xref: /openbsd-src/sys/uvm/uvm_fault.c (revision d0fc3bb68efd6c434b4053cd7adb29023cbec341)
1 /*	$OpenBSD: uvm_fault.c,v 1.120 2021/03/26 13:40:05 mpi Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/percpu.h>
39 #include <sys/proc.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/tracepoint.h>
43 
44 #include <uvm/uvm.h>
45 
46 /*
47  *
48  * a word on page faults:
49  *
50  * types of page faults we handle:
51  *
52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
53  *
54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55  *    read/write1     write>1                  read/write   +-cow_write/zero
56  *         |             |                         |        |
57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60  *                                                 |        |    |
61  *      +-----+       +-----+                   +--|--+     | +--|--+
62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63  *      +-----+       +-----+                   +-----+       +-----+
64  *
65  * d/c = don't care
66  *
67  *   case [0]: layerless fault
68  *	no amap or uobj is present.   this is an error.
69  *
70  *   case [1]: upper layer fault [anon active]
71  *     1A: [read] or [write with anon->an_ref == 1]
72  *		I/O takes place in upper level anon and uobj is not touched.
73  *     1B: [write with anon->an_ref > 1]
74  *		new anon is alloc'd and data is copied off ["COW"]
75  *
76  *   case [2]: lower layer fault [uobj]
77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78  *		I/O takes place directly in object.
79  *     2B: [write to copy_on_write] or [read on NULL uobj]
80  *		data is "promoted" from uobj to a new anon.
81  *		if uobj is null, then we zero fill.
82  *
83  * we follow the standard UVM locking protocol ordering:
84  *
85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86  * we hold a PG_BUSY page if we unlock for I/O
87  *
88  *
89  * the code is structured as follows:
90  *
91  *     - init the "IN" params in the ufi structure
92  *   ReFault: (ERESTART returned to the loop in uvm_fault)
93  *     - do lookups [locks maps], check protection, handle needs_copy
94  *     - check for case 0 fault (error)
95  *     - establish "range" of fault
96  *     - if we have an amap lock it and extract the anons
97  *     - if sequential advice deactivate pages behind us
98  *     - at the same time check pmap for unmapped areas and anon for pages
99  *	 that we could map in (and do map it if found)
100  *     - check object for resident pages that we could map in
101  *     - if (case 2) goto Case2
102  *     - >>> handle case 1
103  *           - ensure source anon is resident in RAM
104  *           - if case 1B alloc new anon and copy from source
105  *           - map the correct page in
106  *   Case2:
107  *     - >>> handle case 2
108  *           - ensure source page is resident (if uobj)
109  *           - if case 2B alloc new anon and copy from source (could be zero
110  *		fill if uobj == NULL)
111  *           - map the correct page in
112  *     - done!
113  *
114  * note on paging:
115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
116  * unlock everything, and do the I/O.   when I/O is done we must reverify
117  * the state of the world before assuming that our data structures are
118  * valid.   [because mappings could change while the map is unlocked]
119  *
120  *  alternative 1: unbusy the page in question and restart the page fault
121  *    from the top (ReFault).   this is easy but does not take advantage
122  *    of the information that we already have from our previous lookup,
123  *    although it is possible that the "hints" in the vm_map will help here.
124  *
125  * alternative 2: the system already keeps track of a "version" number of
126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127  *    mapping) you bump the version number up by one...]   so, we can save
128  *    the version number of the map before we release the lock and start I/O.
129  *    then when I/O is done we can relock and check the version numbers
130  *    to see if anything changed.    this might save us some over 1 because
131  *    we don't have to unbusy the page and may be less compares(?).
132  *
133  * alternative 3: put in backpointers or a way to "hold" part of a map
134  *    in place while I/O is in progress.   this could be complex to
135  *    implement (especially with structures like amap that can be referenced
136  *    by multiple map entries, and figuring out what should wait could be
137  *    complex as well...).
138  *
139  * we use alternative 2.  given that we are multi-threaded now we may want
140  * to reconsider the choice.
141  */
142 
143 /*
144  * local data structures
145  */
146 struct uvm_advice {
147 	int nback;
148 	int nforw;
149 };
150 
151 /*
152  * page range array: set up in uvmfault_init().
153  */
154 static struct uvm_advice uvmadvice[MADV_MASK + 1];
155 
156 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157 
158 /*
159  * private prototypes
160  */
161 static void uvmfault_amapcopy(struct uvm_faultinfo *);
162 static inline void uvmfault_anonflush(struct vm_anon **, int);
163 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164 void	uvmfault_update_stats(struct uvm_faultinfo *);
165 
166 /*
167  * inline functions
168  */
169 /*
170  * uvmfault_anonflush: try and deactivate pages in specified anons
171  *
172  * => does not have to deactivate page if it is busy
173  */
174 static inline void
175 uvmfault_anonflush(struct vm_anon **anons, int n)
176 {
177 	int lcv;
178 	struct vm_page *pg;
179 
180 	for (lcv = 0; lcv < n; lcv++) {
181 		if (anons[lcv] == NULL)
182 			continue;
183 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
184 		pg = anons[lcv]->an_page;
185 		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
186 			uvm_lock_pageq();
187 			if (pg->wire_count == 0) {
188 				pmap_page_protect(pg, PROT_NONE);
189 				uvm_pagedeactivate(pg);
190 			}
191 			uvm_unlock_pageq();
192 		}
193 	}
194 }
195 
196 /*
197  * normal functions
198  */
199 /*
200  * uvmfault_init: compute proper values for the uvmadvice[] array.
201  */
202 void
203 uvmfault_init(void)
204 {
205 	int npages;
206 
207 	npages = atop(16384);
208 	if (npages > 0) {
209 		KASSERT(npages <= UVM_MAXRANGE / 2);
210 		uvmadvice[MADV_NORMAL].nforw = npages;
211 		uvmadvice[MADV_NORMAL].nback = npages - 1;
212 	}
213 
214 	npages = atop(32768);
215 	if (npages > 0) {
216 		KASSERT(npages <= UVM_MAXRANGE / 2);
217 		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
218 		uvmadvice[MADV_SEQUENTIAL].nback = npages;
219 	}
220 }
221 
222 /*
223  * uvmfault_amapcopy: clear "needs_copy" in a map.
224  *
225  * => called with VM data structures unlocked (usually, see below)
226  * => we get a write lock on the maps and clear needs_copy for a VA
227  * => if we are out of RAM we sleep (waiting for more)
228  */
229 static void
230 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
231 {
232 	for (;;) {
233 		/*
234 		 * no mapping?  give up.
235 		 */
236 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
237 			return;
238 
239 		/*
240 		 * copy if needed.
241 		 */
242 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
244 				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
245 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
246 
247 		/*
248 		 * didn't work?  must be out of RAM.   unlock and sleep.
249 		 */
250 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 			uvmfault_unlockmaps(ufi, TRUE);
252 			uvm_wait("fltamapcopy");
253 			continue;
254 		}
255 
256 		/*
257 		 * got it!   unlock and return.
258 		 */
259 		uvmfault_unlockmaps(ufi, TRUE);
260 		return;
261 	}
262 	/*NOTREACHED*/
263 }
264 
265 /*
266  * uvmfault_anonget: get data in an anon into a non-busy, non-released
267  * page in that anon.
268  *
269  * => Map, amap and thus anon should be locked by caller.
270  * => If we fail, we unlock everything and error is returned.
271  * => If we are successful, return with everything still locked.
272  * => We do not move the page on the queues [gets moved later].  If we
273  *    allocate a new page [we_own], it gets put on the queues.  Either way,
274  *    the result is that the page is on the queues at return time
275  */
276 int
277 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
278     struct vm_anon *anon)
279 {
280 	struct vm_page *pg;
281 	int error;
282 
283 	KASSERT(rw_lock_held(anon->an_lock));
284 	KASSERT(anon->an_lock == amap->am_lock);
285 
286 	/* Increment the counters.*/
287 	counters_inc(uvmexp_counters, flt_anget);
288 	if (anon->an_page) {
289 		curproc->p_ru.ru_minflt++;
290 	} else {
291 		curproc->p_ru.ru_majflt++;
292 	}
293 	error = 0;
294 
295 	/*
296 	 * Loop until we get the anon data, or fail.
297 	 */
298 	for (;;) {
299 		boolean_t we_own, locked;
300 		/*
301 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
302 		 */
303 		we_own = FALSE;
304 		pg = anon->an_page;
305 
306 		/*
307 		 * Is page resident?  Make sure it is not busy/released.
308 		 */
309 		if (pg) {
310 			KASSERT(pg->pg_flags & PQ_ANON);
311 			KASSERT(pg->uanon == anon);
312 
313 			/*
314 			 * if the page is busy, we drop all the locks and
315 			 * try again.
316 			 */
317 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
318 				return (VM_PAGER_OK);
319 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
320 			counters_inc(uvmexp_counters, flt_pgwait);
321 
322 			/*
323 			 * The last unlock must be an atomic unlock and wait
324 			 * on the owner of page.
325 			 */
326 			if (pg->uobject) {
327 				/* Owner of page is UVM object. */
328 				uvmfault_unlockall(ufi, amap, NULL);
329 				tsleep_nsec(pg, PVM, "anonget1", INFSLP);
330 			} else {
331 				/* Owner of page is anon. */
332 				uvmfault_unlockall(ufi, NULL, NULL);
333 				rwsleep_nsec(pg, anon->an_lock, PVM | PNORELOCK,
334 				    "anonget2", INFSLP);
335 			}
336 		} else {
337 			/*
338 			 * No page, therefore allocate one.
339 			 */
340 			pg = uvm_pagealloc(NULL, 0, anon, 0);
341 			if (pg == NULL) {
342 				/* Out of memory.  Wait a little. */
343 				uvmfault_unlockall(ufi, amap, NULL);
344 				counters_inc(uvmexp_counters, flt_noram);
345 				uvm_wait("flt_noram1");
346 			} else {
347 				/* PG_BUSY bit is set. */
348 				we_own = TRUE;
349 				uvmfault_unlockall(ufi, amap, NULL);
350 
351 				/*
352 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
353 				 * the uvm_swap_get() function with all data
354 				 * structures unlocked.  Note that it is OK
355 				 * to read an_swslot here, because we hold
356 				 * PG_BUSY on the page.
357 				 */
358 				counters_inc(uvmexp_counters, pageins);
359 				error = uvm_swap_get(pg, anon->an_swslot,
360 				    PGO_SYNCIO);
361 
362 				/*
363 				 * We clean up after the I/O below in the
364 				 * 'we_own' case.
365 				 */
366 			}
367 		}
368 
369 		/*
370 		 * Re-lock the map and anon.
371 		 */
372 		locked = uvmfault_relock(ufi);
373 		if (locked || we_own) {
374 			rw_enter(anon->an_lock, RW_WRITE);
375 		}
376 
377 		/*
378 		 * If we own the page (i.e. we set PG_BUSY), then we need
379 		 * to clean up after the I/O.  There are three cases to
380 		 * consider:
381 		 *
382 		 * 1) Page was released during I/O: free anon and ReFault.
383 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
384 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
385 		 *    case (i.e. drop anon lock if not locked).
386 		 */
387 		if (we_own) {
388 			if (pg->pg_flags & PG_WANTED) {
389 				wakeup(pg);
390 			}
391 			/* un-busy! */
392 			atomic_clearbits_int(&pg->pg_flags,
393 			    PG_WANTED|PG_BUSY|PG_FAKE);
394 			UVM_PAGE_OWN(pg, NULL);
395 
396 			/*
397 			 * if we were RELEASED during I/O, then our anon is
398 			 * no longer part of an amap.   we need to free the
399 			 * anon and try again.
400 			 */
401 			if (pg->pg_flags & PG_RELEASED) {
402 				pmap_page_protect(pg, PROT_NONE);
403 				KASSERT(anon->an_ref == 0);
404 				/*
405 				 * Released while we had unlocked amap.
406 				 */
407 				if (locked)
408 					uvmfault_unlockall(ufi, NULL, NULL);
409 				uvm_anon_release(anon);	/* frees page for us */
410 				counters_inc(uvmexp_counters, flt_pgrele);
411 				return (VM_PAGER_REFAULT);	/* refault! */
412 			}
413 
414 			if (error != VM_PAGER_OK) {
415 				KASSERT(error != VM_PAGER_PEND);
416 
417 				/* remove page from anon */
418 				anon->an_page = NULL;
419 
420 				/*
421 				 * Remove the swap slot from the anon and
422 				 * mark the anon as having no real slot.
423 				 * Do not free the swap slot, thus preventing
424 				 * it from being used again.
425 				 */
426 				uvm_swap_markbad(anon->an_swslot, 1);
427 				anon->an_swslot = SWSLOT_BAD;
428 
429 				/*
430 				 * Note: page was never !PG_BUSY, so it
431 				 * cannot be mapped and thus no need to
432 				 * pmap_page_protect() it.
433 				 */
434 				uvm_lock_pageq();
435 				uvm_pagefree(pg);
436 				uvm_unlock_pageq();
437 
438 				if (locked) {
439 					uvmfault_unlockall(ufi, NULL, NULL);
440 				}
441 				rw_exit(anon->an_lock);
442 				return (VM_PAGER_ERROR);
443 			}
444 
445 			/*
446 			 * We have successfully read the page, activate it.
447 			 */
448 			pmap_clear_modify(pg);
449 			uvm_lock_pageq();
450 			uvm_pageactivate(pg);
451 			uvm_unlock_pageq();
452 		}
453 
454 		/*
455 		 * We were not able to re-lock the map - restart the fault.
456 		 */
457 		if (!locked) {
458 			if (we_own) {
459 				rw_exit(anon->an_lock);
460 			}
461 			return (VM_PAGER_REFAULT);
462 		}
463 
464 		/*
465 		 * Verify that no one has touched the amap and moved
466 		 * the anon on us.
467 		 */
468 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
469 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
470 
471 			uvmfault_unlockall(ufi, amap, NULL);
472 			return (VM_PAGER_REFAULT);
473 		}
474 
475 		/*
476 		 * Retry..
477 		 */
478 		counters_inc(uvmexp_counters, flt_anretry);
479 		continue;
480 
481 	}
482 	/*NOTREACHED*/
483 }
484 
485 /*
486  * Update statistics after fault resolution.
487  * - maxrss
488  */
489 void
490 uvmfault_update_stats(struct uvm_faultinfo *ufi)
491 {
492 	struct vm_map		*map;
493 	struct proc		*p;
494 	vsize_t			 res;
495 
496 	map = ufi->orig_map;
497 
498 	/*
499 	 * If this is a nested pmap (eg, a virtual machine pmap managed
500 	 * by vmm(4) on amd64/i386), don't do any updating, just return.
501 	 *
502 	 * pmap_nested() on other archs is #defined to 0, so this is a
503 	 * no-op.
504 	 */
505 	if (pmap_nested(map->pmap))
506 		return;
507 
508 	/* Update the maxrss for the process. */
509 	if (map->flags & VM_MAP_ISVMSPACE) {
510 		p = curproc;
511 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
512 
513 		res = pmap_resident_count(map->pmap);
514 		/* Convert res from pages to kilobytes. */
515 		res <<= (PAGE_SHIFT - 10);
516 
517 		if (p->p_ru.ru_maxrss < res)
518 			p->p_ru.ru_maxrss = res;
519 	}
520 }
521 
522 /*
523  *   F A U L T   -   m a i n   e n t r y   p o i n t
524  */
525 
526 /*
527  * uvm_fault: page fault handler
528  *
529  * => called from MD code to resolve a page fault
530  * => VM data structures usually should be unlocked.   however, it is
531  *	possible to call here with the main map locked if the caller
532  *	gets a write lock, sets it recursive, and then calls us (c.f.
533  *	uvm_map_pageable).   this should be avoided because it keeps
534  *	the map locked off during I/O.
535  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
536  */
537 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
538 			 ~PROT_WRITE : PROT_MASK)
539 struct uvm_faultctx {
540 	/*
541 	 * the following members are set up by uvm_fault_check() and
542 	 * read-only after that.
543 	 */
544 	vm_prot_t enter_prot;
545 	vm_prot_t access_type;
546 	vaddr_t startva;
547 	int npages;
548 	int centeridx;
549 	boolean_t narrow;
550 	boolean_t wired;
551 	paddr_t pa_flags;
552 };
553 
554 int		uvm_fault_check(
555 		    struct uvm_faultinfo *, struct uvm_faultctx *,
556 		    struct vm_anon ***);
557 
558 int		uvm_fault_upper(
559 		    struct uvm_faultinfo *, struct uvm_faultctx *,
560 		    struct vm_anon **, vm_fault_t);
561 boolean_t	uvm_fault_upper_lookup(
562 		    struct uvm_faultinfo *, const struct uvm_faultctx *,
563 		    struct vm_anon **, struct vm_page **);
564 
565 int		uvm_fault_lower(
566 		    struct uvm_faultinfo *, struct uvm_faultctx *,
567 		    struct vm_page **, vm_fault_t);
568 
569 int
570 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
571     vm_prot_t access_type)
572 {
573 	struct uvm_faultinfo ufi;
574 	struct uvm_faultctx flt;
575 	boolean_t shadowed;
576 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
577 	struct vm_page *pages[UVM_MAXRANGE];
578 	int error;
579 
580 	counters_inc(uvmexp_counters, faults);
581 	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);
582 
583 	/*
584 	 * init the IN parameters in the ufi
585 	 */
586 	ufi.orig_map = orig_map;
587 	ufi.orig_rvaddr = trunc_page(vaddr);
588 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
589 	if (fault_type == VM_FAULT_WIRE)
590 		flt.narrow = TRUE;	/* don't look for neighborhood
591 					 * pages on wire */
592 	else
593 		flt.narrow = FALSE;	/* normal fault */
594 	flt.access_type = access_type;
595 
596 
597 	error = ERESTART;
598 	while (error == ERESTART) { /* ReFault: */
599 		anons = anons_store;
600 
601 		error = uvm_fault_check(&ufi, &flt, &anons);
602 		if (error != 0)
603 			continue;
604 
605 		/* True if there is an anon at the faulting address */
606 		shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
607 		if (shadowed == TRUE) {
608 			/* case 1: fault on an anon in our amap */
609 			error = uvm_fault_upper(&ufi, &flt, anons, fault_type);
610 		} else {
611 			struct uvm_object *uobj = ufi.entry->object.uvm_obj;
612 
613 			/*
614 			 * if the desired page is not shadowed by the amap and
615 			 * we have a backing object, then we check to see if
616 			 * the backing object would prefer to handle the fault
617 			 * itself (rather than letting us do it with the usual
618 			 * pgo_get hook).  the backing object signals this by
619 			 * providing a pgo_fault routine.
620 			 */
621 			if (uobj != NULL && uobj->pgops->pgo_fault != NULL) {
622 				KERNEL_LOCK();
623 				error = uobj->pgops->pgo_fault(&ufi,
624 				    flt.startva, pages, flt.npages,
625 				    flt.centeridx, fault_type, flt.access_type,
626 				    PGO_LOCKED);
627 				KERNEL_UNLOCK();
628 
629 				if (error == VM_PAGER_OK)
630 					error = 0;
631 				else if (error == VM_PAGER_REFAULT)
632 					error = ERESTART;
633 				else
634 					error = EACCES;
635 			} else {
636 				/* case 2: fault on backing obj or zero fill */
637 				KERNEL_LOCK();
638 				error = uvm_fault_lower(&ufi, &flt, pages,
639 				    fault_type);
640 				KERNEL_UNLOCK();
641 			}
642 		}
643 	}
644 
645 	return error;
646 }
647 
648 /*
649  * uvm_fault_check: check prot, handle needs-copy, etc.
650  *
651  *	1. lookup entry.
652  *	2. check protection.
653  *	3. adjust fault condition (mainly for simulated fault).
654  *	4. handle needs-copy (lazy amap copy).
655  *	5. establish range of interest for neighbor fault (aka pre-fault).
656  *	6. look up anons (if amap exists).
657  *	7. flush pages (if MADV_SEQUENTIAL)
658  *
659  * => called with nothing locked.
660  * => if we fail (result != 0) we unlock everything.
661  * => initialize/adjust many members of flt.
662  */
663 int
664 uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
665     struct vm_anon ***ranons)
666 {
667 	struct vm_amap *amap;
668 	struct uvm_object *uobj;
669 	int nback, nforw;
670 
671 	/*
672 	 * lookup and lock the maps
673 	 */
674 	if (uvmfault_lookup(ufi, FALSE) == FALSE) {
675 		return EFAULT;
676 	}
677 	/* locked: maps(read) */
678 
679 #ifdef DIAGNOSTIC
680 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0)
681 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
682 		    ufi->map, ufi->orig_rvaddr);
683 #endif
684 
685 	/*
686 	 * check protection
687 	 */
688 	if ((ufi->entry->protection & flt->access_type) != flt->access_type) {
689 		uvmfault_unlockmaps(ufi, FALSE);
690 		return EACCES;
691 	}
692 
693 	/*
694 	 * "enter_prot" is the protection we want to enter the page in at.
695 	 * for certain pages (e.g. copy-on-write pages) this protection can
696 	 * be more strict than ufi->entry->protection.  "wired" means either
697 	 * the entry is wired or we are fault-wiring the pg.
698 	 */
699 
700 	flt->enter_prot = ufi->entry->protection;
701 	flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0;
702 	flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || (flt->narrow == TRUE);
703 	if (flt->wired)
704 		flt->access_type = flt->enter_prot; /* full access for wired */
705 
706 	/* handle "needs_copy" case. */
707 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
708 		if ((flt->access_type & PROT_WRITE) ||
709 		    (ufi->entry->object.uvm_obj == NULL)) {
710 			/* need to clear */
711 			uvmfault_unlockmaps(ufi, FALSE);
712 			uvmfault_amapcopy(ufi);
713 			counters_inc(uvmexp_counters, flt_amcopy);
714 			return ERESTART;
715 		} else {
716 			/*
717 			 * ensure that we pmap_enter page R/O since
718 			 * needs_copy is still true
719 			 */
720 			flt->enter_prot &= ~PROT_WRITE;
721 		}
722 	}
723 
724 	/*
725 	 * identify the players
726 	 */
727 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
728 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
729 
730 	/*
731 	 * check for a case 0 fault.  if nothing backing the entry then
732 	 * error now.
733 	 */
734 	if (amap == NULL && uobj == NULL) {
735 		uvmfault_unlockmaps(ufi, FALSE);
736 		return EFAULT;
737 	}
738 
739 	/*
740 	 * establish range of interest based on advice from mapper
741 	 * and then clip to fit map entry.   note that we only want
742 	 * to do this the first time through the fault.   if we
743 	 * ReFault we will disable this by setting "narrow" to true.
744 	 */
745 	if (flt->narrow == FALSE) {
746 
747 		/* wide fault (!narrow) */
748 		nback = min(uvmadvice[ufi->entry->advice].nback,
749 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
750 		flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
751 		nforw = min(uvmadvice[ufi->entry->advice].nforw,
752 		    ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1);
753 		/*
754 		 * note: "-1" because we don't want to count the
755 		 * faulting page as forw
756 		 */
757 		flt->npages = nback + nforw + 1;
758 		flt->centeridx = nback;
759 
760 		flt->narrow = TRUE;	/* ensure only once per-fault */
761 	} else {
762 		/* narrow fault! */
763 		nback = nforw = 0;
764 		flt->startva = ufi->orig_rvaddr;
765 		flt->npages = 1;
766 		flt->centeridx = 0;
767 	}
768 
769 	/*
770 	 * if we've got an amap then lock it and extract current anons.
771 	 */
772 	if (amap) {
773 		amap_lock(amap);
774 		amap_lookups(&ufi->entry->aref,
775 		    flt->startva - ufi->entry->start, *ranons, flt->npages);
776 	} else {
777 		*ranons = NULL;	/* to be safe */
778 	}
779 
780 	/*
781 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
782 	 * now and then forget about them (for the rest of the fault).
783 	 */
784 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
785 		/* flush back-page anons? */
786 		if (amap)
787 			uvmfault_anonflush(*ranons, nback);
788 
789 		/*
790 		 * flush object?
791 		 */
792 		if (uobj) {
793 			voff_t uoff;
794 
795 			uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset;
796 			KERNEL_LOCK();
797 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
798 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
799 			KERNEL_UNLOCK();
800 		}
801 
802 		/* now forget about the backpages */
803 		if (amap)
804 			*ranons += nback;
805 		flt->startva += ((vsize_t)nback << PAGE_SHIFT);
806 		flt->npages -= nback;
807 		flt->centeridx = 0;
808 	}
809 
810 	return 0;
811 }
812 
813 /*
814  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
815  *
816  * iterate range of interest:
817  *	1. check if h/w mapping exists.  if yes, we don't care
818  *	2. check if anon exists.  if not, page is lower.
819  *	3. if anon exists, enter h/w mapping for neighbors.
820  *
821  * => called with amap locked (if exists).
822  */
823 boolean_t
824 uvm_fault_upper_lookup(struct uvm_faultinfo *ufi,
825     const struct uvm_faultctx *flt, struct vm_anon **anons,
826     struct vm_page **pages)
827 {
828 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
829 	struct vm_anon *anon;
830 	boolean_t shadowed;
831 	vaddr_t currva;
832 	paddr_t pa;
833 	int lcv;
834 
835 	/* locked: maps(read), amap(if there) */
836 	KASSERT(amap == NULL ||
837 	    rw_write_held(amap->am_lock));
838 
839 	/*
840 	 * map in the backpages and frontpages we found in the amap in hopes
841 	 * of preventing future faults.    we also init the pages[] array as
842 	 * we go.
843 	 */
844 	currva = flt->startva;
845 	shadowed = FALSE;
846 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
847 		/*
848 		 * dont play with VAs that are already mapped
849 		 * except for center)
850 		 */
851 		if (lcv != flt->centeridx &&
852 		    pmap_extract(ufi->orig_map->pmap, currva, &pa)) {
853 			pages[lcv] = PGO_DONTCARE;
854 			continue;
855 		}
856 
857 		/*
858 		 * unmapped or center page.   check if any anon at this level.
859 		 */
860 		if (amap == NULL || anons[lcv] == NULL) {
861 			pages[lcv] = NULL;
862 			continue;
863 		}
864 
865 		/*
866 		 * check for present page and map if possible.
867 		 */
868 		pages[lcv] = PGO_DONTCARE;
869 		if (lcv == flt->centeridx) {	/* save center for later! */
870 			shadowed = TRUE;
871 			continue;
872 		}
873 		anon = anons[lcv];
874 		KASSERT(anon->an_lock == amap->am_lock);
875 		if (anon->an_page &&
876 		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
877 			uvm_lock_pageq();
878 			uvm_pageactivate(anon->an_page);	/* reactivate */
879 			uvm_unlock_pageq();
880 			counters_inc(uvmexp_counters, flt_namap);
881 
882 			/*
883 			 * Since this isn't the page that's actually faulting,
884 			 * ignore pmap_enter() failures; it's not critical
885 			 * that we enter these right now.
886 			 */
887 			(void) pmap_enter(ufi->orig_map->pmap, currva,
888 			    VM_PAGE_TO_PHYS(anon->an_page) | flt->pa_flags,
889 			    (anon->an_ref > 1) ?
890 			    (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot,
891 			    PMAP_CANFAIL |
892 			     (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
893 		}
894 	}
895 	if (flt->npages > 1)
896 		pmap_update(ufi->orig_map->pmap);
897 
898 	return shadowed;
899 }
900 
901 /*
902  * uvm_fault_upper: handle upper fault.
903  *
904  *	1. acquire anon lock.
905  *	2. get anon.  let uvmfault_anonget do the dirty work.
906  *	3. if COW, promote data to new anon
907  *	4. enter h/w mapping
908  */
909 int
910 uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
911    struct vm_anon **anons, vm_fault_t fault_type)
912 {
913 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
914 	struct vm_anon *oanon, *anon = anons[flt->centeridx];
915 	struct vm_page *pg = NULL;
916 	int error, ret;
917 
918 	/* locked: maps(read), amap, anon */
919 	KASSERT(rw_write_held(amap->am_lock));
920 	KASSERT(anon->an_lock == amap->am_lock);
921 
922 	/*
923 	 * no matter if we have case 1A or case 1B we are going to need to
924 	 * have the anon's memory resident.   ensure that now.
925 	 */
926 	/*
927 	 * let uvmfault_anonget do the dirty work.
928 	 * if it fails (!OK) it will unlock everything for us.
929 	 * if it succeeds, locks are still valid and locked.
930 	 * also, if it is OK, then the anon's page is on the queues.
931 	 * if the page is on loan from a uvm_object, then anonget will
932 	 * lock that object for us if it does not fail.
933 	 */
934 	error = uvmfault_anonget(ufi, amap, anon);
935 	switch (error) {
936 	case VM_PAGER_OK:
937 		break;
938 
939 	case VM_PAGER_REFAULT:
940 		return ERESTART;
941 
942 	case VM_PAGER_ERROR:
943 		/*
944 		 * An error occurred while trying to bring in the
945 		 * page -- this is the only error we return right
946 		 * now.
947 		 */
948 		return EACCES;	/* XXX */
949 	default:
950 #ifdef DIAGNOSTIC
951 		panic("uvm_fault: uvmfault_anonget -> %d", error);
952 #else
953 		return EACCES;
954 #endif
955 	}
956 
957 	KASSERT(rw_write_held(amap->am_lock));
958 	KASSERT(anon->an_lock == amap->am_lock);
959 
960 	/*
961 	 * if we are case 1B then we will need to allocate a new blank
962 	 * anon to transfer the data into.   note that we have a lock
963 	 * on anon, so no one can busy or release the page until we are done.
964 	 * also note that the ref count can't drop to zero here because
965 	 * it is > 1 and we are only dropping one ref.
966 	 *
967 	 * in the (hopefully very rare) case that we are out of RAM we
968 	 * will unlock, wait for more RAM, and refault.
969 	 *
970 	 * if we are out of anon VM we wait for RAM to become available.
971 	 */
972 
973 	if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
974 		counters_inc(uvmexp_counters, flt_acow);
975 		oanon = anon;		/* oanon = old */
976 		anon = uvm_analloc();
977 		if (anon) {
978 			anon->an_lock = amap->am_lock;
979 			pg = uvm_pagealloc(NULL, 0, anon, 0);
980 		}
981 
982 		/* check for out of RAM */
983 		if (anon == NULL || pg == NULL) {
984 			uvmfault_unlockall(ufi, amap, NULL);
985 			if (anon == NULL)
986 				counters_inc(uvmexp_counters, flt_noanon);
987 			else {
988 				anon->an_lock = NULL;
989 				anon->an_ref--;
990 				uvm_anfree(anon);
991 				counters_inc(uvmexp_counters, flt_noram);
992 			}
993 
994 			if (uvm_swapisfull())
995 				return ENOMEM;
996 
997 			/* out of RAM, wait for more */
998 			if (anon == NULL)
999 				uvm_anwait();
1000 			else
1001 				uvm_wait("flt_noram3");
1002 			return ERESTART;
1003 		}
1004 
1005 		/* got all resources, replace anon with nanon */
1006 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
1007 		/* un-busy! new page */
1008 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
1009 		UVM_PAGE_OWN(pg, NULL);
1010 		ret = amap_add(&ufi->entry->aref,
1011 		    ufi->orig_rvaddr - ufi->entry->start, anon, 1);
1012 		KASSERT(ret == 0);
1013 
1014 		/* deref: can not drop to zero here by defn! */
1015 		oanon->an_ref--;
1016 
1017 		/*
1018 		 * note: anon is _not_ locked, but we have the sole references
1019 		 * to in from amap.
1020 		 * thus, no one can get at it until we are done with it.
1021 		 */
1022 	} else {
1023 		counters_inc(uvmexp_counters, flt_anon);
1024 		oanon = anon;
1025 		pg = anon->an_page;
1026 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1027 			flt->enter_prot = flt->enter_prot & ~PROT_WRITE;
1028 	}
1029 
1030 	/*
1031 	 * now map the page in .
1032 	 */
1033 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1034 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1035 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1036 		/*
1037 		 * No need to undo what we did; we can simply think of
1038 		 * this as the pmap throwing away the mapping information.
1039 		 *
1040 		 * We do, however, have to go through the ReFault path,
1041 		 * as the map may change while we're asleep.
1042 		 */
1043 		uvmfault_unlockall(ufi, amap, NULL);
1044 		if (uvm_swapisfull()) {
1045 			/* XXX instrumentation */
1046 			return ENOMEM;
1047 		}
1048 		/* XXX instrumentation */
1049 		uvm_wait("flt_pmfail1");
1050 		return ERESTART;
1051 	}
1052 
1053 	/*
1054 	 * ... update the page queues.
1055 	 */
1056 	uvm_lock_pageq();
1057 
1058 	if (fault_type == VM_FAULT_WIRE) {
1059 		uvm_pagewire(pg);
1060 		/*
1061 		 * since the now-wired page cannot be paged out,
1062 		 * release its swap resources for others to use.
1063 		 * since an anon with no swap cannot be PG_CLEAN,
1064 		 * clear its clean flag now.
1065 		 */
1066 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1067 		uvm_anon_dropswap(anon);
1068 	} else {
1069 		/* activate it */
1070 		uvm_pageactivate(pg);
1071 	}
1072 
1073 	uvm_unlock_pageq();
1074 
1075 	/*
1076 	 * done case 1!  finish up by unlocking everything and returning success
1077 	 */
1078 	uvmfault_unlockall(ufi, amap, NULL);
1079 	pmap_update(ufi->orig_map->pmap);
1080 	return 0;
1081 }
1082 
1083 /*
1084  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1085  *
1086  *	1. get on-memory pages.
1087  *	2. if failed, give up (get only center page later).
1088  *	3. if succeeded, enter h/w mapping of neighbor pages.
1089  */
1090 
1091 struct vm_page *
1092 uvm_fault_lower_lookup(
1093 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1094 	struct vm_page **pages)
1095 {
1096 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1097 	struct vm_page *uobjpage = NULL;
1098 	int lcv, gotpages;
1099 	vaddr_t currva;
1100 
1101 	counters_inc(uvmexp_counters, flt_lget);
1102 	gotpages = flt->npages;
1103 	(void) uobj->pgops->pgo_get(uobj,
1104 	    ufi->entry->offset + (flt->startva - ufi->entry->start),
1105 	    pages, &gotpages, flt->centeridx,
1106 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1107 	    PGO_LOCKED);
1108 
1109 	/*
1110 	 * check for pages to map, if we got any
1111 	 */
1112 	if (gotpages == 0) {
1113 		return NULL;
1114 	}
1115 
1116 	currva = flt->startva;
1117 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1118 		if (pages[lcv] == NULL ||
1119 		    pages[lcv] == PGO_DONTCARE)
1120 			continue;
1121 
1122 		KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
1123 
1124 		/*
1125 		 * if center page is resident and not
1126 		 * PG_BUSY, then pgo_get made it PG_BUSY
1127 		 * for us and gave us a handle to it.
1128 		 * remember this page as "uobjpage."
1129 		 * (for later use).
1130 		 */
1131 		if (lcv == flt->centeridx) {
1132 			uobjpage = pages[lcv];
1133 			continue;
1134 		}
1135 
1136 		/*
1137 		 * note: calling pgo_get with locked data
1138 		 * structures returns us pages which are
1139 		 * neither busy nor released, so we don't
1140 		 * need to check for this.   we can just
1141 		 * directly enter the page (after moving it
1142 		 * to the head of the active queue [useful?]).
1143 		 */
1144 
1145 		uvm_lock_pageq();
1146 		uvm_pageactivate(pages[lcv]);	/* reactivate */
1147 		uvm_unlock_pageq();
1148 		counters_inc(uvmexp_counters, flt_nomap);
1149 
1150 		/*
1151 		 * Since this page isn't the page that's
1152 		 * actually faulting, ignore pmap_enter()
1153 		 * failures; it's not critical that we
1154 		 * enter these right now.
1155 		 */
1156 		(void) pmap_enter(ufi->orig_map->pmap, currva,
1157 		    VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags,
1158 		    flt->enter_prot & MASK(ufi->entry),
1159 		    PMAP_CANFAIL |
1160 		     (flt->wired ? PMAP_WIRED : 0));
1161 
1162 		/*
1163 		 * NOTE: page can't be PG_WANTED because
1164 		 * we've held the lock the whole time
1165 		 * we've had the handle.
1166 		 */
1167 		atomic_clearbits_int(&pages[lcv]->pg_flags, PG_BUSY);
1168 		UVM_PAGE_OWN(pages[lcv], NULL);
1169 	}
1170 	pmap_update(ufi->orig_map->pmap);
1171 
1172 	return uobjpage;
1173 }
1174 
1175 /*
1176  * uvm_fault_lower: handle lower fault.
1177  *
1178  */
1179 int
1180 uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1181    struct vm_page **pages, vm_fault_t fault_type)
1182 {
1183 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1184 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1185 	boolean_t promote, locked;
1186 	int result;
1187 	struct vm_page *uobjpage, *pg = NULL;
1188 	struct vm_anon *anon = NULL;
1189 	voff_t uoff;
1190 
1191 	/*
1192 	 * now, if the desired page is not shadowed by the amap and we have
1193 	 * a backing object that does not have a special fault routine, then
1194 	 * we ask (with pgo_get) the object for resident pages that we care
1195 	 * about and attempt to map them in.  we do not let pgo_get block
1196 	 * (PGO_LOCKED).
1197 	 */
1198 	if (uobj == NULL) {
1199 		/* zero fill; don't care neighbor pages */
1200 		uobjpage = NULL;
1201 	} else {
1202 		uobjpage = uvm_fault_lower_lookup(ufi, flt, pages);
1203 	}
1204 
1205 	/*
1206 	 * note that at this point we are done with any front or back pages.
1207 	 * we are now going to focus on the center page (i.e. the one we've
1208 	 * faulted on).  if we have faulted on the bottom (uobj)
1209 	 * layer [i.e. case 2] and the page was both present and available,
1210 	 * then we've got a pointer to it as "uobjpage" and we've already
1211 	 * made it BUSY.
1212 	 */
1213 
1214 	/*
1215 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1216 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1217 	 * have a backing object, check and see if we are going to promote
1218 	 * the data up to an anon during the fault.
1219 	 */
1220 	if (uobj == NULL) {
1221 		uobjpage = PGO_DONTCARE;
1222 		promote = TRUE;		/* always need anon here */
1223 	} else {
1224 		KASSERT(uobjpage != PGO_DONTCARE);
1225 		promote = (flt->access_type & PROT_WRITE) &&
1226 		     UVM_ET_ISCOPYONWRITE(ufi->entry);
1227 	}
1228 
1229 	/*
1230 	 * if uobjpage is not null then we do not need to do I/O to get the
1231 	 * uobjpage.
1232 	 *
1233 	 * if uobjpage is null, then we need to ask the pager to
1234 	 * get the data for us.   once we have the data, we need to reverify
1235 	 * the state the world.   we are currently not holding any resources.
1236 	 */
1237 	if (uobjpage) {
1238 		/* update rusage counters */
1239 		curproc->p_ru.ru_minflt++;
1240 	} else {
1241 		int gotpages;
1242 
1243 		/* update rusage counters */
1244 		curproc->p_ru.ru_majflt++;
1245 
1246 		uvmfault_unlockall(ufi, amap, NULL);
1247 
1248 		counters_inc(uvmexp_counters, flt_get);
1249 		gotpages = 1;
1250 		uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1251 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1252 		    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1253 		    PGO_SYNCIO);
1254 
1255 		/*
1256 		 * recover from I/O
1257 		 */
1258 		if (result != VM_PAGER_OK) {
1259 			KASSERT(result != VM_PAGER_PEND);
1260 
1261 			if (result == VM_PAGER_AGAIN) {
1262 				tsleep_nsec(&nowake, PVM, "fltagain2",
1263 				    SEC_TO_NSEC(1));
1264 				return ERESTART;
1265 			}
1266 
1267 			if (!UVM_ET_ISNOFAULT(ufi->entry))
1268 				return (EIO);
1269 
1270 			uobjpage = PGO_DONTCARE;
1271 			promote = TRUE;
1272 		}
1273 
1274 		/* re-verify the state of the world.  */
1275 		locked = uvmfault_relock(ufi);
1276 		if (locked && amap != NULL)
1277 			amap_lock(amap);
1278 
1279 		/*
1280 		 * Re-verify that amap slot is still free. if there is
1281 		 * a problem, we clean up.
1282 		 */
1283 		if (locked && amap && amap_lookup(&ufi->entry->aref,
1284 		      ufi->orig_rvaddr - ufi->entry->start)) {
1285 			if (locked)
1286 				uvmfault_unlockall(ufi, amap, NULL);
1287 			locked = FALSE;
1288 		}
1289 
1290 		/* didn't get the lock?   release the page and retry. */
1291 		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
1292 			uvm_lock_pageq();
1293 			/* make sure it is in queues */
1294 			uvm_pageactivate(uobjpage);
1295 			uvm_unlock_pageq();
1296 
1297 			if (uobjpage->pg_flags & PG_WANTED)
1298 				/* still holding object lock */
1299 				wakeup(uobjpage);
1300 			atomic_clearbits_int(&uobjpage->pg_flags,
1301 			    PG_BUSY|PG_WANTED);
1302 			UVM_PAGE_OWN(uobjpage, NULL);
1303 			return ERESTART;
1304 		}
1305 		if (locked == FALSE)
1306 			return ERESTART;
1307 
1308 		/*
1309 		 * we have the data in uobjpage which is PG_BUSY
1310 		 */
1311 	}
1312 
1313 	/*
1314 	 * notes:
1315 	 *  - at this point uobjpage can not be NULL
1316 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1317 	 */
1318 	if (promote == FALSE) {
1319 		/*
1320 		 * we are not promoting.   if the mapping is COW ensure that we
1321 		 * don't give more access than we should (e.g. when doing a read
1322 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1323 		 * R/O even though the entry protection could be R/W).
1324 		 *
1325 		 * set "pg" to the page we want to map in (uobjpage, usually)
1326 		 */
1327 		counters_inc(uvmexp_counters, flt_obj);
1328 		if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1329 			flt->enter_prot &= ~PROT_WRITE;
1330 		pg = uobjpage;		/* map in the actual object */
1331 
1332 		/* assert(uobjpage != PGO_DONTCARE) */
1333 
1334 		/*
1335 		 * we are faulting directly on the page.
1336 		 */
1337 	} else {
1338 		/*
1339 		 * if we are going to promote the data to an anon we
1340 		 * allocate a blank anon here and plug it into our amap.
1341 		 */
1342 #ifdef DIAGNOSTIC
1343 		if (amap == NULL)
1344 			panic("uvm_fault: want to promote data, but no anon");
1345 #endif
1346 
1347 		anon = uvm_analloc();
1348 		if (anon) {
1349 			/*
1350 			 * In `Fill in data...' below, if
1351 			 * uobjpage == PGO_DONTCARE, we want
1352 			 * a zero'd, dirty page, so have
1353 			 * uvm_pagealloc() do that for us.
1354 			 */
1355 			anon->an_lock = amap->am_lock;
1356 			pg = uvm_pagealloc(NULL, 0, anon,
1357 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1358 		}
1359 
1360 		/*
1361 		 * out of memory resources?
1362 		 */
1363 		if (anon == NULL || pg == NULL) {
1364 			/*
1365 			 * arg!  must unbusy our page and fail or sleep.
1366 			 */
1367 			if (uobjpage != PGO_DONTCARE) {
1368 				uvm_lock_pageq();
1369 				uvm_pageactivate(uobjpage);
1370 				uvm_unlock_pageq();
1371 
1372 				if (uobjpage->pg_flags & PG_WANTED)
1373 					wakeup(uobjpage);
1374 				atomic_clearbits_int(&uobjpage->pg_flags,
1375 				    PG_BUSY|PG_WANTED);
1376 				UVM_PAGE_OWN(uobjpage, NULL);
1377 			}
1378 
1379 			/* unlock and fail ... */
1380 			uvmfault_unlockall(ufi, amap, uobj);
1381 			if (anon == NULL)
1382 				counters_inc(uvmexp_counters, flt_noanon);
1383 			else {
1384 				anon->an_lock = NULL;
1385 				anon->an_ref--;
1386 				uvm_anfree(anon);
1387 				counters_inc(uvmexp_counters, flt_noram);
1388 			}
1389 
1390 			if (uvm_swapisfull())
1391 				return (ENOMEM);
1392 
1393 			/* out of RAM, wait for more */
1394 			if (anon == NULL)
1395 				uvm_anwait();
1396 			else
1397 				uvm_wait("flt_noram5");
1398 			return ERESTART;
1399 		}
1400 
1401 		/*
1402 		 * fill in the data
1403 		 */
1404 		if (uobjpage != PGO_DONTCARE) {
1405 			counters_inc(uvmexp_counters, flt_prcopy);
1406 			/* copy page [pg now dirty] */
1407 			uvm_pagecopy(uobjpage, pg);
1408 
1409 			/*
1410 			 * promote to shared amap?  make sure all sharing
1411 			 * procs see it
1412 			 */
1413 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1414 				pmap_page_protect(uobjpage, PROT_NONE);
1415 				}
1416 
1417 			/* dispose of uobjpage. drop handle to uobj as well. */
1418 			if (uobjpage->pg_flags & PG_WANTED)
1419 				wakeup(uobjpage);
1420 			atomic_clearbits_int(&uobjpage->pg_flags,
1421 			    PG_BUSY|PG_WANTED);
1422 			UVM_PAGE_OWN(uobjpage, NULL);
1423 			uvm_lock_pageq();
1424 			uvm_pageactivate(uobjpage);
1425 			uvm_unlock_pageq();
1426 			uobj = NULL;
1427 		} else {
1428 			counters_inc(uvmexp_counters, flt_przero);
1429 			/*
1430 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1431 			 * above.
1432 			 */
1433 		}
1434 
1435 		if (amap_add(&ufi->entry->aref,
1436 		    ufi->orig_rvaddr - ufi->entry->start, anon, 0)) {
1437 			uvmfault_unlockall(ufi, amap, NULL);
1438 			uvm_anfree(anon);
1439 			counters_inc(uvmexp_counters, flt_noamap);
1440 
1441 			if (uvm_swapisfull())
1442 				return (ENOMEM);
1443 
1444 			amap_populate(&ufi->entry->aref,
1445 			    ufi->orig_rvaddr - ufi->entry->start);
1446 			return ERESTART;
1447 		}
1448 	}
1449 
1450 	/* note: pg is either the uobjpage or the new page in the new anon */
1451 	/*
1452 	 * all resources are present.   we can now map it in and free our
1453 	 * resources.
1454 	 */
1455 	if (amap == NULL)
1456 		KASSERT(anon == NULL);
1457 	else {
1458 		KASSERT(rw_write_held(amap->am_lock));
1459 		KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
1460 	}
1461 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1462 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1463 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1464 		/*
1465 		 * No need to undo what we did; we can simply think of
1466 		 * this as the pmap throwing away the mapping information.
1467 		 *
1468 		 * We do, however, have to go through the ReFault path,
1469 		 * as the map may change while we're asleep.
1470 		 */
1471 		if (pg->pg_flags & PG_WANTED)
1472 			wakeup(pg);
1473 
1474 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1475 		UVM_PAGE_OWN(pg, NULL);
1476 		uvmfault_unlockall(ufi, amap, uobj);
1477 		if (uvm_swapisfull()) {
1478 			/* XXX instrumentation */
1479 			return (ENOMEM);
1480 		}
1481 		/* XXX instrumentation */
1482 		uvm_wait("flt_pmfail2");
1483 		return ERESTART;
1484 	}
1485 
1486 	uvm_lock_pageq();
1487 
1488 	if (fault_type == VM_FAULT_WIRE) {
1489 		uvm_pagewire(pg);
1490 		if (pg->pg_flags & PQ_AOBJ) {
1491 			/*
1492 			 * since the now-wired page cannot be paged out,
1493 			 * release its swap resources for others to use.
1494 			 * since an aobj page with no swap cannot be PG_CLEAN,
1495 			 * clear its clean flag now.
1496 			 */
1497 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1498 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1499 		}
1500 	} else {
1501 		/* activate it */
1502 		uvm_pageactivate(pg);
1503 	}
1504 	uvm_unlock_pageq();
1505 
1506 	if (pg->pg_flags & PG_WANTED)
1507 		wakeup(pg);
1508 
1509 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1510 	UVM_PAGE_OWN(pg, NULL);
1511 	uvmfault_unlockall(ufi, amap, uobj);
1512 	pmap_update(ufi->orig_map->pmap);
1513 
1514 	return (0);
1515 }
1516 
1517 
1518 /*
1519  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1520  *
1521  * => map may be read-locked by caller, but MUST NOT be write-locked.
1522  * => if map is read-locked, any operations which may cause map to
1523  *	be write-locked in uvm_fault() must be taken care of by
1524  *	the caller.  See uvm_map_pageable().
1525  */
1526 int
1527 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1528 {
1529 	vaddr_t va;
1530 	int rv;
1531 
1532 	/*
1533 	 * now fault it in a page at a time.   if the fault fails then we have
1534 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1535 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1536 	 */
1537 	for (va = start ; va < end ; va += PAGE_SIZE) {
1538 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1539 		if (rv) {
1540 			if (va != start) {
1541 				uvm_fault_unwire(map, start, va);
1542 			}
1543 			return (rv);
1544 		}
1545 	}
1546 
1547 	return (0);
1548 }
1549 
1550 /*
1551  * uvm_fault_unwire(): unwire range of virtual space.
1552  */
1553 void
1554 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1555 {
1556 
1557 	vm_map_lock_read(map);
1558 	uvm_fault_unwire_locked(map, start, end);
1559 	vm_map_unlock_read(map);
1560 }
1561 
1562 /*
1563  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1564  *
1565  * => map must be at least read-locked.
1566  */
1567 void
1568 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1569 {
1570 	vm_map_entry_t entry, next;
1571 	pmap_t pmap = vm_map_pmap(map);
1572 	vaddr_t va;
1573 	paddr_t pa;
1574 	struct vm_page *pg;
1575 
1576 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1577 
1578 	/*
1579 	 * we assume that the area we are unwiring has actually been wired
1580 	 * in the first place.   this means that we should be able to extract
1581 	 * the PAs from the pmap.   we also lock out the page daemon so that
1582 	 * we can call uvm_pageunwire.
1583 	 */
1584 
1585 	uvm_lock_pageq();
1586 
1587 	/*
1588 	 * find the beginning map entry for the region.
1589 	 */
1590 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1591 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1592 		panic("uvm_fault_unwire_locked: address not in map");
1593 
1594 	for (va = start; va < end ; va += PAGE_SIZE) {
1595 		if (pmap_extract(pmap, va, &pa) == FALSE)
1596 			continue;
1597 
1598 		/*
1599 		 * find the map entry for the current address.
1600 		 */
1601 		KASSERT(va >= entry->start);
1602 		while (va >= entry->end) {
1603 			next = RBT_NEXT(uvm_map_addr, entry);
1604 			KASSERT(next != NULL && next->start <= entry->end);
1605 			entry = next;
1606 		}
1607 
1608 		/*
1609 		 * if the entry is no longer wired, tell the pmap.
1610 		 */
1611 		if (VM_MAPENT_ISWIRED(entry) == 0)
1612 			pmap_unwire(pmap, va);
1613 
1614 		pg = PHYS_TO_VM_PAGE(pa);
1615 		if (pg)
1616 			uvm_pageunwire(pg);
1617 	}
1618 
1619 	uvm_unlock_pageq();
1620 }
1621 
1622 /*
1623  * uvmfault_unlockmaps: unlock the maps
1624  */
1625 void
1626 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1627 {
1628 	/*
1629 	 * ufi can be NULL when this isn't really a fault,
1630 	 * but merely paging in anon data.
1631 	 */
1632 	if (ufi == NULL) {
1633 		return;
1634 	}
1635 
1636 	uvmfault_update_stats(ufi);
1637 	if (write_locked) {
1638 		vm_map_unlock(ufi->map);
1639 	} else {
1640 		vm_map_unlock_read(ufi->map);
1641 	}
1642 }
1643 
1644 /*
1645  * uvmfault_unlockall: unlock everything passed in.
1646  *
1647  * => maps must be read-locked (not write-locked).
1648  */
1649 void
1650 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1651     struct uvm_object *uobj)
1652 {
1653 	if (amap != NULL)
1654 		amap_unlock(amap);
1655 	uvmfault_unlockmaps(ufi, FALSE);
1656 }
1657 
1658 /*
1659  * uvmfault_lookup: lookup a virtual address in a map
1660  *
1661  * => caller must provide a uvm_faultinfo structure with the IN
1662  *	params properly filled in
1663  * => we will lookup the map entry (handling submaps) as we go
1664  * => if the lookup is a success we will return with the maps locked
1665  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1666  *	get a read lock.
1667  * => note that submaps can only appear in the kernel and they are
1668  *	required to use the same virtual addresses as the map they
1669  *	are referenced by (thus address translation between the main
1670  *	map and the submap is unnecessary).
1671  */
1672 
1673 boolean_t
1674 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1675 {
1676 	vm_map_t tmpmap;
1677 
1678 	/*
1679 	 * init ufi values for lookup.
1680 	 */
1681 	ufi->map = ufi->orig_map;
1682 	ufi->size = ufi->orig_size;
1683 
1684 	/*
1685 	 * keep going down levels until we are done.   note that there can
1686 	 * only be two levels so we won't loop very long.
1687 	 */
1688 	while (1) {
1689 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1690 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1691 			return FALSE;
1692 
1693 		/* lock map */
1694 		if (write_lock) {
1695 			vm_map_lock(ufi->map);
1696 		} else {
1697 			vm_map_lock_read(ufi->map);
1698 		}
1699 
1700 		/* lookup */
1701 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1702 		    &ufi->entry)) {
1703 			uvmfault_unlockmaps(ufi, write_lock);
1704 			return FALSE;
1705 		}
1706 
1707 		/* reduce size if necessary */
1708 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1709 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1710 
1711 		/*
1712 		 * submap?    replace map with the submap and lookup again.
1713 		 * note: VAs in submaps must match VAs in main map.
1714 		 */
1715 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1716 			tmpmap = ufi->entry->object.sub_map;
1717 			uvmfault_unlockmaps(ufi, write_lock);
1718 			ufi->map = tmpmap;
1719 			continue;
1720 		}
1721 
1722 		/*
1723 		 * got it!
1724 		 */
1725 		ufi->mapv = ufi->map->timestamp;
1726 		return TRUE;
1727 
1728 	}	/* while loop */
1729 
1730 	/*NOTREACHED*/
1731 }
1732 
1733 /*
1734  * uvmfault_relock: attempt to relock the same version of the map
1735  *
1736  * => fault data structures should be unlocked before calling.
1737  * => if a success (TRUE) maps will be locked after call.
1738  */
1739 boolean_t
1740 uvmfault_relock(struct uvm_faultinfo *ufi)
1741 {
1742 	/*
1743 	 * ufi can be NULL when this isn't really a fault,
1744 	 * but merely paging in anon data.
1745 	 */
1746 	if (ufi == NULL) {
1747 		return TRUE;
1748 	}
1749 
1750 	counters_inc(uvmexp_counters, flt_relck);
1751 
1752 	/*
1753 	 * relock map.   fail if version mismatch (in which case nothing
1754 	 * gets locked).
1755 	 */
1756 	vm_map_lock_read(ufi->map);
1757 	if (ufi->mapv != ufi->map->timestamp) {
1758 		vm_map_unlock_read(ufi->map);
1759 		return FALSE;
1760 	}
1761 
1762 	counters_inc(uvmexp_counters, flt_relckok);
1763 	return TRUE;		/* got it! */
1764 }
1765