1*7dd7cddfSDavid du Colombier /* 2*7dd7cddfSDavid du Colombier * jfdctfst.c 3*7dd7cddfSDavid du Colombier * 4*7dd7cddfSDavid du Colombier * Copyright (C) 1994-1996, Thomas G. Lane. 5*7dd7cddfSDavid du Colombier * This file is part of the Independent JPEG Group's software. 6*7dd7cddfSDavid du Colombier * For conditions of distribution and use, see the accompanying README file. 7*7dd7cddfSDavid du Colombier * 8*7dd7cddfSDavid du Colombier * This file contains a fast, not so accurate integer implementation of the 9*7dd7cddfSDavid du Colombier * forward DCT (Discrete Cosine Transform). 10*7dd7cddfSDavid du Colombier * 11*7dd7cddfSDavid du Colombier * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 12*7dd7cddfSDavid du Colombier * on each column. Direct algorithms are also available, but they are 13*7dd7cddfSDavid du Colombier * much more complex and seem not to be any faster when reduced to code. 14*7dd7cddfSDavid du Colombier * 15*7dd7cddfSDavid du Colombier * This implementation is based on Arai, Agui, and Nakajima's algorithm for 16*7dd7cddfSDavid du Colombier * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 17*7dd7cddfSDavid du Colombier * Japanese, but the algorithm is described in the Pennebaker & Mitchell 18*7dd7cddfSDavid du Colombier * JPEG textbook (see REFERENCES section in file README). The following code 19*7dd7cddfSDavid du Colombier * is based directly on figure 4-8 in P&M. 20*7dd7cddfSDavid du Colombier * While an 8-point DCT cannot be done in less than 11 multiplies, it is 21*7dd7cddfSDavid du Colombier * possible to arrange the computation so that many of the multiplies are 22*7dd7cddfSDavid du Colombier * simple scalings of the final outputs. These multiplies can then be 23*7dd7cddfSDavid du Colombier * folded into the multiplications or divisions by the JPEG quantization 24*7dd7cddfSDavid du Colombier * table entries. The AA&N method leaves only 5 multiplies and 29 adds 25*7dd7cddfSDavid du Colombier * to be done in the DCT itself. 26*7dd7cddfSDavid du Colombier * The primary disadvantage of this method is that with fixed-point math, 27*7dd7cddfSDavid du Colombier * accuracy is lost due to imprecise representation of the scaled 28*7dd7cddfSDavid du Colombier * quantization values. The smaller the quantization table entry, the less 29*7dd7cddfSDavid du Colombier * precise the scaled value, so this implementation does worse with high- 30*7dd7cddfSDavid du Colombier * quality-setting files than with low-quality ones. 31*7dd7cddfSDavid du Colombier */ 32*7dd7cddfSDavid du Colombier 33*7dd7cddfSDavid du Colombier #define JPEG_INTERNALS 34*7dd7cddfSDavid du Colombier #include "jinclude.h" 35*7dd7cddfSDavid du Colombier #include "jpeglib.h" 36*7dd7cddfSDavid du Colombier #include "jdct.h" /* Private declarations for DCT subsystem */ 37*7dd7cddfSDavid du Colombier 38*7dd7cddfSDavid du Colombier #ifdef DCT_IFAST_SUPPORTED 39*7dd7cddfSDavid du Colombier 40*7dd7cddfSDavid du Colombier 41*7dd7cddfSDavid du Colombier /* 42*7dd7cddfSDavid du Colombier * This module is specialized to the case DCTSIZE = 8. 43*7dd7cddfSDavid du Colombier */ 44*7dd7cddfSDavid du Colombier 45*7dd7cddfSDavid du Colombier #if DCTSIZE != 8 46*7dd7cddfSDavid du Colombier Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 47*7dd7cddfSDavid du Colombier #endif 48*7dd7cddfSDavid du Colombier 49*7dd7cddfSDavid du Colombier 50*7dd7cddfSDavid du Colombier /* Scaling decisions are generally the same as in the LL&M algorithm; 51*7dd7cddfSDavid du Colombier * see jfdctint.c for more details. However, we choose to descale 52*7dd7cddfSDavid du Colombier * (right shift) multiplication products as soon as they are formed, 53*7dd7cddfSDavid du Colombier * rather than carrying additional fractional bits into subsequent additions. 54*7dd7cddfSDavid du Colombier * This compromises accuracy slightly, but it lets us save a few shifts. 55*7dd7cddfSDavid du Colombier * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) 56*7dd7cddfSDavid du Colombier * everywhere except in the multiplications proper; this saves a good deal 57*7dd7cddfSDavid du Colombier * of work on 16-bit-int machines. 58*7dd7cddfSDavid du Colombier * 59*7dd7cddfSDavid du Colombier * Again to save a few shifts, the intermediate results between pass 1 and 60*7dd7cddfSDavid du Colombier * pass 2 are not upscaled, but are represented only to integral precision. 61*7dd7cddfSDavid du Colombier * 62*7dd7cddfSDavid du Colombier * A final compromise is to represent the multiplicative constants to only 63*7dd7cddfSDavid du Colombier * 8 fractional bits, rather than 13. This saves some shifting work on some 64*7dd7cddfSDavid du Colombier * machines, and may also reduce the cost of multiplication (since there 65*7dd7cddfSDavid du Colombier * are fewer one-bits in the constants). 66*7dd7cddfSDavid du Colombier */ 67*7dd7cddfSDavid du Colombier 68*7dd7cddfSDavid du Colombier #define CONST_BITS 8 69*7dd7cddfSDavid du Colombier 70*7dd7cddfSDavid du Colombier 71*7dd7cddfSDavid du Colombier /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 72*7dd7cddfSDavid du Colombier * causing a lot of useless floating-point operations at run time. 73*7dd7cddfSDavid du Colombier * To get around this we use the following pre-calculated constants. 74*7dd7cddfSDavid du Colombier * If you change CONST_BITS you may want to add appropriate values. 75*7dd7cddfSDavid du Colombier * (With a reasonable C compiler, you can just rely on the FIX() macro...) 76*7dd7cddfSDavid du Colombier */ 77*7dd7cddfSDavid du Colombier 78*7dd7cddfSDavid du Colombier #if CONST_BITS == 8 79*7dd7cddfSDavid du Colombier #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ 80*7dd7cddfSDavid du Colombier #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ 81*7dd7cddfSDavid du Colombier #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ 82*7dd7cddfSDavid du Colombier #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ 83*7dd7cddfSDavid du Colombier #else 84*7dd7cddfSDavid du Colombier #define FIX_0_382683433 FIX(0.382683433) 85*7dd7cddfSDavid du Colombier #define FIX_0_541196100 FIX(0.541196100) 86*7dd7cddfSDavid du Colombier #define FIX_0_707106781 FIX(0.707106781) 87*7dd7cddfSDavid du Colombier #define FIX_1_306562965 FIX(1.306562965) 88*7dd7cddfSDavid du Colombier #endif 89*7dd7cddfSDavid du Colombier 90*7dd7cddfSDavid du Colombier 91*7dd7cddfSDavid du Colombier /* We can gain a little more speed, with a further compromise in accuracy, 92*7dd7cddfSDavid du Colombier * by omitting the addition in a descaling shift. This yields an incorrectly 93*7dd7cddfSDavid du Colombier * rounded result half the time... 94*7dd7cddfSDavid du Colombier */ 95*7dd7cddfSDavid du Colombier 96*7dd7cddfSDavid du Colombier #ifndef USE_ACCURATE_ROUNDING 97*7dd7cddfSDavid du Colombier #undef DESCALE 98*7dd7cddfSDavid du Colombier #define DESCALE(x,n) RIGHT_SHIFT(x, n) 99*7dd7cddfSDavid du Colombier #endif 100*7dd7cddfSDavid du Colombier 101*7dd7cddfSDavid du Colombier 102*7dd7cddfSDavid du Colombier /* Multiply a DCTELEM variable by an INT32 constant, and immediately 103*7dd7cddfSDavid du Colombier * descale to yield a DCTELEM result. 104*7dd7cddfSDavid du Colombier */ 105*7dd7cddfSDavid du Colombier 106*7dd7cddfSDavid du Colombier #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 107*7dd7cddfSDavid du Colombier 108*7dd7cddfSDavid du Colombier 109*7dd7cddfSDavid du Colombier /* 110*7dd7cddfSDavid du Colombier * Perform the forward DCT on one block of samples. 111*7dd7cddfSDavid du Colombier */ 112*7dd7cddfSDavid du Colombier 113*7dd7cddfSDavid du Colombier GLOBAL(void) 114*7dd7cddfSDavid du Colombier jpeg_fdct_ifast (DCTELEM * data) 115*7dd7cddfSDavid du Colombier { 116*7dd7cddfSDavid du Colombier DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 117*7dd7cddfSDavid du Colombier DCTELEM tmp10, tmp11, tmp12, tmp13; 118*7dd7cddfSDavid du Colombier DCTELEM z1, z2, z3, z4, z5, z11, z13; 119*7dd7cddfSDavid du Colombier DCTELEM *dataptr; 120*7dd7cddfSDavid du Colombier int ctr; 121*7dd7cddfSDavid du Colombier SHIFT_TEMPS 122*7dd7cddfSDavid du Colombier 123*7dd7cddfSDavid du Colombier /* Pass 1: process rows. */ 124*7dd7cddfSDavid du Colombier 125*7dd7cddfSDavid du Colombier dataptr = data; 126*7dd7cddfSDavid du Colombier for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 127*7dd7cddfSDavid du Colombier tmp0 = dataptr[0] + dataptr[7]; 128*7dd7cddfSDavid du Colombier tmp7 = dataptr[0] - dataptr[7]; 129*7dd7cddfSDavid du Colombier tmp1 = dataptr[1] + dataptr[6]; 130*7dd7cddfSDavid du Colombier tmp6 = dataptr[1] - dataptr[6]; 131*7dd7cddfSDavid du Colombier tmp2 = dataptr[2] + dataptr[5]; 132*7dd7cddfSDavid du Colombier tmp5 = dataptr[2] - dataptr[5]; 133*7dd7cddfSDavid du Colombier tmp3 = dataptr[3] + dataptr[4]; 134*7dd7cddfSDavid du Colombier tmp4 = dataptr[3] - dataptr[4]; 135*7dd7cddfSDavid du Colombier 136*7dd7cddfSDavid du Colombier /* Even part */ 137*7dd7cddfSDavid du Colombier 138*7dd7cddfSDavid du Colombier tmp10 = tmp0 + tmp3; /* phase 2 */ 139*7dd7cddfSDavid du Colombier tmp13 = tmp0 - tmp3; 140*7dd7cddfSDavid du Colombier tmp11 = tmp1 + tmp2; 141*7dd7cddfSDavid du Colombier tmp12 = tmp1 - tmp2; 142*7dd7cddfSDavid du Colombier 143*7dd7cddfSDavid du Colombier dataptr[0] = tmp10 + tmp11; /* phase 3 */ 144*7dd7cddfSDavid du Colombier dataptr[4] = tmp10 - tmp11; 145*7dd7cddfSDavid du Colombier 146*7dd7cddfSDavid du Colombier z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 147*7dd7cddfSDavid du Colombier dataptr[2] = tmp13 + z1; /* phase 5 */ 148*7dd7cddfSDavid du Colombier dataptr[6] = tmp13 - z1; 149*7dd7cddfSDavid du Colombier 150*7dd7cddfSDavid du Colombier /* Odd part */ 151*7dd7cddfSDavid du Colombier 152*7dd7cddfSDavid du Colombier tmp10 = tmp4 + tmp5; /* phase 2 */ 153*7dd7cddfSDavid du Colombier tmp11 = tmp5 + tmp6; 154*7dd7cddfSDavid du Colombier tmp12 = tmp6 + tmp7; 155*7dd7cddfSDavid du Colombier 156*7dd7cddfSDavid du Colombier /* The rotator is modified from fig 4-8 to avoid extra negations. */ 157*7dd7cddfSDavid du Colombier z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 158*7dd7cddfSDavid du Colombier z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 159*7dd7cddfSDavid du Colombier z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 160*7dd7cddfSDavid du Colombier z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 161*7dd7cddfSDavid du Colombier 162*7dd7cddfSDavid du Colombier z11 = tmp7 + z3; /* phase 5 */ 163*7dd7cddfSDavid du Colombier z13 = tmp7 - z3; 164*7dd7cddfSDavid du Colombier 165*7dd7cddfSDavid du Colombier dataptr[5] = z13 + z2; /* phase 6 */ 166*7dd7cddfSDavid du Colombier dataptr[3] = z13 - z2; 167*7dd7cddfSDavid du Colombier dataptr[1] = z11 + z4; 168*7dd7cddfSDavid du Colombier dataptr[7] = z11 - z4; 169*7dd7cddfSDavid du Colombier 170*7dd7cddfSDavid du Colombier dataptr += DCTSIZE; /* advance pointer to next row */ 171*7dd7cddfSDavid du Colombier } 172*7dd7cddfSDavid du Colombier 173*7dd7cddfSDavid du Colombier /* Pass 2: process columns. */ 174*7dd7cddfSDavid du Colombier 175*7dd7cddfSDavid du Colombier dataptr = data; 176*7dd7cddfSDavid du Colombier for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 177*7dd7cddfSDavid du Colombier tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 178*7dd7cddfSDavid du Colombier tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 179*7dd7cddfSDavid du Colombier tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 180*7dd7cddfSDavid du Colombier tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 181*7dd7cddfSDavid du Colombier tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 182*7dd7cddfSDavid du Colombier tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 183*7dd7cddfSDavid du Colombier tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 184*7dd7cddfSDavid du Colombier tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 185*7dd7cddfSDavid du Colombier 186*7dd7cddfSDavid du Colombier /* Even part */ 187*7dd7cddfSDavid du Colombier 188*7dd7cddfSDavid du Colombier tmp10 = tmp0 + tmp3; /* phase 2 */ 189*7dd7cddfSDavid du Colombier tmp13 = tmp0 - tmp3; 190*7dd7cddfSDavid du Colombier tmp11 = tmp1 + tmp2; 191*7dd7cddfSDavid du Colombier tmp12 = tmp1 - tmp2; 192*7dd7cddfSDavid du Colombier 193*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ 194*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*4] = tmp10 - tmp11; 195*7dd7cddfSDavid du Colombier 196*7dd7cddfSDavid du Colombier z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 197*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ 198*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*6] = tmp13 - z1; 199*7dd7cddfSDavid du Colombier 200*7dd7cddfSDavid du Colombier /* Odd part */ 201*7dd7cddfSDavid du Colombier 202*7dd7cddfSDavid du Colombier tmp10 = tmp4 + tmp5; /* phase 2 */ 203*7dd7cddfSDavid du Colombier tmp11 = tmp5 + tmp6; 204*7dd7cddfSDavid du Colombier tmp12 = tmp6 + tmp7; 205*7dd7cddfSDavid du Colombier 206*7dd7cddfSDavid du Colombier /* The rotator is modified from fig 4-8 to avoid extra negations. */ 207*7dd7cddfSDavid du Colombier z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 208*7dd7cddfSDavid du Colombier z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 209*7dd7cddfSDavid du Colombier z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 210*7dd7cddfSDavid du Colombier z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 211*7dd7cddfSDavid du Colombier 212*7dd7cddfSDavid du Colombier z11 = tmp7 + z3; /* phase 5 */ 213*7dd7cddfSDavid du Colombier z13 = tmp7 - z3; 214*7dd7cddfSDavid du Colombier 215*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ 216*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*3] = z13 - z2; 217*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*1] = z11 + z4; 218*7dd7cddfSDavid du Colombier dataptr[DCTSIZE*7] = z11 - z4; 219*7dd7cddfSDavid du Colombier 220*7dd7cddfSDavid du Colombier dataptr++; /* advance pointer to next column */ 221*7dd7cddfSDavid du Colombier } 222*7dd7cddfSDavid du Colombier } 223*7dd7cddfSDavid du Colombier 224*7dd7cddfSDavid du Colombier #endif /* DCT_IFAST_SUPPORTED */ 225