777dd7cddfSDavid du Colombier   /* Note that we must descale the results by a factor of 8 == 2**3. */
1787dd7cddfSDavid du Colombier 
1797dd7cddfSDavid du Colombier   wsptr = workspace;
1807dd7cddfSDavid du Colombier   for (ctr = 0; ctr < DCTSIZE; ctr++) {
1817dd7cddfSDavid du Colombier     outptr = output_buf[ctr] + output_col;
1827dd7cddfSDavid du Colombier     /* Rows of zeroes can be exploited in the same way as we did with columns.
1837dd7cddfSDavid du Colombier      * However, the column calculation has created many nonzero AC terms, so
1847dd7cddfSDavid du Colombier      * the simplification applies less often (typically 5% to 10% of the time).
1857dd7cddfSDavid du Colombier      * And testing floats for zero is relatively expensive, so we don't bother.
1867dd7cddfSDavid du Colombier      */
1877dd7cddfSDavid du Colombier 
1887dd7cddfSDavid du Colombier     /* Even part */
1897dd7cddfSDavid du Colombier 
1907dd7cddfSDavid du Colombier     tmp10 = wsptr[0] + wsptr[4];
1917dd7cddfSDavid du Colombier     tmp11 = wsptr[0] - wsptr[4];
1927dd7cddfSDavid du Colombier 
1937dd7cddfSDavid du Colombier     tmp13 = wsptr[2] + wsptr[6];
1947dd7cddfSDavid du Colombier     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
1957dd7cddfSDavid du Colombier 
1967dd7cddfSDavid du Colombier     tmp0 = tmp10 + tmp13;
1977dd7cddfSDavid du Colombier     tmp3 = tmp10 - tmp13;
1987dd7cddfSDavid du Colombier     tmp1 = tmp11 + tmp12;
1997dd7cddfSDavid du Colombier     tmp2 = tmp11 - tmp12;
2007dd7cddfSDavid du Colombier 
2017dd7cddfSDavid du Colombier     /* Odd part */
2027dd7cddfSDavid du Colombier 
2037dd7cddfSDavid du Colombier     z13 = wsptr[5] + wsptr[3];
2047dd7cddfSDavid du Colombier     z10 = wsptr[5] - wsptr[3];
2057dd7cddfSDavid du Colombier     z11 = wsptr[1] + wsptr[7];
2067dd7cddfSDavid du Colombier     z12 = wsptr[1] - wsptr[7];
2077dd7cddfSDavid du Colombier 
2087dd7cddfSDavid du Colombier     tmp7 = z11 + z13;
2097dd7cddfSDavid du Colombier     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
2107dd7cddfSDavid du Colombier 
2117dd7cddfSDavid du Colombier     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
2127dd7cddfSDavid du Colombier     tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
2137dd7cddfSDavid du Colombier     tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
2147dd7cddfSDavid du Colombier 
2157dd7cddfSDavid du Colombier     tmp6 = tmp12 - tmp7;
2167dd7cddfSDavid du Colombier     tmp5 = tmp11 - tmp6;
2177dd7cddfSDavid du Colombier     tmp4 = tmp10 + tmp5;
2187dd7cddfSDavid du Colombier 
2197dd7cddfSDavid du Colombier     /* Final output stage: scale down by a factor of 8 and range-limit */
2207dd7cddfSDavid du Colombier 
2217dd7cddfSDavid du Colombier     outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
2227dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2237dd7cddfSDavid du Colombier     outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
2247dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2257dd7cddfSDavid du Colombier     outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
2267dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2277dd7cddfSDavid du Colombier     outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
2287dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2297dd7cddfSDavid du Colombier     outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
2307dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2317dd7cddfSDavid du Colombier     outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
2327dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2337dd7cddfSDavid du Colombier     outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
2347dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2357dd7cddfSDavid du Colombier     outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
2367dd7cddfSDavid du Colombier 			    & RANGE_MASK];
2377dd7cddfSDavid du Colombier 
2387dd7cddfSDavid du Colombier     wsptr += DCTSIZE;		/* advance pointer to next row */
2397dd7cddfSDavid du Colombier   }
2407dd7cddfSDavid du Colombier }
2417dd7cddfSDavid du Colombier 
2427dd7cddfSDavid du Colombier #endif /* DCT_FLOAT_SUPPORTED */
243