xref: /plan9/sys/src/cmd/gs/jpeg/jfdctfst.c (revision 7dd7cddf99dd7472612f1413b4da293630e6b1bc)
1*7dd7cddfSDavid du Colombier /*
2*7dd7cddfSDavid du Colombier  * jfdctfst.c
3*7dd7cddfSDavid du Colombier  *
4*7dd7cddfSDavid du Colombier  * Copyright (C) 1994-1996, Thomas G. Lane.
5*7dd7cddfSDavid du Colombier  * This file is part of the Independent JPEG Group's software.
6*7dd7cddfSDavid du Colombier  * For conditions of distribution and use, see the accompanying README file.
7*7dd7cddfSDavid du Colombier  *
8*7dd7cddfSDavid du Colombier  * This file contains a fast, not so accurate integer implementation of the
9*7dd7cddfSDavid du Colombier  * forward DCT (Discrete Cosine Transform).
10*7dd7cddfSDavid du Colombier  *
11*7dd7cddfSDavid du Colombier  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12*7dd7cddfSDavid du Colombier  * on each column.  Direct algorithms are also available, but they are
13*7dd7cddfSDavid du Colombier  * much more complex and seem not to be any faster when reduced to code.
14*7dd7cddfSDavid du Colombier  *
15*7dd7cddfSDavid du Colombier  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
16*7dd7cddfSDavid du Colombier  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
17*7dd7cddfSDavid du Colombier  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
18*7dd7cddfSDavid du Colombier  * JPEG textbook (see REFERENCES section in file README).  The following code
19*7dd7cddfSDavid du Colombier  * is based directly on figure 4-8 in P&M.
20*7dd7cddfSDavid du Colombier  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
21*7dd7cddfSDavid du Colombier  * possible to arrange the computation so that many of the multiplies are
22*7dd7cddfSDavid du Colombier  * simple scalings of the final outputs.  These multiplies can then be
23*7dd7cddfSDavid du Colombier  * folded into the multiplications or divisions by the JPEG quantization
24*7dd7cddfSDavid du Colombier  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
25*7dd7cddfSDavid du Colombier  * to be done in the DCT itself.
26*7dd7cddfSDavid du Colombier  * The primary disadvantage of this method is that with fixed-point math,
27*7dd7cddfSDavid du Colombier  * accuracy is lost due to imprecise representation of the scaled
28*7dd7cddfSDavid du Colombier  * quantization values.  The smaller the quantization table entry, the less
29*7dd7cddfSDavid du Colombier  * precise the scaled value, so this implementation does worse with high-
30*7dd7cddfSDavid du Colombier  * quality-setting files than with low-quality ones.
31*7dd7cddfSDavid du Colombier  */
32*7dd7cddfSDavid du Colombier 
33*7dd7cddfSDavid du Colombier #define JPEG_INTERNALS
34*7dd7cddfSDavid du Colombier #include "jinclude.h"
35*7dd7cddfSDavid du Colombier #include "jpeglib.h"
36*7dd7cddfSDavid du Colombier #include "jdct.h"		/* Private declarations for DCT subsystem */
37*7dd7cddfSDavid du Colombier 
38*7dd7cddfSDavid du Colombier #ifdef DCT_IFAST_SUPPORTED
39*7dd7cddfSDavid du Colombier 
40*7dd7cddfSDavid du Colombier 
41*7dd7cddfSDavid du Colombier /*
42*7dd7cddfSDavid du Colombier  * This module is specialized to the case DCTSIZE = 8.
43*7dd7cddfSDavid du Colombier  */
44*7dd7cddfSDavid du Colombier 
45*7dd7cddfSDavid du Colombier #if DCTSIZE != 8
46*7dd7cddfSDavid du Colombier   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
47*7dd7cddfSDavid du Colombier #endif
48*7dd7cddfSDavid du Colombier 
49*7dd7cddfSDavid du Colombier 
50*7dd7cddfSDavid du Colombier /* Scaling decisions are generally the same as in the LL&M algorithm;
51*7dd7cddfSDavid du Colombier  * see jfdctint.c for more details.  However, we choose to descale
52*7dd7cddfSDavid du Colombier  * (right shift) multiplication products as soon as they are formed,
53*7dd7cddfSDavid du Colombier  * rather than carrying additional fractional bits into subsequent additions.
54*7dd7cddfSDavid du Colombier  * This compromises accuracy slightly, but it lets us save a few shifts.
55*7dd7cddfSDavid du Colombier  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
56*7dd7cddfSDavid du Colombier  * everywhere except in the multiplications proper; this saves a good deal
57*7dd7cddfSDavid du Colombier  * of work on 16-bit-int machines.
58*7dd7cddfSDavid du Colombier  *
59*7dd7cddfSDavid du Colombier  * Again to save a few shifts, the intermediate results between pass 1 and
60*7dd7cddfSDavid du Colombier  * pass 2 are not upscaled, but are represented only to integral precision.
61*7dd7cddfSDavid du Colombier  *
62*7dd7cddfSDavid du Colombier  * A final compromise is to represent the multiplicative constants to only
63*7dd7cddfSDavid du Colombier  * 8 fractional bits, rather than 13.  This saves some shifting work on some
64*7dd7cddfSDavid du Colombier  * machines, and may also reduce the cost of multiplication (since there
65*7dd7cddfSDavid du Colombier  * are fewer one-bits in the constants).
66*7dd7cddfSDavid du Colombier  */
67*7dd7cddfSDavid du Colombier 
68*7dd7cddfSDavid du Colombier #define CONST_BITS  8
69*7dd7cddfSDavid du Colombier 
70*7dd7cddfSDavid du Colombier 
71*7dd7cddfSDavid du Colombier /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
72*7dd7cddfSDavid du Colombier  * causing a lot of useless floating-point operations at run time.
73*7dd7cddfSDavid du Colombier  * To get around this we use the following pre-calculated constants.
74*7dd7cddfSDavid du Colombier  * If you change CONST_BITS you may want to add appropriate values.
75*7dd7cddfSDavid du Colombier  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
76*7dd7cddfSDavid du Colombier  */
77*7dd7cddfSDavid du Colombier 
78*7dd7cddfSDavid du Colombier #if CONST_BITS == 8
79*7dd7cddfSDavid du Colombier #define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
80*7dd7cddfSDavid du Colombier #define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
81*7dd7cddfSDavid du Colombier #define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
82*7dd7cddfSDavid du Colombier #define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
83*7dd7cddfSDavid du Colombier #else
84*7dd7cddfSDavid du Colombier #define FIX_0_382683433  FIX(0.382683433)
85*7dd7cddfSDavid du Colombier #define FIX_0_541196100  FIX(0.541196100)
86*7dd7cddfSDavid du Colombier #define FIX_0_707106781  FIX(0.707106781)
87*7dd7cddfSDavid du Colombier #define FIX_1_306562965  FIX(1.306562965)
88*7dd7cddfSDavid du Colombier #endif
89*7dd7cddfSDavid du Colombier 
90*7dd7cddfSDavid du Colombier 
91*7dd7cddfSDavid du Colombier /* We can gain a little more speed, with a further compromise in accuracy,
92*7dd7cddfSDavid du Colombier  * by omitting the addition in a descaling shift.  This yields an incorrectly
93*7dd7cddfSDavid du Colombier  * rounded result half the time...
94*7dd7cddfSDavid du Colombier  */
95*7dd7cddfSDavid du Colombier 
96*7dd7cddfSDavid du Colombier #ifndef USE_ACCURATE_ROUNDING
97*7dd7cddfSDavid du Colombier #undef DESCALE
98*7dd7cddfSDavid du Colombier #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
99*7dd7cddfSDavid du Colombier #endif
100*7dd7cddfSDavid du Colombier 
101*7dd7cddfSDavid du Colombier 
102*7dd7cddfSDavid du Colombier /* Multiply a DCTELEM variable by an INT32 constant, and immediately
103*7dd7cddfSDavid du Colombier  * descale to yield a DCTELEM result.
104*7dd7cddfSDavid du Colombier  */
105*7dd7cddfSDavid du Colombier 
106*7dd7cddfSDavid du Colombier #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
107*7dd7cddfSDavid du Colombier 
108*7dd7cddfSDavid du Colombier 
109*7dd7cddfSDavid du Colombier /*
110*7dd7cddfSDavid du Colombier  * Perform the forward DCT on one block of samples.
111*7dd7cddfSDavid du Colombier  */
112*7dd7cddfSDavid du Colombier 
113*7dd7cddfSDavid du Colombier GLOBAL(void)
114*7dd7cddfSDavid du Colombier jpeg_fdct_ifast (DCTELEM * data)
115*7dd7cddfSDavid du Colombier {
116*7dd7cddfSDavid du Colombier   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
117*7dd7cddfSDavid du Colombier   DCTELEM tmp10, tmp11, tmp12, tmp13;
118*7dd7cddfSDavid du Colombier   DCTELEM z1, z2, z3, z4, z5, z11, z13;
119*7dd7cddfSDavid du Colombier   DCTELEM *dataptr;
120*7dd7cddfSDavid du Colombier   int ctr;
121*7dd7cddfSDavid du Colombier   SHIFT_TEMPS
122*7dd7cddfSDavid du Colombier 
123*7dd7cddfSDavid du Colombier   /* Pass 1: process rows. */
124*7dd7cddfSDavid du Colombier 
125*7dd7cddfSDavid du Colombier   dataptr = data;
126*7dd7cddfSDavid du Colombier   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
127*7dd7cddfSDavid du Colombier     tmp0 = dataptr[0] + dataptr[7];
128*7dd7cddfSDavid du Colombier     tmp7 = dataptr[0] - dataptr[7];
129*7dd7cddfSDavid du Colombier     tmp1 = dataptr[1] + dataptr[6];
130*7dd7cddfSDavid du Colombier     tmp6 = dataptr[1] - dataptr[6];
131*7dd7cddfSDavid du Colombier     tmp2 = dataptr[2] + dataptr[5];
132*7dd7cddfSDavid du Colombier     tmp5 = dataptr[2] - dataptr[5];
133*7dd7cddfSDavid du Colombier     tmp3 = dataptr[3] + dataptr[4];
134*7dd7cddfSDavid du Colombier     tmp4 = dataptr[3] - dataptr[4];
135*7dd7cddfSDavid du Colombier 
136*7dd7cddfSDavid du Colombier     /* Even part */
137*7dd7cddfSDavid du Colombier 
138*7dd7cddfSDavid du Colombier     tmp10 = tmp0 + tmp3;	/* phase 2 */
139*7dd7cddfSDavid du Colombier     tmp13 = tmp0 - tmp3;
140*7dd7cddfSDavid du Colombier     tmp11 = tmp1 + tmp2;
141*7dd7cddfSDavid du Colombier     tmp12 = tmp1 - tmp2;
142*7dd7cddfSDavid du Colombier 
143*7dd7cddfSDavid du Colombier     dataptr[0] = tmp10 + tmp11; /* phase 3 */
144*7dd7cddfSDavid du Colombier     dataptr[4] = tmp10 - tmp11;
145*7dd7cddfSDavid du Colombier 
146*7dd7cddfSDavid du Colombier     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
147*7dd7cddfSDavid du Colombier     dataptr[2] = tmp13 + z1;	/* phase 5 */
148*7dd7cddfSDavid du Colombier     dataptr[6] = tmp13 - z1;
149*7dd7cddfSDavid du Colombier 
150*7dd7cddfSDavid du Colombier     /* Odd part */
151*7dd7cddfSDavid du Colombier 
152*7dd7cddfSDavid du Colombier     tmp10 = tmp4 + tmp5;	/* phase 2 */
153*7dd7cddfSDavid du Colombier     tmp11 = tmp5 + tmp6;
154*7dd7cddfSDavid du Colombier     tmp12 = tmp6 + tmp7;
155*7dd7cddfSDavid du Colombier 
156*7dd7cddfSDavid du Colombier     /* The rotator is modified from fig 4-8 to avoid extra negations. */
157*7dd7cddfSDavid du Colombier     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
158*7dd7cddfSDavid du Colombier     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
159*7dd7cddfSDavid du Colombier     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
160*7dd7cddfSDavid du Colombier     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
161*7dd7cddfSDavid du Colombier 
162*7dd7cddfSDavid du Colombier     z11 = tmp7 + z3;		/* phase 5 */
163*7dd7cddfSDavid du Colombier     z13 = tmp7 - z3;
164*7dd7cddfSDavid du Colombier 
165*7dd7cddfSDavid du Colombier     dataptr[5] = z13 + z2;	/* phase 6 */
166*7dd7cddfSDavid du Colombier     dataptr[3] = z13 - z2;
167*7dd7cddfSDavid du Colombier     dataptr[1] = z11 + z4;
168*7dd7cddfSDavid du Colombier     dataptr[7] = z11 - z4;
169*7dd7cddfSDavid du Colombier 
170*7dd7cddfSDavid du Colombier     dataptr += DCTSIZE;		/* advance pointer to next row */
171*7dd7cddfSDavid du Colombier   }
172*7dd7cddfSDavid du Colombier 
173*7dd7cddfSDavid du Colombier   /* Pass 2: process columns. */
174*7dd7cddfSDavid du Colombier 
175*7dd7cddfSDavid du Colombier   dataptr = data;
176*7dd7cddfSDavid du Colombier   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
177*7dd7cddfSDavid du Colombier     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
178*7dd7cddfSDavid du Colombier     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
179*7dd7cddfSDavid du Colombier     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
180*7dd7cddfSDavid du Colombier     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
181*7dd7cddfSDavid du Colombier     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
182*7dd7cddfSDavid du Colombier     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
183*7dd7cddfSDavid du Colombier     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
184*7dd7cddfSDavid du Colombier     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
185*7dd7cddfSDavid du Colombier 
186*7dd7cddfSDavid du Colombier     /* Even part */
187*7dd7cddfSDavid du Colombier 
188*7dd7cddfSDavid du Colombier     tmp10 = tmp0 + tmp3;	/* phase 2 */
189*7dd7cddfSDavid du Colombier     tmp13 = tmp0 - tmp3;
190*7dd7cddfSDavid du Colombier     tmp11 = tmp1 + tmp2;
191*7dd7cddfSDavid du Colombier     tmp12 = tmp1 - tmp2;
192*7dd7cddfSDavid du Colombier 
193*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
194*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*4] = tmp10 - tmp11;
195*7dd7cddfSDavid du Colombier 
196*7dd7cddfSDavid du Colombier     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
197*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
198*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*6] = tmp13 - z1;
199*7dd7cddfSDavid du Colombier 
200*7dd7cddfSDavid du Colombier     /* Odd part */
201*7dd7cddfSDavid du Colombier 
202*7dd7cddfSDavid du Colombier     tmp10 = tmp4 + tmp5;	/* phase 2 */
203*7dd7cddfSDavid du Colombier     tmp11 = tmp5 + tmp6;
204*7dd7cddfSDavid du Colombier     tmp12 = tmp6 + tmp7;
205*7dd7cddfSDavid du Colombier 
206*7dd7cddfSDavid du Colombier     /* The rotator is modified from fig 4-8 to avoid extra negations. */
207*7dd7cddfSDavid du Colombier     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
208*7dd7cddfSDavid du Colombier     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
209*7dd7cddfSDavid du Colombier     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
210*7dd7cddfSDavid du Colombier     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
211*7dd7cddfSDavid du Colombier 
212*7dd7cddfSDavid du Colombier     z11 = tmp7 + z3;		/* phase 5 */
213*7dd7cddfSDavid du Colombier     z13 = tmp7 - z3;
214*7dd7cddfSDavid du Colombier 
215*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
216*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*3] = z13 - z2;
217*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*1] = z11 + z4;
218*7dd7cddfSDavid du Colombier     dataptr[DCTSIZE*7] = z11 - z4;
219*7dd7cddfSDavid du Colombier 
220*7dd7cddfSDavid du Colombier     dataptr++;			/* advance pointer to next column */
221*7dd7cddfSDavid du Colombier   }
222*7dd7cddfSDavid du Colombier }
223*7dd7cddfSDavid du Colombier 
224*7dd7cddfSDavid du Colombier #endif /* DCT_IFAST_SUPPORTED */
225