1*7dd7cddfSDavid du Colombier /* 2*7dd7cddfSDavid du Colombier * jfdctint.c 3*7dd7cddfSDavid du Colombier * 4*7dd7cddfSDavid du Colombier * Copyright (C) 1991-1996, Thomas G. Lane. 5*7dd7cddfSDavid du Colombier * This file is part of the Independent JPEG Group's software. 6*7dd7cddfSDavid du Colombier * For conditions of distribution and use, see the accompanying README file. 7*7dd7cddfSDavid du Colombier * 8*7dd7cddfSDavid du Colombier * This file contains a slow-but-accurate integer implementation of the 9*7dd7cddfSDavid du Colombier * forward DCT (Discrete Cosine Transform). 10*7dd7cddfSDavid du Colombier * 11*7dd7cddfSDavid du Colombier * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 12*7dd7cddfSDavid du Colombier * on each column. Direct algorithms are also available, but they are 13*7dd7cddfSDavid du Colombier * much more complex and seem not to be any faster when reduced to code. 14*7dd7cddfSDavid du Colombier * 15*7dd7cddfSDavid du Colombier * This implementation is based on an algorithm described in 16*7dd7cddfSDavid du Colombier * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT 17*7dd7cddfSDavid du Colombier * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, 18*7dd7cddfSDavid du Colombier * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. 19*7dd7cddfSDavid du Colombier * The primary algorithm described there uses 11 multiplies and 29 adds. 20*7dd7cddfSDavid du Colombier * We use their alternate method with 12 multiplies and 32 adds. 21*7dd7cddfSDavid du Colombier * The advantage of this method is that no data path contains more than one 22*7dd7cddfSDavid du Colombier * multiplication; this allows a very simple and accurate implementation in 23*7dd7cddfSDavid du Colombier * scaled fixed-point arithmetic, with a minimal number of shifts. 24*7dd7cddfSDavid du Colombier */ 25*7dd7cddfSDavid du Colombier 26*7dd7cddfSDavid du Colombier #define JPEG_INTERNALS 27*7dd7cddfSDavid du Colombier #include "jinclude.h" 28*7dd7cddfSDavid du Colombier #include "jpeglib.h" 29*7dd7cddfSDavid du Colombier #include "jdct.h" /* Private declarations for DCT subsystem */ 30*7dd7cddfSDavid du Colombier 31*7dd7cddfSDavid du Colombier #ifdef DCT_ISLOW_SUPPORTED 32*7dd7cddfSDavid du Colombier 33*7dd7cddfSDavid du Colombier 34*7dd7cddfSDavid du Colombier /* 35*7dd7cddfSDavid du Colombier * This module is specialized to the case DCTSIZE = 8. 36*7dd7cddfSDavid du Colombier */ 37*7dd7cddfSDavid du Colombier 38*7dd7cddfSDavid du Colombier #if DCTSIZE != 8 39*7dd7cddfSDavid du Colombier Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 40*7dd7cddfSDavid du Colombier #endif 41*7dd7cddfSDavid du Colombier 42*7dd7cddfSDavid du Colombier 43*7dd7cddfSDavid du Colombier /* 44*7dd7cddfSDavid du Colombier * The poop on this scaling stuff is as follows: 45*7dd7cddfSDavid du Colombier * 46*7dd7cddfSDavid du Colombier * Each 1-D DCT step produces outputs which are a factor of sqrt(N) 47*7dd7cddfSDavid du Colombier * larger than the true DCT outputs. The final outputs are therefore 48*7dd7cddfSDavid du Colombier * a factor of N larger than desired; since N=8 this can be cured by 49*7dd7cddfSDavid du Colombier * a simple right shift at the end of the algorithm. The advantage of 50*7dd7cddfSDavid du Colombier * this arrangement is that we save two multiplications per 1-D DCT, 51*7dd7cddfSDavid du Colombier * because the y0 and y4 outputs need not be divided by sqrt(N). 52*7dd7cddfSDavid du Colombier * In the IJG code, this factor of 8 is removed by the quantization step 53*7dd7cddfSDavid du Colombier * (in jcdctmgr.c), NOT in this module. 54*7dd7cddfSDavid du Colombier * 55*7dd7cddfSDavid du Colombier * We have to do addition and subtraction of the integer inputs, which 56*7dd7cddfSDavid du Colombier * is no problem, and multiplication by fractional constants, which is 57*7dd7cddfSDavid du Colombier * a problem to do in integer arithmetic. We multiply all the constants 58*7dd7cddfSDavid du Colombier * by CONST_SCALE and convert them to integer constants (thus retaining 59*7dd7cddfSDavid du Colombier * CONST_BITS bits of precision in the constants). After doing a 60*7dd7cddfSDavid du Colombier * multiplication we have to divide the product by CONST_SCALE, with proper 61*7dd7cddfSDavid du Colombier * rounding, to produce the correct output. This division can be done 62*7dd7cddfSDavid du Colombier * cheaply as a right shift of CONST_BITS bits. We postpone shifting 63*7dd7cddfSDavid du Colombier * as long as possible so that partial sums can be added together with 64*7dd7cddfSDavid du Colombier * full fractional precision. 65*7dd7cddfSDavid du Colombier * 66*7dd7cddfSDavid du Colombier * The outputs of the first pass are scaled up by PASS1_BITS bits so that 67*7dd7cddfSDavid du Colombier * they are represented to better-than-integral precision. These outputs 68*7dd7cddfSDavid du Colombier * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word 69*7dd7cddfSDavid du Colombier * with the recommended scaling. (For 12-bit sample data, the intermediate 70*7dd7cddfSDavid du Colombier * array is INT32 anyway.) 71*7dd7cddfSDavid du Colombier * 72*7dd7cddfSDavid du Colombier * To avoid overflow of the 32-bit intermediate results in pass 2, we must 73*7dd7cddfSDavid du Colombier * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis 74*7dd7cddfSDavid du Colombier * shows that the values given below are the most effective. 75*7dd7cddfSDavid du Colombier */ 76*7dd7cddfSDavid du Colombier 77*7dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8 78*7dd7cddfSDavid du Colombier #define CONST_BITS 13 79*7dd7cddfSDavid du Colombier #define PASS1_BITS 2 80*7dd7cddfSDavid du Colombier #else 81*7dd7cddfSDavid du Colombier #define CONST_BITS 13 82*7dd7cddfSDavid du Colombier #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ 83*7dd7cddfSDavid du Colombier #endif 84*7dd7cddfSDavid du Colombier 85*7dd7cddfSDavid du Colombier /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 86*7dd7cddfSDavid du Colombier * causing a lot of useless floating-point operations at run time. 87*7dd7cddfSDavid du Colombier * To get around this we use the following pre-calculated constants. 88*7dd7cddfSDavid du Colombier * If you change CONST_BITS you may want to add appropriate values. 89*7dd7cddfSDavid du Colombier * (With a reasonable C compiler, you can just rely on the FIX() macro...) 90*7dd7cddfSDavid du Colombier */ 91*7dd7cddfSDavid du Colombier 92*7dd7cddfSDavid du Colombier #if CONST_BITS == 13 93*7dd7cddfSDavid du Colombier #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ 94*7dd7cddfSDavid du Colombier #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ 95*7dd7cddfSDavid du Colombier #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ 96*7dd7cddfSDavid du Colombier #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ 97*7dd7cddfSDavid du Colombier #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ 98*7dd7cddfSDavid du Colombier #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ 99*7dd7cddfSDavid du Colombier #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ 100*7dd7cddfSDavid du Colombier #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ 101*7dd7cddfSDavid du Colombier #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ 102*7dd7cddfSDavid du Colombier #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ 103*7dd7cddfSDavid du Colombier #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ 104*7dd7cddfSDavid du Colombier #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ 105*7dd7cddfSDavid du Colombier #else 106*7dd7cddfSDavid du Colombier #define FIX_0_298631336 FIX(0.298631336) 107*7dd7cddfSDavid du Colombier #define FIX_0_390180644 FIX(0.390180644) 108*7dd7cddfSDavid du Colombier #define FIX_0_541196100 FIX(0.541196100) 109*7dd7cddfSDavid du Colombier #define FIX_0_765366865 FIX(0.765366865) 110*7dd7cddfSDavid du Colombier #define FIX_0_899976223 FIX(0.899976223) 111*7dd7cddfSDavid du Colombier #define FIX_1_175875602 FIX(1.175875602) 112*7dd7cddfSDavid du Colombier #define FIX_1_501321110 FIX(1.501321110) 113*7dd7cddfSDavid du Colombier #define FIX_1_847759065 FIX(1.847759065) 114*7dd7cddfSDavid du Colombier #define FIX_1_961570560 FIX(1.961570560) 115*7dd7cddfSDavid du Colombier #define FIX_2_053119869 FIX(2.053119869) 116*7dd7cddfSDavid du Colombier #define FIX_2_562915447 FIX(2.562915447) 117*7dd7cddfSDavid du Colombier #define FIX_3_072711026 FIX(3.072711026) 118*7dd7cddfSDavid du Colombier #endif 119*7dd7cddfSDavid du Colombier 120*7dd7cddfSDavid du Colombier 121*7dd7cddfSDavid du Colombier /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. 122*7dd7cddfSDavid du Colombier * For 8-bit samples with the recommended scaling, all the variable 123*7dd7cddfSDavid du Colombier * and constant values involved are no more than 16 bits wide, so a 124*7dd7cddfSDavid du Colombier * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. 125*7dd7cddfSDavid du Colombier * For 12-bit samples, a full 32-bit multiplication will be needed. 126*7dd7cddfSDavid du Colombier */ 127*7dd7cddfSDavid du Colombier 128*7dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8 129*7dd7cddfSDavid du Colombier #define MULTIPLY(var,const) MULTIPLY16C16(var,const) 130*7dd7cddfSDavid du Colombier #else 131*7dd7cddfSDavid du Colombier #define MULTIPLY(var,const) ((var) * (const)) 132*7dd7cddfSDavid du Colombier #endif 133*7dd7cddfSDavid du Colombier 134*7dd7cddfSDavid du Colombier 135*7dd7cddfSDavid du Colombier /* 136*7dd7cddfSDavid du Colombier * Perform the forward DCT on one block of samples. 137*7dd7cddfSDavid du Colombier */ 138*7dd7cddfSDavid du Colombier 139*7dd7cddfSDavid du Colombier GLOBAL(void) 140*7dd7cddfSDavid du Colombier jpeg_fdct_islow (DCTELEM * data) 141*7dd7cddfSDavid du Colombier { 142*7dd7cddfSDavid du Colombier INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 143*7dd7cddfSDavid du Colombier INT32 tmp10, tmp11, tmp12, tmp13; 144*7dd7cddfSDavid du Colombier INT32 z1, z2, z3, z4, z5; 145*7dd7cddfSDavid du Colombier DCTELEM *dataptr; 146*7dd7cddfSDavid du Colombier int ctr; 147*7dd7cddfSDavid du Colombier SHIFT_TEMPS 148*7dd7cddfSDavid du Colombier 149*7dd7cddfSDavid du Colombier /* Pass 1: process rows. */ 150*7dd7cddfSDavid du Colombier /* Note results are scaled up by sqrt(8) compared to a true DCT; */ 151*7dd7cddfSDavid du Colombier /* furthermore, we scale the results by 2**PASS1_BITS. */ 152*7dd7cddfSDavid du Colombier 153*7dd7cddfSDavid du Colombier dataptr = data; 154*7dd7cddfSDavid du Colombier for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 155*7dd7cddfSDavid du Colombier tmp0 = dataptr[0] + dataptr[7]; 156*7dd7cddfSDavid du Colombier tmp7 = dataptr[0] - dataptr[7]; 157*7dd7cddfSDavid du Colombier tmp1 = dataptr[1] + dataptr[6]; 158*7dd7cddfSDavid du Colombier tmp6 = dataptr[1] - dataptr[6]; 159*7dd7cddfSDavid du Colombier tmp2 = dataptr[2] + dataptr[5]; 160*7dd7cddfSDavid du Colombier tmp5 = dataptr[2] - dataptr[5]; 161*7dd7cddfSDavid du Colombier tmp3 = dataptr[3] + dataptr[4]; 162*7dd7cddfSDavid du Colombier tmp4 = dataptr[3] - dataptr[4]; 163*7dd7cddfSDavid du Colombier 164*7dd7cddfSDavid du Colombier /* Even part per LL&M figure 1 --- note that published figure is faulty; 165*7dd7cddfSDavid du Colombier * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 166*7dd7cddfSDavid du Colombier */ 167*7dd7cddfSDavid du Colombier 168*7dd7cddfSDavid du Colombier tmp10 = tmp0 + tmp3; 169*7dd7cddfSDavid du Colombier tmp13 = tmp0 - tmp3; 170*7dd7cddfSDavid du Colombier tmp11 = tmp1 + tmp2; 171*7dd7cddfSDavid du Colombier tmp12 = tmp1 - tmp2; 172*7dd7cddfSDavid du Colombier 173*7dd7cddfSDavid du Colombier dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); 174*7dd7cddfSDavid du Colombier dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); 175*7dd7cddfSDavid du Colombier 176*7dd7cddfSDavid du Colombier z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 177*7dd7cddfSDavid du Colombier dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 178*7dd7cddfSDavid du Colombier CONST_BITS-PASS1_BITS); 179*7dd7cddfSDavid du Colombier dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), 180*7dd7cddfSDavid du Colombier CONST_BITS-PASS1_BITS); 181*7dd7cddfSDavid du Colombier 182*7dd7cddfSDavid du Colombier /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 183*7dd7cddfSDavid du Colombier * cK represents cos(K*pi/16). 184*7dd7cddfSDavid du Colombier * i0..i3 in the paper are tmp4..tmp7 here. 185*7dd7cddfSDavid du Colombier */ 186*7dd7cddfSDavid du Colombier 187*7dd7cddfSDavid du Colombier z1 = tmp4 + tmp7; 188*7dd7cddfSDavid du Colombier z2 = tmp5 + tmp6; 189*7dd7cddfSDavid du Colombier z3 = tmp4 + tmp6; 190*7dd7cddfSDavid du Colombier z4 = tmp5 + tmp7; 191*7dd7cddfSDavid du Colombier z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 192*7dd7cddfSDavid du Colombier 193*7dd7cddfSDavid du Colombier tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 194*7dd7cddfSDavid du Colombier tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 195*7dd7cddfSDavid du Colombier tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ 196*7dd7cddfSDavid du Colombier tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ 197*7dd7cddfSDavid du Colombier z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ 198*7dd7cddfSDavid du Colombier z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ 199*7dd7cddfSDavid du Colombier z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ 200*7dd7cddfSDavid du Colombier z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ 201*7dd7cddfSDavid du Colombier 202*7dd7cddfSDavid du Colombier z3 += z5; 203*7dd7cddfSDavid du Colombier z4 += z5; 204*7dd7cddfSDavid du Colombier 205*7dd7cddfSDavid du Colombier dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); 206*7dd7cddfSDavid du Colombier dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); 207*7dd7cddfSDavid du Colombier dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); 208*7dd7cddfSDavid du Colombier dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); 209*7dd7cddfSDavid du Colombier 210*7dd7cddfSDavid du Colombier dataptr += DCTSIZE; /* advance pointer to next row */ 211*7dd7cddfSDavid du Colombier } 212*7dd7cddfSDavid du Colombier 213*7dd7cddfSDavid du Colombier /* Pass 2: process columns. 214*7dd7cddfSDavid du Colombier * We remove the PASS1_BITS scaling, but leave the results scaled up 215*7dd7cddfSDavid du Colombier * by an overall factor of 8. 216*7dd7cddfSDavid du Colombier */ 217*7dd7cddfSDavid du Colombier 218*7dd7cddfSDavid du Colombier dataptr = data; 219*7dd7cddfSDavid du Colombier for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 220*7dd7cddfSDavid du Colombier tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 221*7dd7cddfSDavid du Colombier tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 222*7dd7cddfSDavid du Colombier tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 223*7dd7cddfSDavid du Colombier tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 224*7dd7cddfSDavid du Colombier tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 225*7dd7cddfSDavid du Colombier tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 226*7dd7cddfSDavid du Colombier tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 227*7dd7cddfSDavid du Colombier tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 228*7dd7cddfSDavid du Colombier 229*7dd7cddfSDavid du Colombier /* Even part per LL&M figure 1 --- note that published figure is faulty; 230*7dd7cddfSDavid du Colombier * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". 231*7dd7cddfSDavid du Colombier */ 232*7dd7cddfSDavid du Colombier 233*7dd7cddfSDavid du Colombier tmp10 = tmp0 + tmp3; 234*7dd7cddfSDavid du Colombier tmp13 = tmp0 - tmp3; 235*7dd7cddfSDavid du Colombier tmp11 = tmp1 + tmp2; 236*7dd7cddfSDavid du Colombier tmp12 = tmp1 - tmp2; 237*7dd7cddfSDavid du Colombier 238*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); 239*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); 240*7dd7cddfSDavid du Colombier 241*7dd7cddfSDavid du Colombier z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 242*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 243*7dd7cddfSDavid du Colombier CONST_BITS+PASS1_BITS); 244*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), 245*7dd7cddfSDavid du Colombier CONST_BITS+PASS1_BITS); 246*7dd7cddfSDavid du Colombier 247*7dd7cddfSDavid du Colombier /* Odd part per figure 8 --- note paper omits factor of sqrt(2). 248*7dd7cddfSDavid du Colombier * cK represents cos(K*pi/16). 249*7dd7cddfSDavid du Colombier * i0..i3 in the paper are tmp4..tmp7 here. 250*7dd7cddfSDavid du Colombier */ 251*7dd7cddfSDavid du Colombier 252*7dd7cddfSDavid du Colombier z1 = tmp4 + tmp7; 253*7dd7cddfSDavid du Colombier z2 = tmp5 + tmp6; 254*7dd7cddfSDavid du Colombier z3 = tmp4 + tmp6; 255*7dd7cddfSDavid du Colombier z4 = tmp5 + tmp7; 256*7dd7cddfSDavid du Colombier z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ 257*7dd7cddfSDavid du Colombier 258*7dd7cddfSDavid du Colombier tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ 259*7dd7cddfSDavid du Colombier tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ 260*7dd7cddfSDavid du Colombier tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ 261*7dd7cddfSDavid du Colombier tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ 262*7dd7cddfSDavid du Colombier z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ 263*7dd7cddfSDavid du Colombier z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ 264*7dd7cddfSDavid du Colombier z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ 265*7dd7cddfSDavid du Colombier z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ 266*7dd7cddfSDavid du Colombier 267*7dd7cddfSDavid du Colombier z3 += z5; 268*7dd7cddfSDavid du Colombier z4 += z5; 269*7dd7cddfSDavid du Colombier 270*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, 271*7dd7cddfSDavid du Colombier CONST_BITS+PASS1_BITS); 272*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, 273*7dd7cddfSDavid du Colombier CONST_BITS+PASS1_BITS); 274*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, 275*7dd7cddfSDavid du Colombier CONST_BITS+PASS1_BITS); 276*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, 277*7dd7cddfSDavid du Colombier CONST_BITS+PASS1_BITS); 278*7dd7cddfSDavid du Colombier 279*7dd7cddfSDavid du Colombier dataptr++; /* advance pointer to next column */ 280*7dd7cddfSDavid du Colombier } 281*7dd7cddfSDavid du Colombier } 282*7dd7cddfSDavid du Colombier 283*7dd7cddfSDavid du Colombier #endif /* DCT_ISLOW_SUPPORTED */ 284