xref: /plan9/sys/src/cmd/gs/jpeg/jfdctint.c (revision 7dd7cddf99dd7472612f1413b4da293630e6b1bc)
1*7dd7cddfSDavid du Colombier /*
2*7dd7cddfSDavid du Colombier  * jfdctint.c
3*7dd7cddfSDavid du Colombier  *
4*7dd7cddfSDavid du Colombier  * Copyright (C) 1991-1996, Thomas G. Lane.
5*7dd7cddfSDavid du Colombier  * This file is part of the Independent JPEG Group's software.
6*7dd7cddfSDavid du Colombier  * For conditions of distribution and use, see the accompanying README file.
7*7dd7cddfSDavid du Colombier  *
8*7dd7cddfSDavid du Colombier  * This file contains a slow-but-accurate integer implementation of the
9*7dd7cddfSDavid du Colombier  * forward DCT (Discrete Cosine Transform).
10*7dd7cddfSDavid du Colombier  *
11*7dd7cddfSDavid du Colombier  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12*7dd7cddfSDavid du Colombier  * on each column.  Direct algorithms are also available, but they are
13*7dd7cddfSDavid du Colombier  * much more complex and seem not to be any faster when reduced to code.
14*7dd7cddfSDavid du Colombier  *
15*7dd7cddfSDavid du Colombier  * This implementation is based on an algorithm described in
16*7dd7cddfSDavid du Colombier  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
17*7dd7cddfSDavid du Colombier  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
18*7dd7cddfSDavid du Colombier  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
19*7dd7cddfSDavid du Colombier  * The primary algorithm described there uses 11 multiplies and 29 adds.
20*7dd7cddfSDavid du Colombier  * We use their alternate method with 12 multiplies and 32 adds.
21*7dd7cddfSDavid du Colombier  * The advantage of this method is that no data path contains more than one
22*7dd7cddfSDavid du Colombier  * multiplication; this allows a very simple and accurate implementation in
23*7dd7cddfSDavid du Colombier  * scaled fixed-point arithmetic, with a minimal number of shifts.
24*7dd7cddfSDavid du Colombier  */
25*7dd7cddfSDavid du Colombier 
26*7dd7cddfSDavid du Colombier #define JPEG_INTERNALS
27*7dd7cddfSDavid du Colombier #include "jinclude.h"
28*7dd7cddfSDavid du Colombier #include "jpeglib.h"
29*7dd7cddfSDavid du Colombier #include "jdct.h"		/* Private declarations for DCT subsystem */
30*7dd7cddfSDavid du Colombier 
31*7dd7cddfSDavid du Colombier #ifdef DCT_ISLOW_SUPPORTED
32*7dd7cddfSDavid du Colombier 
33*7dd7cddfSDavid du Colombier 
34*7dd7cddfSDavid du Colombier /*
35*7dd7cddfSDavid du Colombier  * This module is specialized to the case DCTSIZE = 8.
36*7dd7cddfSDavid du Colombier  */
37*7dd7cddfSDavid du Colombier 
38*7dd7cddfSDavid du Colombier #if DCTSIZE != 8
39*7dd7cddfSDavid du Colombier   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
40*7dd7cddfSDavid du Colombier #endif
41*7dd7cddfSDavid du Colombier 
42*7dd7cddfSDavid du Colombier 
43*7dd7cddfSDavid du Colombier /*
44*7dd7cddfSDavid du Colombier  * The poop on this scaling stuff is as follows:
45*7dd7cddfSDavid du Colombier  *
46*7dd7cddfSDavid du Colombier  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
47*7dd7cddfSDavid du Colombier  * larger than the true DCT outputs.  The final outputs are therefore
48*7dd7cddfSDavid du Colombier  * a factor of N larger than desired; since N=8 this can be cured by
49*7dd7cddfSDavid du Colombier  * a simple right shift at the end of the algorithm.  The advantage of
50*7dd7cddfSDavid du Colombier  * this arrangement is that we save two multiplications per 1-D DCT,
51*7dd7cddfSDavid du Colombier  * because the y0 and y4 outputs need not be divided by sqrt(N).
52*7dd7cddfSDavid du Colombier  * In the IJG code, this factor of 8 is removed by the quantization step
53*7dd7cddfSDavid du Colombier  * (in jcdctmgr.c), NOT in this module.
54*7dd7cddfSDavid du Colombier  *
55*7dd7cddfSDavid du Colombier  * We have to do addition and subtraction of the integer inputs, which
56*7dd7cddfSDavid du Colombier  * is no problem, and multiplication by fractional constants, which is
57*7dd7cddfSDavid du Colombier  * a problem to do in integer arithmetic.  We multiply all the constants
58*7dd7cddfSDavid du Colombier  * by CONST_SCALE and convert them to integer constants (thus retaining
59*7dd7cddfSDavid du Colombier  * CONST_BITS bits of precision in the constants).  After doing a
60*7dd7cddfSDavid du Colombier  * multiplication we have to divide the product by CONST_SCALE, with proper
61*7dd7cddfSDavid du Colombier  * rounding, to produce the correct output.  This division can be done
62*7dd7cddfSDavid du Colombier  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
63*7dd7cddfSDavid du Colombier  * as long as possible so that partial sums can be added together with
64*7dd7cddfSDavid du Colombier  * full fractional precision.
65*7dd7cddfSDavid du Colombier  *
66*7dd7cddfSDavid du Colombier  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
67*7dd7cddfSDavid du Colombier  * they are represented to better-than-integral precision.  These outputs
68*7dd7cddfSDavid du Colombier  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
69*7dd7cddfSDavid du Colombier  * with the recommended scaling.  (For 12-bit sample data, the intermediate
70*7dd7cddfSDavid du Colombier  * array is INT32 anyway.)
71*7dd7cddfSDavid du Colombier  *
72*7dd7cddfSDavid du Colombier  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
73*7dd7cddfSDavid du Colombier  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
74*7dd7cddfSDavid du Colombier  * shows that the values given below are the most effective.
75*7dd7cddfSDavid du Colombier  */
76*7dd7cddfSDavid du Colombier 
77*7dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8
78*7dd7cddfSDavid du Colombier #define CONST_BITS  13
79*7dd7cddfSDavid du Colombier #define PASS1_BITS  2
80*7dd7cddfSDavid du Colombier #else
81*7dd7cddfSDavid du Colombier #define CONST_BITS  13
82*7dd7cddfSDavid du Colombier #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
83*7dd7cddfSDavid du Colombier #endif
84*7dd7cddfSDavid du Colombier 
85*7dd7cddfSDavid du Colombier /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86*7dd7cddfSDavid du Colombier  * causing a lot of useless floating-point operations at run time.
87*7dd7cddfSDavid du Colombier  * To get around this we use the following pre-calculated constants.
88*7dd7cddfSDavid du Colombier  * If you change CONST_BITS you may want to add appropriate values.
89*7dd7cddfSDavid du Colombier  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90*7dd7cddfSDavid du Colombier  */
91*7dd7cddfSDavid du Colombier 
92*7dd7cddfSDavid du Colombier #if CONST_BITS == 13
93*7dd7cddfSDavid du Colombier #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
94*7dd7cddfSDavid du Colombier #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
95*7dd7cddfSDavid du Colombier #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
96*7dd7cddfSDavid du Colombier #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
97*7dd7cddfSDavid du Colombier #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
98*7dd7cddfSDavid du Colombier #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
99*7dd7cddfSDavid du Colombier #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
100*7dd7cddfSDavid du Colombier #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
101*7dd7cddfSDavid du Colombier #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
102*7dd7cddfSDavid du Colombier #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
103*7dd7cddfSDavid du Colombier #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
104*7dd7cddfSDavid du Colombier #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
105*7dd7cddfSDavid du Colombier #else
106*7dd7cddfSDavid du Colombier #define FIX_0_298631336  FIX(0.298631336)
107*7dd7cddfSDavid du Colombier #define FIX_0_390180644  FIX(0.390180644)
108*7dd7cddfSDavid du Colombier #define FIX_0_541196100  FIX(0.541196100)
109*7dd7cddfSDavid du Colombier #define FIX_0_765366865  FIX(0.765366865)
110*7dd7cddfSDavid du Colombier #define FIX_0_899976223  FIX(0.899976223)
111*7dd7cddfSDavid du Colombier #define FIX_1_175875602  FIX(1.175875602)
112*7dd7cddfSDavid du Colombier #define FIX_1_501321110  FIX(1.501321110)
113*7dd7cddfSDavid du Colombier #define FIX_1_847759065  FIX(1.847759065)
114*7dd7cddfSDavid du Colombier #define FIX_1_961570560  FIX(1.961570560)
115*7dd7cddfSDavid du Colombier #define FIX_2_053119869  FIX(2.053119869)
116*7dd7cddfSDavid du Colombier #define FIX_2_562915447  FIX(2.562915447)
117*7dd7cddfSDavid du Colombier #define FIX_3_072711026  FIX(3.072711026)
118*7dd7cddfSDavid du Colombier #endif
119*7dd7cddfSDavid du Colombier 
120*7dd7cddfSDavid du Colombier 
121*7dd7cddfSDavid du Colombier /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
122*7dd7cddfSDavid du Colombier  * For 8-bit samples with the recommended scaling, all the variable
123*7dd7cddfSDavid du Colombier  * and constant values involved are no more than 16 bits wide, so a
124*7dd7cddfSDavid du Colombier  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
125*7dd7cddfSDavid du Colombier  * For 12-bit samples, a full 32-bit multiplication will be needed.
126*7dd7cddfSDavid du Colombier  */
127*7dd7cddfSDavid du Colombier 
128*7dd7cddfSDavid du Colombier #if BITS_IN_JSAMPLE == 8
129*7dd7cddfSDavid du Colombier #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
130*7dd7cddfSDavid du Colombier #else
131*7dd7cddfSDavid du Colombier #define MULTIPLY(var,const)  ((var) * (const))
132*7dd7cddfSDavid du Colombier #endif
133*7dd7cddfSDavid du Colombier 
134*7dd7cddfSDavid du Colombier 
135*7dd7cddfSDavid du Colombier /*
136*7dd7cddfSDavid du Colombier  * Perform the forward DCT on one block of samples.
137*7dd7cddfSDavid du Colombier  */
138*7dd7cddfSDavid du Colombier 
139*7dd7cddfSDavid du Colombier GLOBAL(void)
140*7dd7cddfSDavid du Colombier jpeg_fdct_islow (DCTELEM * data)
141*7dd7cddfSDavid du Colombier {
142*7dd7cddfSDavid du Colombier   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
143*7dd7cddfSDavid du Colombier   INT32 tmp10, tmp11, tmp12, tmp13;
144*7dd7cddfSDavid du Colombier   INT32 z1, z2, z3, z4, z5;
145*7dd7cddfSDavid du Colombier   DCTELEM *dataptr;
146*7dd7cddfSDavid du Colombier   int ctr;
147*7dd7cddfSDavid du Colombier   SHIFT_TEMPS
148*7dd7cddfSDavid du Colombier 
149*7dd7cddfSDavid du Colombier   /* Pass 1: process rows. */
150*7dd7cddfSDavid du Colombier   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
151*7dd7cddfSDavid du Colombier   /* furthermore, we scale the results by 2**PASS1_BITS. */
152*7dd7cddfSDavid du Colombier 
153*7dd7cddfSDavid du Colombier   dataptr = data;
154*7dd7cddfSDavid du Colombier   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
155*7dd7cddfSDavid du Colombier     tmp0 = dataptr[0] + dataptr[7];
156*7dd7cddfSDavid du Colombier     tmp7 = dataptr[0] - dataptr[7];
157*7dd7cddfSDavid du Colombier     tmp1 = dataptr[1] + dataptr[6];
158*7dd7cddfSDavid du Colombier     tmp6 = dataptr[1] - dataptr[6];
159*7dd7cddfSDavid du Colombier     tmp2 = dataptr[2] + dataptr[5];
160*7dd7cddfSDavid du Colombier     tmp5 = dataptr[2] - dataptr[5];
161*7dd7cddfSDavid du Colombier     tmp3 = dataptr[3] + dataptr[4];
162*7dd7cddfSDavid du Colombier     tmp4 = dataptr[3] - dataptr[4];
163*7dd7cddfSDavid du Colombier 
164*7dd7cddfSDavid du Colombier     /* Even part per LL&M figure 1 --- note that published figure is faulty;
165*7dd7cddfSDavid du Colombier      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
166*7dd7cddfSDavid du Colombier      */
167*7dd7cddfSDavid du Colombier 
168*7dd7cddfSDavid du Colombier     tmp10 = tmp0 + tmp3;
169*7dd7cddfSDavid du Colombier     tmp13 = tmp0 - tmp3;
170*7dd7cddfSDavid du Colombier     tmp11 = tmp1 + tmp2;
171*7dd7cddfSDavid du Colombier     tmp12 = tmp1 - tmp2;
172*7dd7cddfSDavid du Colombier 
173*7dd7cddfSDavid du Colombier     dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
174*7dd7cddfSDavid du Colombier     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
175*7dd7cddfSDavid du Colombier 
176*7dd7cddfSDavid du Colombier     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
177*7dd7cddfSDavid du Colombier     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
178*7dd7cddfSDavid du Colombier 				   CONST_BITS-PASS1_BITS);
179*7dd7cddfSDavid du Colombier     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
180*7dd7cddfSDavid du Colombier 				   CONST_BITS-PASS1_BITS);
181*7dd7cddfSDavid du Colombier 
182*7dd7cddfSDavid du Colombier     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
183*7dd7cddfSDavid du Colombier      * cK represents cos(K*pi/16).
184*7dd7cddfSDavid du Colombier      * i0..i3 in the paper are tmp4..tmp7 here.
185*7dd7cddfSDavid du Colombier      */
186*7dd7cddfSDavid du Colombier 
187*7dd7cddfSDavid du Colombier     z1 = tmp4 + tmp7;
188*7dd7cddfSDavid du Colombier     z2 = tmp5 + tmp6;
189*7dd7cddfSDavid du Colombier     z3 = tmp4 + tmp6;
190*7dd7cddfSDavid du Colombier     z4 = tmp5 + tmp7;
191*7dd7cddfSDavid du Colombier     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
192*7dd7cddfSDavid du Colombier 
193*7dd7cddfSDavid du Colombier     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
194*7dd7cddfSDavid du Colombier     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
195*7dd7cddfSDavid du Colombier     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
196*7dd7cddfSDavid du Colombier     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
197*7dd7cddfSDavid du Colombier     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
198*7dd7cddfSDavid du Colombier     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
199*7dd7cddfSDavid du Colombier     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
200*7dd7cddfSDavid du Colombier     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
201*7dd7cddfSDavid du Colombier 
202*7dd7cddfSDavid du Colombier     z3 += z5;
203*7dd7cddfSDavid du Colombier     z4 += z5;
204*7dd7cddfSDavid du Colombier 
205*7dd7cddfSDavid du Colombier     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
206*7dd7cddfSDavid du Colombier     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
207*7dd7cddfSDavid du Colombier     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
208*7dd7cddfSDavid du Colombier     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
209*7dd7cddfSDavid du Colombier 
210*7dd7cddfSDavid du Colombier     dataptr += DCTSIZE;		/* advance pointer to next row */
211*7dd7cddfSDavid du Colombier   }
212*7dd7cddfSDavid du Colombier 
213*7dd7cddfSDavid du Colombier   /* Pass 2: process columns.
214*7dd7cddfSDavid du Colombier    * We remove the PASS1_BITS scaling, but leave the results scaled up
215*7dd7cddfSDavid du Colombier    * by an overall factor of 8.
216*7dd7cddfSDavid du Colombier    */
217*7dd7cddfSDavid du Colombier 
218*7dd7cddfSDavid du Colombier   dataptr = data;
219*7dd7cddfSDavid du Colombier   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
220*7dd7cddfSDavid du Colombier     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
221*7dd7cddfSDavid du Colombier     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
222*7dd7cddfSDavid du Colombier     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
223*7dd7cddfSDavid du Colombier     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
224*7dd7cddfSDavid du Colombier     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
225*7dd7cddfSDavid du Colombier     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
226*7dd7cddfSDavid du Colombier     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
227*7dd7cddfSDavid du Colombier     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
228*7dd7cddfSDavid du Colombier 
229*7dd7cddfSDavid du Colombier     /* Even part per LL&M figure 1 --- note that published figure is faulty;
230*7dd7cddfSDavid du Colombier      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
231*7dd7cddfSDavid du Colombier      */
232*7dd7cddfSDavid du Colombier 
233*7dd7cddfSDavid du Colombier     tmp10 = tmp0 + tmp3;
234*7dd7cddfSDavid du Colombier     tmp13 = tmp0 - tmp3;
235*7dd7cddfSDavid du Colombier     tmp11 = tmp1 + tmp2;
236*7dd7cddfSDavid du Colombier     tmp12 = tmp1 - tmp2;
237*7dd7cddfSDavid du Colombier 
238*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
239*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
240*7dd7cddfSDavid du Colombier 
241*7dd7cddfSDavid du Colombier     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
242*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
243*7dd7cddfSDavid du Colombier 					   CONST_BITS+PASS1_BITS);
244*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
245*7dd7cddfSDavid du Colombier 					   CONST_BITS+PASS1_BITS);
246*7dd7cddfSDavid du Colombier 
247*7dd7cddfSDavid du Colombier     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
248*7dd7cddfSDavid du Colombier      * cK represents cos(K*pi/16).
249*7dd7cddfSDavid du Colombier      * i0..i3 in the paper are tmp4..tmp7 here.
250*7dd7cddfSDavid du Colombier      */
251*7dd7cddfSDavid du Colombier 
252*7dd7cddfSDavid du Colombier     z1 = tmp4 + tmp7;
253*7dd7cddfSDavid du Colombier     z2 = tmp5 + tmp6;
254*7dd7cddfSDavid du Colombier     z3 = tmp4 + tmp6;
255*7dd7cddfSDavid du Colombier     z4 = tmp5 + tmp7;
256*7dd7cddfSDavid du Colombier     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
257*7dd7cddfSDavid du Colombier 
258*7dd7cddfSDavid du Colombier     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
259*7dd7cddfSDavid du Colombier     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
260*7dd7cddfSDavid du Colombier     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
261*7dd7cddfSDavid du Colombier     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
262*7dd7cddfSDavid du Colombier     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
263*7dd7cddfSDavid du Colombier     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
264*7dd7cddfSDavid du Colombier     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
265*7dd7cddfSDavid du Colombier     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
266*7dd7cddfSDavid du Colombier 
267*7dd7cddfSDavid du Colombier     z3 += z5;
268*7dd7cddfSDavid du Colombier     z4 += z5;
269*7dd7cddfSDavid du Colombier 
270*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
271*7dd7cddfSDavid du Colombier 					   CONST_BITS+PASS1_BITS);
272*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
273*7dd7cddfSDavid du Colombier 					   CONST_BITS+PASS1_BITS);
274*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
275*7dd7cddfSDavid du Colombier 					   CONST_BITS+PASS1_BITS);
276*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
277*7dd7cddfSDavid du Colombier 					   CONST_BITS+PASS1_BITS);
278*7dd7cddfSDavid du Colombier 
279*7dd7cddfSDavid du Colombier     dataptr++;			/* advance pointer to next column */
280*7dd7cddfSDavid du Colombier   }
281*7dd7cddfSDavid du Colombier }
282*7dd7cddfSDavid du Colombier 
283*7dd7cddfSDavid du Colombier #endif /* DCT_ISLOW_SUPPORTED */
284