1 /* $OpenBSD: uvm_fault.c,v 1.124 2021/12/28 13:16:28 mpi Exp $ */ 2 /* $NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $ */ 3 4 /* 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 29 */ 30 31 /* 32 * uvm_fault.c: fault handler 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/percpu.h> 39 #include <sys/proc.h> 40 #include <sys/malloc.h> 41 #include <sys/mman.h> 42 #include <sys/tracepoint.h> 43 44 #include <uvm/uvm.h> 45 46 /* 47 * 48 * a word on page faults: 49 * 50 * types of page faults we handle: 51 * 52 * CASE 1: upper layer faults CASE 2: lower layer faults 53 * 54 * CASE 1A CASE 1B CASE 2A CASE 2B 55 * read/write1 write>1 read/write +-cow_write/zero 56 * | | | | 57 * +--|--+ +--|--+ +-----+ + | + | +-----+ 58 * amap | V | | ---------> new | | | | ^ | 59 * +-----+ +-----+ +-----+ + | + | +--|--+ 60 * | | | 61 * +-----+ +-----+ +--|--+ | +--|--+ 62 * uobj | d/c | | d/c | | V | +----+ | 63 * +-----+ +-----+ +-----+ +-----+ 64 * 65 * d/c = don't care 66 * 67 * case [0]: layerless fault 68 * no amap or uobj is present. this is an error. 69 * 70 * case [1]: upper layer fault [anon active] 71 * 1A: [read] or [write with anon->an_ref == 1] 72 * I/O takes place in upper level anon and uobj is not touched. 73 * 1B: [write with anon->an_ref > 1] 74 * new anon is alloc'd and data is copied off ["COW"] 75 * 76 * case [2]: lower layer fault [uobj] 77 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 78 * I/O takes place directly in object. 79 * 2B: [write to copy_on_write] or [read on NULL uobj] 80 * data is "promoted" from uobj to a new anon. 81 * if uobj is null, then we zero fill. 82 * 83 * we follow the standard UVM locking protocol ordering: 84 * 85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 86 * we hold a PG_BUSY page if we unlock for I/O 87 * 88 * 89 * the code is structured as follows: 90 * 91 * - init the "IN" params in the ufi structure 92 * ReFault: (ERESTART returned to the loop in uvm_fault) 93 * - do lookups [locks maps], check protection, handle needs_copy 94 * - check for case 0 fault (error) 95 * - establish "range" of fault 96 * - if we have an amap lock it and extract the anons 97 * - if sequential advice deactivate pages behind us 98 * - at the same time check pmap for unmapped areas and anon for pages 99 * that we could map in (and do map it if found) 100 * - check object for resident pages that we could map in 101 * - if (case 2) goto Case2 102 * - >>> handle case 1 103 * - ensure source anon is resident in RAM 104 * - if case 1B alloc new anon and copy from source 105 * - map the correct page in 106 * Case2: 107 * - >>> handle case 2 108 * - ensure source page is resident (if uobj) 109 * - if case 2B alloc new anon and copy from source (could be zero 110 * fill if uobj == NULL) 111 * - map the correct page in 112 * - done! 113 * 114 * note on paging: 115 * if we have to do I/O we place a PG_BUSY page in the correct object, 116 * unlock everything, and do the I/O. when I/O is done we must reverify 117 * the state of the world before assuming that our data structures are 118 * valid. [because mappings could change while the map is unlocked] 119 * 120 * alternative 1: unbusy the page in question and restart the page fault 121 * from the top (ReFault). this is easy but does not take advantage 122 * of the information that we already have from our previous lookup, 123 * although it is possible that the "hints" in the vm_map will help here. 124 * 125 * alternative 2: the system already keeps track of a "version" number of 126 * a map. [i.e. every time you write-lock a map (e.g. to change a 127 * mapping) you bump the version number up by one...] so, we can save 128 * the version number of the map before we release the lock and start I/O. 129 * then when I/O is done we can relock and check the version numbers 130 * to see if anything changed. this might save us some over 1 because 131 * we don't have to unbusy the page and may be less compares(?). 132 * 133 * alternative 3: put in backpointers or a way to "hold" part of a map 134 * in place while I/O is in progress. this could be complex to 135 * implement (especially with structures like amap that can be referenced 136 * by multiple map entries, and figuring out what should wait could be 137 * complex as well...). 138 * 139 * we use alternative 2. given that we are multi-threaded now we may want 140 * to reconsider the choice. 141 */ 142 143 /* 144 * local data structures 145 */ 146 struct uvm_advice { 147 int nback; 148 int nforw; 149 }; 150 151 /* 152 * page range array: set up in uvmfault_init(). 153 */ 154 static struct uvm_advice uvmadvice[MADV_MASK + 1]; 155 156 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */ 157 158 /* 159 * private prototypes 160 */ 161 static void uvmfault_amapcopy(struct uvm_faultinfo *); 162 static inline void uvmfault_anonflush(struct vm_anon **, int); 163 void uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t); 164 void uvmfault_update_stats(struct uvm_faultinfo *); 165 166 /* 167 * inline functions 168 */ 169 /* 170 * uvmfault_anonflush: try and deactivate pages in specified anons 171 * 172 * => does not have to deactivate page if it is busy 173 */ 174 static inline void 175 uvmfault_anonflush(struct vm_anon **anons, int n) 176 { 177 int lcv; 178 struct vm_page *pg; 179 180 for (lcv = 0; lcv < n; lcv++) { 181 if (anons[lcv] == NULL) 182 continue; 183 KASSERT(rw_lock_held(anons[lcv]->an_lock)); 184 pg = anons[lcv]->an_page; 185 if (pg && (pg->pg_flags & PG_BUSY) == 0) { 186 uvm_lock_pageq(); 187 if (pg->wire_count == 0) { 188 pmap_page_protect(pg, PROT_NONE); 189 uvm_pagedeactivate(pg); 190 } 191 uvm_unlock_pageq(); 192 } 193 } 194 } 195 196 /* 197 * normal functions 198 */ 199 /* 200 * uvmfault_init: compute proper values for the uvmadvice[] array. 201 */ 202 void 203 uvmfault_init(void) 204 { 205 int npages; 206 207 npages = atop(16384); 208 if (npages > 0) { 209 KASSERT(npages <= UVM_MAXRANGE / 2); 210 uvmadvice[MADV_NORMAL].nforw = npages; 211 uvmadvice[MADV_NORMAL].nback = npages - 1; 212 } 213 214 npages = atop(32768); 215 if (npages > 0) { 216 KASSERT(npages <= UVM_MAXRANGE / 2); 217 uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1; 218 uvmadvice[MADV_SEQUENTIAL].nback = npages; 219 } 220 } 221 222 /* 223 * uvmfault_amapcopy: clear "needs_copy" in a map. 224 * 225 * => called with VM data structures unlocked (usually, see below) 226 * => we get a write lock on the maps and clear needs_copy for a VA 227 * => if we are out of RAM we sleep (waiting for more) 228 */ 229 static void 230 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 231 { 232 for (;;) { 233 /* 234 * no mapping? give up. 235 */ 236 if (uvmfault_lookup(ufi, TRUE) == FALSE) 237 return; 238 239 /* 240 * copy if needed. 241 */ 242 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 243 amap_copy(ufi->map, ufi->entry, M_NOWAIT, 244 UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE, 245 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 246 247 /* 248 * didn't work? must be out of RAM. unlock and sleep. 249 */ 250 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 251 uvmfault_unlockmaps(ufi, TRUE); 252 uvm_wait("fltamapcopy"); 253 continue; 254 } 255 256 /* 257 * got it! unlock and return. 258 */ 259 uvmfault_unlockmaps(ufi, TRUE); 260 return; 261 } 262 /*NOTREACHED*/ 263 } 264 265 /* 266 * uvmfault_anonget: get data in an anon into a non-busy, non-released 267 * page in that anon. 268 * 269 * => Map, amap and thus anon should be locked by caller. 270 * => If we fail, we unlock everything and error is returned. 271 * => If we are successful, return with everything still locked. 272 * => We do not move the page on the queues [gets moved later]. If we 273 * allocate a new page [we_own], it gets put on the queues. Either way, 274 * the result is that the page is on the queues at return time 275 */ 276 int 277 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 278 struct vm_anon *anon) 279 { 280 struct vm_page *pg; 281 int error; 282 283 KASSERT(rw_lock_held(anon->an_lock)); 284 KASSERT(anon->an_lock == amap->am_lock); 285 286 /* Increment the counters.*/ 287 counters_inc(uvmexp_counters, flt_anget); 288 if (anon->an_page) { 289 curproc->p_ru.ru_minflt++; 290 } else { 291 curproc->p_ru.ru_majflt++; 292 } 293 error = 0; 294 295 /* 296 * Loop until we get the anon data, or fail. 297 */ 298 for (;;) { 299 boolean_t we_own, locked; 300 /* 301 * Note: 'we_own' will become true if we set PG_BUSY on a page. 302 */ 303 we_own = FALSE; 304 pg = anon->an_page; 305 306 /* 307 * Is page resident? Make sure it is not busy/released. 308 */ 309 if (pg) { 310 KASSERT(pg->pg_flags & PQ_ANON); 311 KASSERT(pg->uanon == anon); 312 313 /* 314 * if the page is busy, we drop all the locks and 315 * try again. 316 */ 317 if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) 318 return (VM_PAGER_OK); 319 atomic_setbits_int(&pg->pg_flags, PG_WANTED); 320 counters_inc(uvmexp_counters, flt_pgwait); 321 322 /* 323 * The last unlock must be an atomic unlock and wait 324 * on the owner of page. 325 */ 326 if (pg->uobject) { 327 /* Owner of page is UVM object. */ 328 uvmfault_unlockall(ufi, amap, NULL); 329 rwsleep_nsec(pg, pg->uobject->vmobjlock, 330 PVM | PNORELOCK, "anonget1", INFSLP); 331 } else { 332 /* Owner of page is anon. */ 333 uvmfault_unlockall(ufi, NULL, NULL); 334 rwsleep_nsec(pg, anon->an_lock, PVM | PNORELOCK, 335 "anonget2", INFSLP); 336 } 337 } else { 338 /* 339 * No page, therefore allocate one. 340 */ 341 pg = uvm_pagealloc(NULL, 0, anon, 0); 342 if (pg == NULL) { 343 /* Out of memory. Wait a little. */ 344 uvmfault_unlockall(ufi, amap, NULL); 345 counters_inc(uvmexp_counters, flt_noram); 346 uvm_wait("flt_noram1"); 347 } else { 348 /* PG_BUSY bit is set. */ 349 we_own = TRUE; 350 uvmfault_unlockall(ufi, amap, NULL); 351 352 /* 353 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into 354 * the uvm_swap_get() function with all data 355 * structures unlocked. Note that it is OK 356 * to read an_swslot here, because we hold 357 * PG_BUSY on the page. 358 */ 359 counters_inc(uvmexp_counters, pageins); 360 error = uvm_swap_get(pg, anon->an_swslot, 361 PGO_SYNCIO); 362 363 /* 364 * We clean up after the I/O below in the 365 * 'we_own' case. 366 */ 367 } 368 } 369 370 /* 371 * Re-lock the map and anon. 372 */ 373 locked = uvmfault_relock(ufi); 374 if (locked || we_own) { 375 rw_enter(anon->an_lock, RW_WRITE); 376 } 377 378 /* 379 * If we own the page (i.e. we set PG_BUSY), then we need 380 * to clean up after the I/O. There are three cases to 381 * consider: 382 * 383 * 1) Page was released during I/O: free anon and ReFault. 384 * 2) I/O not OK. Free the page and cause the fault to fail. 385 * 3) I/O OK! Activate the page and sync with the non-we_own 386 * case (i.e. drop anon lock if not locked). 387 */ 388 if (we_own) { 389 if (pg->pg_flags & PG_WANTED) { 390 wakeup(pg); 391 } 392 /* un-busy! */ 393 atomic_clearbits_int(&pg->pg_flags, 394 PG_WANTED|PG_BUSY|PG_FAKE); 395 UVM_PAGE_OWN(pg, NULL); 396 397 /* 398 * if we were RELEASED during I/O, then our anon is 399 * no longer part of an amap. we need to free the 400 * anon and try again. 401 */ 402 if (pg->pg_flags & PG_RELEASED) { 403 pmap_page_protect(pg, PROT_NONE); 404 KASSERT(anon->an_ref == 0); 405 /* 406 * Released while we had unlocked amap. 407 */ 408 if (locked) 409 uvmfault_unlockall(ufi, NULL, NULL); 410 uvm_anon_release(anon); /* frees page for us */ 411 counters_inc(uvmexp_counters, flt_pgrele); 412 return (VM_PAGER_REFAULT); /* refault! */ 413 } 414 415 if (error != VM_PAGER_OK) { 416 KASSERT(error != VM_PAGER_PEND); 417 418 /* remove page from anon */ 419 anon->an_page = NULL; 420 421 /* 422 * Remove the swap slot from the anon and 423 * mark the anon as having no real slot. 424 * Do not free the swap slot, thus preventing 425 * it from being used again. 426 */ 427 uvm_swap_markbad(anon->an_swslot, 1); 428 anon->an_swslot = SWSLOT_BAD; 429 430 /* 431 * Note: page was never !PG_BUSY, so it 432 * cannot be mapped and thus no need to 433 * pmap_page_protect() it. 434 */ 435 uvm_lock_pageq(); 436 uvm_pagefree(pg); 437 uvm_unlock_pageq(); 438 439 if (locked) { 440 uvmfault_unlockall(ufi, NULL, NULL); 441 } 442 rw_exit(anon->an_lock); 443 return (VM_PAGER_ERROR); 444 } 445 446 /* 447 * We have successfully read the page, activate it. 448 */ 449 pmap_clear_modify(pg); 450 uvm_lock_pageq(); 451 uvm_pageactivate(pg); 452 uvm_unlock_pageq(); 453 } 454 455 /* 456 * We were not able to re-lock the map - restart the fault. 457 */ 458 if (!locked) { 459 if (we_own) { 460 rw_exit(anon->an_lock); 461 } 462 return (VM_PAGER_REFAULT); 463 } 464 465 /* 466 * Verify that no one has touched the amap and moved 467 * the anon on us. 468 */ 469 if (ufi != NULL && amap_lookup(&ufi->entry->aref, 470 ufi->orig_rvaddr - ufi->entry->start) != anon) { 471 472 uvmfault_unlockall(ufi, amap, NULL); 473 return (VM_PAGER_REFAULT); 474 } 475 476 /* 477 * Retry.. 478 */ 479 counters_inc(uvmexp_counters, flt_anretry); 480 continue; 481 482 } 483 /*NOTREACHED*/ 484 } 485 486 /* 487 * Update statistics after fault resolution. 488 * - maxrss 489 */ 490 void 491 uvmfault_update_stats(struct uvm_faultinfo *ufi) 492 { 493 struct vm_map *map; 494 struct proc *p; 495 vsize_t res; 496 497 map = ufi->orig_map; 498 499 /* 500 * If this is a nested pmap (eg, a virtual machine pmap managed 501 * by vmm(4) on amd64/i386), don't do any updating, just return. 502 * 503 * pmap_nested() on other archs is #defined to 0, so this is a 504 * no-op. 505 */ 506 if (pmap_nested(map->pmap)) 507 return; 508 509 /* Update the maxrss for the process. */ 510 if (map->flags & VM_MAP_ISVMSPACE) { 511 p = curproc; 512 KASSERT(p != NULL && &p->p_vmspace->vm_map == map); 513 514 res = pmap_resident_count(map->pmap); 515 /* Convert res from pages to kilobytes. */ 516 res <<= (PAGE_SHIFT - 10); 517 518 if (p->p_ru.ru_maxrss < res) 519 p->p_ru.ru_maxrss = res; 520 } 521 } 522 523 /* 524 * F A U L T - m a i n e n t r y p o i n t 525 */ 526 527 /* 528 * uvm_fault: page fault handler 529 * 530 * => called from MD code to resolve a page fault 531 * => VM data structures usually should be unlocked. however, it is 532 * possible to call here with the main map locked if the caller 533 * gets a write lock, sets it recursive, and then calls us (c.f. 534 * uvm_map_pageable). this should be avoided because it keeps 535 * the map locked off during I/O. 536 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT 537 */ 538 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 539 ~PROT_WRITE : PROT_MASK) 540 struct uvm_faultctx { 541 /* 542 * the following members are set up by uvm_fault_check() and 543 * read-only after that. 544 */ 545 vm_prot_t enter_prot; 546 vm_prot_t access_type; 547 vaddr_t startva; 548 int npages; 549 int centeridx; 550 boolean_t narrow; 551 boolean_t wired; 552 paddr_t pa_flags; 553 }; 554 555 int uvm_fault_check( 556 struct uvm_faultinfo *, struct uvm_faultctx *, 557 struct vm_anon ***); 558 559 int uvm_fault_upper( 560 struct uvm_faultinfo *, struct uvm_faultctx *, 561 struct vm_anon **, vm_fault_t); 562 boolean_t uvm_fault_upper_lookup( 563 struct uvm_faultinfo *, const struct uvm_faultctx *, 564 struct vm_anon **, struct vm_page **); 565 566 int uvm_fault_lower( 567 struct uvm_faultinfo *, struct uvm_faultctx *, 568 struct vm_page **, vm_fault_t); 569 570 int 571 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type, 572 vm_prot_t access_type) 573 { 574 struct uvm_faultinfo ufi; 575 struct uvm_faultctx flt; 576 boolean_t shadowed; 577 struct vm_anon *anons_store[UVM_MAXRANGE], **anons; 578 struct vm_page *pages[UVM_MAXRANGE]; 579 int error; 580 581 counters_inc(uvmexp_counters, faults); 582 TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL); 583 584 /* 585 * init the IN parameters in the ufi 586 */ 587 ufi.orig_map = orig_map; 588 ufi.orig_rvaddr = trunc_page(vaddr); 589 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 590 if (fault_type == VM_FAULT_WIRE) 591 flt.narrow = TRUE; /* don't look for neighborhood 592 * pages on wire */ 593 else 594 flt.narrow = FALSE; /* normal fault */ 595 flt.access_type = access_type; 596 597 598 error = ERESTART; 599 while (error == ERESTART) { /* ReFault: */ 600 anons = anons_store; 601 602 error = uvm_fault_check(&ufi, &flt, &anons); 603 if (error != 0) 604 continue; 605 606 /* True if there is an anon at the faulting address */ 607 shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); 608 if (shadowed == TRUE) { 609 /* case 1: fault on an anon in our amap */ 610 error = uvm_fault_upper(&ufi, &flt, anons, fault_type); 611 } else { 612 struct uvm_object *uobj = ufi.entry->object.uvm_obj; 613 614 /* 615 * if the desired page is not shadowed by the amap and 616 * we have a backing object, then we check to see if 617 * the backing object would prefer to handle the fault 618 * itself (rather than letting us do it with the usual 619 * pgo_get hook). the backing object signals this by 620 * providing a pgo_fault routine. 621 */ 622 if (uobj != NULL && uobj->pgops->pgo_fault != NULL) { 623 KERNEL_LOCK(); 624 rw_enter(uobj->vmobjlock, RW_WRITE); 625 error = uobj->pgops->pgo_fault(&ufi, 626 flt.startva, pages, flt.npages, 627 flt.centeridx, fault_type, flt.access_type, 628 PGO_LOCKED); 629 KERNEL_UNLOCK(); 630 631 if (error == VM_PAGER_OK) 632 error = 0; 633 else if (error == VM_PAGER_REFAULT) 634 error = ERESTART; 635 else 636 error = EACCES; 637 } else { 638 /* case 2: fault on backing obj or zero fill */ 639 error = uvm_fault_lower(&ufi, &flt, pages, 640 fault_type); 641 } 642 } 643 } 644 645 return error; 646 } 647 648 /* 649 * uvm_fault_check: check prot, handle needs-copy, etc. 650 * 651 * 1. lookup entry. 652 * 2. check protection. 653 * 3. adjust fault condition (mainly for simulated fault). 654 * 4. handle needs-copy (lazy amap copy). 655 * 5. establish range of interest for neighbor fault (aka pre-fault). 656 * 6. look up anons (if amap exists). 657 * 7. flush pages (if MADV_SEQUENTIAL) 658 * 659 * => called with nothing locked. 660 * => if we fail (result != 0) we unlock everything. 661 * => initialize/adjust many members of flt. 662 */ 663 int 664 uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 665 struct vm_anon ***ranons) 666 { 667 struct vm_amap *amap; 668 struct uvm_object *uobj; 669 int nback, nforw; 670 671 /* 672 * lookup and lock the maps 673 */ 674 if (uvmfault_lookup(ufi, FALSE) == FALSE) { 675 return EFAULT; 676 } 677 /* locked: maps(read) */ 678 679 #ifdef DIAGNOSTIC 680 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) 681 panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)", 682 ufi->map, ufi->orig_rvaddr); 683 #endif 684 685 /* 686 * check protection 687 */ 688 if ((ufi->entry->protection & flt->access_type) != flt->access_type) { 689 uvmfault_unlockmaps(ufi, FALSE); 690 return EACCES; 691 } 692 693 /* 694 * "enter_prot" is the protection we want to enter the page in at. 695 * for certain pages (e.g. copy-on-write pages) this protection can 696 * be more strict than ufi->entry->protection. "wired" means either 697 * the entry is wired or we are fault-wiring the pg. 698 */ 699 700 flt->enter_prot = ufi->entry->protection; 701 flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0; 702 flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || (flt->narrow == TRUE); 703 if (flt->wired) 704 flt->access_type = flt->enter_prot; /* full access for wired */ 705 706 /* handle "needs_copy" case. */ 707 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 708 if ((flt->access_type & PROT_WRITE) || 709 (ufi->entry->object.uvm_obj == NULL)) { 710 /* need to clear */ 711 uvmfault_unlockmaps(ufi, FALSE); 712 uvmfault_amapcopy(ufi); 713 counters_inc(uvmexp_counters, flt_amcopy); 714 return ERESTART; 715 } else { 716 /* 717 * ensure that we pmap_enter page R/O since 718 * needs_copy is still true 719 */ 720 flt->enter_prot &= ~PROT_WRITE; 721 } 722 } 723 724 /* 725 * identify the players 726 */ 727 amap = ufi->entry->aref.ar_amap; /* upper layer */ 728 uobj = ufi->entry->object.uvm_obj; /* lower layer */ 729 730 /* 731 * check for a case 0 fault. if nothing backing the entry then 732 * error now. 733 */ 734 if (amap == NULL && uobj == NULL) { 735 uvmfault_unlockmaps(ufi, FALSE); 736 return EFAULT; 737 } 738 739 /* 740 * establish range of interest based on advice from mapper 741 * and then clip to fit map entry. note that we only want 742 * to do this the first time through the fault. if we 743 * ReFault we will disable this by setting "narrow" to true. 744 */ 745 if (flt->narrow == FALSE) { 746 747 /* wide fault (!narrow) */ 748 nback = min(uvmadvice[ufi->entry->advice].nback, 749 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT); 750 flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT); 751 nforw = min(uvmadvice[ufi->entry->advice].nforw, 752 ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1); 753 /* 754 * note: "-1" because we don't want to count the 755 * faulting page as forw 756 */ 757 flt->npages = nback + nforw + 1; 758 flt->centeridx = nback; 759 760 flt->narrow = TRUE; /* ensure only once per-fault */ 761 } else { 762 /* narrow fault! */ 763 nback = nforw = 0; 764 flt->startva = ufi->orig_rvaddr; 765 flt->npages = 1; 766 flt->centeridx = 0; 767 } 768 769 /* 770 * if we've got an amap then lock it and extract current anons. 771 */ 772 if (amap) { 773 amap_lock(amap); 774 amap_lookups(&ufi->entry->aref, 775 flt->startva - ufi->entry->start, *ranons, flt->npages); 776 } else { 777 *ranons = NULL; /* to be safe */ 778 } 779 780 /* 781 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 782 * now and then forget about them (for the rest of the fault). 783 */ 784 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) { 785 /* flush back-page anons? */ 786 if (amap) 787 uvmfault_anonflush(*ranons, nback); 788 789 /* 790 * flush object? 791 */ 792 if (uobj) { 793 voff_t uoff; 794 795 uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset; 796 rw_enter(uobj->vmobjlock, RW_WRITE); 797 (void) uobj->pgops->pgo_flush(uobj, uoff, uoff + 798 ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE); 799 rw_exit(uobj->vmobjlock); 800 } 801 802 /* now forget about the backpages */ 803 if (amap) 804 *ranons += nback; 805 flt->startva += ((vsize_t)nback << PAGE_SHIFT); 806 flt->npages -= nback; 807 flt->centeridx = 0; 808 } 809 810 return 0; 811 } 812 813 /* 814 * uvm_fault_upper_lookup: look up existing h/w mapping and amap. 815 * 816 * iterate range of interest: 817 * 1. check if h/w mapping exists. if yes, we don't care 818 * 2. check if anon exists. if not, page is lower. 819 * 3. if anon exists, enter h/w mapping for neighbors. 820 * 821 * => called with amap locked (if exists). 822 */ 823 boolean_t 824 uvm_fault_upper_lookup(struct uvm_faultinfo *ufi, 825 const struct uvm_faultctx *flt, struct vm_anon **anons, 826 struct vm_page **pages) 827 { 828 struct vm_amap *amap = ufi->entry->aref.ar_amap; 829 struct vm_anon *anon; 830 boolean_t shadowed; 831 vaddr_t currva; 832 paddr_t pa; 833 int lcv; 834 835 /* locked: maps(read), amap(if there) */ 836 KASSERT(amap == NULL || 837 rw_write_held(amap->am_lock)); 838 839 /* 840 * map in the backpages and frontpages we found in the amap in hopes 841 * of preventing future faults. we also init the pages[] array as 842 * we go. 843 */ 844 currva = flt->startva; 845 shadowed = FALSE; 846 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 847 /* 848 * dont play with VAs that are already mapped 849 * except for center) 850 */ 851 if (lcv != flt->centeridx && 852 pmap_extract(ufi->orig_map->pmap, currva, &pa)) { 853 pages[lcv] = PGO_DONTCARE; 854 continue; 855 } 856 857 /* 858 * unmapped or center page. check if any anon at this level. 859 */ 860 if (amap == NULL || anons[lcv] == NULL) { 861 pages[lcv] = NULL; 862 continue; 863 } 864 865 /* 866 * check for present page and map if possible. 867 */ 868 pages[lcv] = PGO_DONTCARE; 869 if (lcv == flt->centeridx) { /* save center for later! */ 870 shadowed = TRUE; 871 continue; 872 } 873 anon = anons[lcv]; 874 KASSERT(anon->an_lock == amap->am_lock); 875 if (anon->an_page && 876 (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) { 877 uvm_lock_pageq(); 878 uvm_pageactivate(anon->an_page); /* reactivate */ 879 uvm_unlock_pageq(); 880 counters_inc(uvmexp_counters, flt_namap); 881 882 /* 883 * Since this isn't the page that's actually faulting, 884 * ignore pmap_enter() failures; it's not critical 885 * that we enter these right now. 886 */ 887 (void) pmap_enter(ufi->orig_map->pmap, currva, 888 VM_PAGE_TO_PHYS(anon->an_page) | flt->pa_flags, 889 (anon->an_ref > 1) ? 890 (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot, 891 PMAP_CANFAIL | 892 (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0)); 893 } 894 } 895 if (flt->npages > 1) 896 pmap_update(ufi->orig_map->pmap); 897 898 return shadowed; 899 } 900 901 /* 902 * uvm_fault_upper: handle upper fault. 903 * 904 * 1. acquire anon lock. 905 * 2. get anon. let uvmfault_anonget do the dirty work. 906 * 3. if COW, promote data to new anon 907 * 4. enter h/w mapping 908 */ 909 int 910 uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 911 struct vm_anon **anons, vm_fault_t fault_type) 912 { 913 struct vm_amap *amap = ufi->entry->aref.ar_amap; 914 struct vm_anon *oanon, *anon = anons[flt->centeridx]; 915 struct vm_page *pg = NULL; 916 int error, ret; 917 918 /* locked: maps(read), amap, anon */ 919 KASSERT(rw_write_held(amap->am_lock)); 920 KASSERT(anon->an_lock == amap->am_lock); 921 922 /* 923 * no matter if we have case 1A or case 1B we are going to need to 924 * have the anon's memory resident. ensure that now. 925 */ 926 /* 927 * let uvmfault_anonget do the dirty work. 928 * if it fails (!OK) it will unlock everything for us. 929 * if it succeeds, locks are still valid and locked. 930 * also, if it is OK, then the anon's page is on the queues. 931 * if the page is on loan from a uvm_object, then anonget will 932 * lock that object for us if it does not fail. 933 */ 934 error = uvmfault_anonget(ufi, amap, anon); 935 switch (error) { 936 case VM_PAGER_OK: 937 break; 938 939 case VM_PAGER_REFAULT: 940 return ERESTART; 941 942 case VM_PAGER_ERROR: 943 /* 944 * An error occurred while trying to bring in the 945 * page -- this is the only error we return right 946 * now. 947 */ 948 return EACCES; /* XXX */ 949 default: 950 #ifdef DIAGNOSTIC 951 panic("uvm_fault: uvmfault_anonget -> %d", error); 952 #else 953 return EACCES; 954 #endif 955 } 956 957 KASSERT(rw_write_held(amap->am_lock)); 958 KASSERT(anon->an_lock == amap->am_lock); 959 960 /* 961 * if we are case 1B then we will need to allocate a new blank 962 * anon to transfer the data into. note that we have a lock 963 * on anon, so no one can busy or release the page until we are done. 964 * also note that the ref count can't drop to zero here because 965 * it is > 1 and we are only dropping one ref. 966 * 967 * in the (hopefully very rare) case that we are out of RAM we 968 * will unlock, wait for more RAM, and refault. 969 * 970 * if we are out of anon VM we wait for RAM to become available. 971 */ 972 973 if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) { 974 counters_inc(uvmexp_counters, flt_acow); 975 oanon = anon; /* oanon = old */ 976 anon = uvm_analloc(); 977 if (anon) { 978 anon->an_lock = amap->am_lock; 979 pg = uvm_pagealloc(NULL, 0, anon, 0); 980 } 981 982 /* check for out of RAM */ 983 if (anon == NULL || pg == NULL) { 984 uvmfault_unlockall(ufi, amap, NULL); 985 if (anon == NULL) 986 counters_inc(uvmexp_counters, flt_noanon); 987 else { 988 anon->an_lock = NULL; 989 anon->an_ref--; 990 uvm_anfree(anon); 991 counters_inc(uvmexp_counters, flt_noram); 992 } 993 994 if (uvm_swapisfull()) 995 return ENOMEM; 996 997 /* out of RAM, wait for more */ 998 if (anon == NULL) 999 uvm_anwait(); 1000 else 1001 uvm_wait("flt_noram3"); 1002 return ERESTART; 1003 } 1004 1005 /* got all resources, replace anon with nanon */ 1006 uvm_pagecopy(oanon->an_page, pg); /* pg now !PG_CLEAN */ 1007 /* un-busy! new page */ 1008 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE); 1009 UVM_PAGE_OWN(pg, NULL); 1010 ret = amap_add(&ufi->entry->aref, 1011 ufi->orig_rvaddr - ufi->entry->start, anon, 1); 1012 KASSERT(ret == 0); 1013 1014 /* deref: can not drop to zero here by defn! */ 1015 oanon->an_ref--; 1016 1017 /* 1018 * note: anon is _not_ locked, but we have the sole references 1019 * to in from amap. 1020 * thus, no one can get at it until we are done with it. 1021 */ 1022 } else { 1023 counters_inc(uvmexp_counters, flt_anon); 1024 oanon = anon; 1025 pg = anon->an_page; 1026 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 1027 flt->enter_prot = flt->enter_prot & ~PROT_WRITE; 1028 } 1029 1030 /* 1031 * now map the page in . 1032 */ 1033 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 1034 VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot, 1035 flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) { 1036 /* 1037 * No need to undo what we did; we can simply think of 1038 * this as the pmap throwing away the mapping information. 1039 * 1040 * We do, however, have to go through the ReFault path, 1041 * as the map may change while we're asleep. 1042 */ 1043 uvmfault_unlockall(ufi, amap, NULL); 1044 if (uvm_swapisfull()) { 1045 /* XXX instrumentation */ 1046 return ENOMEM; 1047 } 1048 /* XXX instrumentation */ 1049 uvm_wait("flt_pmfail1"); 1050 return ERESTART; 1051 } 1052 1053 /* 1054 * ... update the page queues. 1055 */ 1056 uvm_lock_pageq(); 1057 1058 if (fault_type == VM_FAULT_WIRE) { 1059 uvm_pagewire(pg); 1060 /* 1061 * since the now-wired page cannot be paged out, 1062 * release its swap resources for others to use. 1063 * since an anon with no swap cannot be PG_CLEAN, 1064 * clear its clean flag now. 1065 */ 1066 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1067 uvm_anon_dropswap(anon); 1068 } else { 1069 /* activate it */ 1070 uvm_pageactivate(pg); 1071 } 1072 1073 uvm_unlock_pageq(); 1074 1075 /* 1076 * done case 1! finish up by unlocking everything and returning success 1077 */ 1078 uvmfault_unlockall(ufi, amap, NULL); 1079 pmap_update(ufi->orig_map->pmap); 1080 return 0; 1081 } 1082 1083 /* 1084 * uvm_fault_lower_lookup: look up on-memory uobj pages. 1085 * 1086 * 1. get on-memory pages. 1087 * 2. if failed, give up (get only center page later). 1088 * 3. if succeeded, enter h/w mapping of neighbor pages. 1089 */ 1090 1091 struct vm_page * 1092 uvm_fault_lower_lookup( 1093 struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, 1094 struct vm_page **pages) 1095 { 1096 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1097 struct vm_page *uobjpage = NULL; 1098 int lcv, gotpages; 1099 vaddr_t currva; 1100 1101 rw_enter(uobj->vmobjlock, RW_WRITE); 1102 1103 counters_inc(uvmexp_counters, flt_lget); 1104 gotpages = flt->npages; 1105 (void) uobj->pgops->pgo_get(uobj, 1106 ufi->entry->offset + (flt->startva - ufi->entry->start), 1107 pages, &gotpages, flt->centeridx, 1108 flt->access_type & MASK(ufi->entry), ufi->entry->advice, 1109 PGO_LOCKED); 1110 1111 /* 1112 * check for pages to map, if we got any 1113 */ 1114 if (gotpages == 0) { 1115 return NULL; 1116 } 1117 1118 currva = flt->startva; 1119 for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) { 1120 if (pages[lcv] == NULL || 1121 pages[lcv] == PGO_DONTCARE) 1122 continue; 1123 1124 KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0); 1125 1126 /* 1127 * if center page is resident and not 1128 * PG_BUSY, then pgo_get made it PG_BUSY 1129 * for us and gave us a handle to it. 1130 * remember this page as "uobjpage." 1131 * (for later use). 1132 */ 1133 if (lcv == flt->centeridx) { 1134 uobjpage = pages[lcv]; 1135 continue; 1136 } 1137 1138 /* 1139 * note: calling pgo_get with locked data 1140 * structures returns us pages which are 1141 * neither busy nor released, so we don't 1142 * need to check for this. we can just 1143 * directly enter the page (after moving it 1144 * to the head of the active queue [useful?]). 1145 */ 1146 1147 uvm_lock_pageq(); 1148 uvm_pageactivate(pages[lcv]); /* reactivate */ 1149 uvm_unlock_pageq(); 1150 counters_inc(uvmexp_counters, flt_nomap); 1151 1152 /* 1153 * Since this page isn't the page that's 1154 * actually faulting, ignore pmap_enter() 1155 * failures; it's not critical that we 1156 * enter these right now. 1157 */ 1158 (void) pmap_enter(ufi->orig_map->pmap, currva, 1159 VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags, 1160 flt->enter_prot & MASK(ufi->entry), 1161 PMAP_CANFAIL | 1162 (flt->wired ? PMAP_WIRED : 0)); 1163 1164 /* 1165 * NOTE: page can't be PG_WANTED because 1166 * we've held the lock the whole time 1167 * we've had the handle. 1168 */ 1169 atomic_clearbits_int(&pages[lcv]->pg_flags, PG_BUSY); 1170 UVM_PAGE_OWN(pages[lcv], NULL); 1171 } 1172 pmap_update(ufi->orig_map->pmap); 1173 1174 return uobjpage; 1175 } 1176 1177 /* 1178 * uvm_fault_lower: handle lower fault. 1179 * 1180 */ 1181 int 1182 uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 1183 struct vm_page **pages, vm_fault_t fault_type) 1184 { 1185 struct vm_amap *amap = ufi->entry->aref.ar_amap; 1186 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1187 boolean_t promote, locked; 1188 int result; 1189 struct vm_page *uobjpage, *pg = NULL; 1190 struct vm_anon *anon = NULL; 1191 voff_t uoff; 1192 1193 /* 1194 * now, if the desired page is not shadowed by the amap and we have 1195 * a backing object that does not have a special fault routine, then 1196 * we ask (with pgo_get) the object for resident pages that we care 1197 * about and attempt to map them in. we do not let pgo_get block 1198 * (PGO_LOCKED). 1199 */ 1200 if (uobj == NULL) { 1201 /* zero fill; don't care neighbor pages */ 1202 uobjpage = NULL; 1203 } else { 1204 uobjpage = uvm_fault_lower_lookup(ufi, flt, pages); 1205 } 1206 1207 /* 1208 * note that at this point we are done with any front or back pages. 1209 * we are now going to focus on the center page (i.e. the one we've 1210 * faulted on). if we have faulted on the bottom (uobj) 1211 * layer [i.e. case 2] and the page was both present and available, 1212 * then we've got a pointer to it as "uobjpage" and we've already 1213 * made it BUSY. 1214 */ 1215 1216 /* 1217 * locked: 1218 */ 1219 KASSERT(amap == NULL || 1220 rw_write_held(amap->am_lock)); 1221 KASSERT(uobj == NULL || 1222 rw_write_held(uobj->vmobjlock)); 1223 1224 /* 1225 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1226 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1227 * have a backing object, check and see if we are going to promote 1228 * the data up to an anon during the fault. 1229 */ 1230 if (uobj == NULL) { 1231 uobjpage = PGO_DONTCARE; 1232 promote = TRUE; /* always need anon here */ 1233 } else { 1234 KASSERT(uobjpage != PGO_DONTCARE); 1235 promote = (flt->access_type & PROT_WRITE) && 1236 UVM_ET_ISCOPYONWRITE(ufi->entry); 1237 } 1238 1239 /* 1240 * if uobjpage is not null then we do not need to do I/O to get the 1241 * uobjpage. 1242 * 1243 * if uobjpage is null, then we need to ask the pager to 1244 * get the data for us. once we have the data, we need to reverify 1245 * the state the world. we are currently not holding any resources. 1246 */ 1247 if (uobjpage) { 1248 /* update rusage counters */ 1249 curproc->p_ru.ru_minflt++; 1250 } else { 1251 int gotpages; 1252 1253 /* update rusage counters */ 1254 curproc->p_ru.ru_majflt++; 1255 1256 uvmfault_unlockall(ufi, amap, NULL); 1257 1258 counters_inc(uvmexp_counters, flt_get); 1259 gotpages = 1; 1260 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; 1261 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages, 1262 0, flt->access_type & MASK(ufi->entry), ufi->entry->advice, 1263 PGO_SYNCIO); 1264 1265 /* 1266 * recover from I/O 1267 */ 1268 if (result != VM_PAGER_OK) { 1269 KASSERT(result != VM_PAGER_PEND); 1270 1271 if (result == VM_PAGER_AGAIN) { 1272 tsleep_nsec(&nowake, PVM, "fltagain2", 1273 MSEC_TO_NSEC(5)); 1274 return ERESTART; 1275 } 1276 1277 if (!UVM_ET_ISNOFAULT(ufi->entry)) 1278 return (EIO); 1279 1280 uobjpage = PGO_DONTCARE; 1281 uobj = NULL; 1282 promote = TRUE; 1283 } 1284 1285 /* re-verify the state of the world. */ 1286 locked = uvmfault_relock(ufi); 1287 if (locked && amap != NULL) 1288 amap_lock(amap); 1289 1290 /* might be changed */ 1291 if (uobjpage != PGO_DONTCARE) { 1292 uobj = uobjpage->uobject; 1293 rw_enter(uobj->vmobjlock, RW_WRITE); 1294 } 1295 1296 /* 1297 * Re-verify that amap slot is still free. if there is 1298 * a problem, we clean up. 1299 */ 1300 if (locked && amap && amap_lookup(&ufi->entry->aref, 1301 ufi->orig_rvaddr - ufi->entry->start)) { 1302 if (locked) 1303 uvmfault_unlockall(ufi, amap, NULL); 1304 locked = FALSE; 1305 } 1306 1307 /* didn't get the lock? release the page and retry. */ 1308 if (locked == FALSE && uobjpage != PGO_DONTCARE) { 1309 uvm_lock_pageq(); 1310 /* make sure it is in queues */ 1311 uvm_pageactivate(uobjpage); 1312 uvm_unlock_pageq(); 1313 1314 if (uobjpage->pg_flags & PG_WANTED) 1315 /* still holding object lock */ 1316 wakeup(uobjpage); 1317 atomic_clearbits_int(&uobjpage->pg_flags, 1318 PG_BUSY|PG_WANTED); 1319 UVM_PAGE_OWN(uobjpage, NULL); 1320 } 1321 1322 if (locked == FALSE) { 1323 if (uobjpage != PGO_DONTCARE) 1324 rw_exit(uobj->vmobjlock); 1325 return ERESTART; 1326 } 1327 1328 /* 1329 * we have the data in uobjpage which is PG_BUSY 1330 */ 1331 } 1332 1333 /* 1334 * notes: 1335 * - at this point uobjpage can not be NULL 1336 * - at this point uobjpage could be PG_WANTED (handle later) 1337 */ 1338 if (promote == FALSE) { 1339 /* 1340 * we are not promoting. if the mapping is COW ensure that we 1341 * don't give more access than we should (e.g. when doing a read 1342 * fault on a COPYONWRITE mapping we want to map the COW page in 1343 * R/O even though the entry protection could be R/W). 1344 * 1345 * set "pg" to the page we want to map in (uobjpage, usually) 1346 */ 1347 counters_inc(uvmexp_counters, flt_obj); 1348 if (UVM_ET_ISCOPYONWRITE(ufi->entry)) 1349 flt->enter_prot &= ~PROT_WRITE; 1350 pg = uobjpage; /* map in the actual object */ 1351 1352 /* assert(uobjpage != PGO_DONTCARE) */ 1353 1354 /* 1355 * we are faulting directly on the page. 1356 */ 1357 } else { 1358 /* 1359 * if we are going to promote the data to an anon we 1360 * allocate a blank anon here and plug it into our amap. 1361 */ 1362 #ifdef DIAGNOSTIC 1363 if (amap == NULL) 1364 panic("uvm_fault: want to promote data, but no anon"); 1365 #endif 1366 1367 anon = uvm_analloc(); 1368 if (anon) { 1369 /* 1370 * In `Fill in data...' below, if 1371 * uobjpage == PGO_DONTCARE, we want 1372 * a zero'd, dirty page, so have 1373 * uvm_pagealloc() do that for us. 1374 */ 1375 anon->an_lock = amap->am_lock; 1376 pg = uvm_pagealloc(NULL, 0, anon, 1377 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0); 1378 } 1379 1380 /* 1381 * out of memory resources? 1382 */ 1383 if (anon == NULL || pg == NULL) { 1384 /* 1385 * arg! must unbusy our page and fail or sleep. 1386 */ 1387 if (uobjpage != PGO_DONTCARE) { 1388 uvm_lock_pageq(); 1389 uvm_pageactivate(uobjpage); 1390 uvm_unlock_pageq(); 1391 1392 if (uobjpage->pg_flags & PG_WANTED) 1393 wakeup(uobjpage); 1394 atomic_clearbits_int(&uobjpage->pg_flags, 1395 PG_BUSY|PG_WANTED); 1396 UVM_PAGE_OWN(uobjpage, NULL); 1397 } 1398 1399 /* unlock and fail ... */ 1400 uvmfault_unlockall(ufi, amap, uobj); 1401 if (anon == NULL) 1402 counters_inc(uvmexp_counters, flt_noanon); 1403 else { 1404 anon->an_lock = NULL; 1405 anon->an_ref--; 1406 uvm_anfree(anon); 1407 counters_inc(uvmexp_counters, flt_noram); 1408 } 1409 1410 if (uvm_swapisfull()) 1411 return (ENOMEM); 1412 1413 /* out of RAM, wait for more */ 1414 if (anon == NULL) 1415 uvm_anwait(); 1416 else 1417 uvm_wait("flt_noram5"); 1418 return ERESTART; 1419 } 1420 1421 /* 1422 * fill in the data 1423 */ 1424 if (uobjpage != PGO_DONTCARE) { 1425 counters_inc(uvmexp_counters, flt_prcopy); 1426 /* copy page [pg now dirty] */ 1427 uvm_pagecopy(uobjpage, pg); 1428 1429 /* 1430 * promote to shared amap? make sure all sharing 1431 * procs see it 1432 */ 1433 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 1434 pmap_page_protect(uobjpage, PROT_NONE); 1435 } 1436 1437 /* dispose of uobjpage. drop handle to uobj as well. */ 1438 if (uobjpage->pg_flags & PG_WANTED) 1439 wakeup(uobjpage); 1440 atomic_clearbits_int(&uobjpage->pg_flags, 1441 PG_BUSY|PG_WANTED); 1442 UVM_PAGE_OWN(uobjpage, NULL); 1443 uvm_lock_pageq(); 1444 uvm_pageactivate(uobjpage); 1445 uvm_unlock_pageq(); 1446 rw_exit(uobj->vmobjlock); 1447 uobj = NULL; 1448 } else { 1449 counters_inc(uvmexp_counters, flt_przero); 1450 /* 1451 * Page is zero'd and marked dirty by uvm_pagealloc() 1452 * above. 1453 */ 1454 } 1455 1456 if (amap_add(&ufi->entry->aref, 1457 ufi->orig_rvaddr - ufi->entry->start, anon, 0)) { 1458 uvmfault_unlockall(ufi, amap, uobj); 1459 uvm_anfree(anon); 1460 counters_inc(uvmexp_counters, flt_noamap); 1461 1462 if (uvm_swapisfull()) 1463 return (ENOMEM); 1464 1465 amap_populate(&ufi->entry->aref, 1466 ufi->orig_rvaddr - ufi->entry->start); 1467 return ERESTART; 1468 } 1469 } 1470 1471 /* note: pg is either the uobjpage or the new page in the new anon */ 1472 /* 1473 * all resources are present. we can now map it in and free our 1474 * resources. 1475 */ 1476 if (amap == NULL) 1477 KASSERT(anon == NULL); 1478 else { 1479 KASSERT(rw_write_held(amap->am_lock)); 1480 KASSERT(anon == NULL || anon->an_lock == amap->am_lock); 1481 } 1482 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 1483 VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot, 1484 flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) { 1485 /* 1486 * No need to undo what we did; we can simply think of 1487 * this as the pmap throwing away the mapping information. 1488 * 1489 * We do, however, have to go through the ReFault path, 1490 * as the map may change while we're asleep. 1491 */ 1492 if (pg->pg_flags & PG_WANTED) 1493 wakeup(pg); 1494 1495 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1496 UVM_PAGE_OWN(pg, NULL); 1497 uvmfault_unlockall(ufi, amap, uobj); 1498 if (uvm_swapisfull()) { 1499 /* XXX instrumentation */ 1500 return (ENOMEM); 1501 } 1502 /* XXX instrumentation */ 1503 uvm_wait("flt_pmfail2"); 1504 return ERESTART; 1505 } 1506 1507 if (fault_type == VM_FAULT_WIRE) { 1508 uvm_lock_pageq(); 1509 uvm_pagewire(pg); 1510 uvm_unlock_pageq(); 1511 if (pg->pg_flags & PQ_AOBJ) { 1512 /* 1513 * since the now-wired page cannot be paged out, 1514 * release its swap resources for others to use. 1515 * since an aobj page with no swap cannot be clean, 1516 * mark it dirty now. 1517 * 1518 * use pg->uobject here. if the page is from a 1519 * tmpfs vnode, the pages are backed by its UAO and 1520 * not the vnode. 1521 */ 1522 KASSERT(uobj != NULL); 1523 KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock); 1524 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1525 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 1526 } 1527 } else { 1528 /* activate it */ 1529 uvm_lock_pageq(); 1530 uvm_pageactivate(pg); 1531 uvm_unlock_pageq(); 1532 } 1533 1534 if (pg->pg_flags & PG_WANTED) 1535 wakeup(pg); 1536 1537 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1538 UVM_PAGE_OWN(pg, NULL); 1539 uvmfault_unlockall(ufi, amap, uobj); 1540 pmap_update(ufi->orig_map->pmap); 1541 1542 return (0); 1543 } 1544 1545 1546 /* 1547 * uvm_fault_wire: wire down a range of virtual addresses in a map. 1548 * 1549 * => map may be read-locked by caller, but MUST NOT be write-locked. 1550 * => if map is read-locked, any operations which may cause map to 1551 * be write-locked in uvm_fault() must be taken care of by 1552 * the caller. See uvm_map_pageable(). 1553 */ 1554 int 1555 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type) 1556 { 1557 vaddr_t va; 1558 int rv; 1559 1560 /* 1561 * now fault it in a page at a time. if the fault fails then we have 1562 * to undo what we have done. note that in uvm_fault PROT_NONE 1563 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 1564 */ 1565 for (va = start ; va < end ; va += PAGE_SIZE) { 1566 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type); 1567 if (rv) { 1568 if (va != start) { 1569 uvm_fault_unwire(map, start, va); 1570 } 1571 return (rv); 1572 } 1573 } 1574 1575 return (0); 1576 } 1577 1578 /* 1579 * uvm_fault_unwire(): unwire range of virtual space. 1580 */ 1581 void 1582 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end) 1583 { 1584 1585 vm_map_lock_read(map); 1586 uvm_fault_unwire_locked(map, start, end); 1587 vm_map_unlock_read(map); 1588 } 1589 1590 /* 1591 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 1592 * 1593 * => map must be at least read-locked. 1594 */ 1595 void 1596 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end) 1597 { 1598 vm_map_entry_t entry, oentry = NULL, next; 1599 pmap_t pmap = vm_map_pmap(map); 1600 vaddr_t va; 1601 paddr_t pa; 1602 struct vm_page *pg; 1603 1604 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0); 1605 1606 /* 1607 * we assume that the area we are unwiring has actually been wired 1608 * in the first place. this means that we should be able to extract 1609 * the PAs from the pmap. 1610 */ 1611 1612 /* 1613 * find the beginning map entry for the region. 1614 */ 1615 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 1616 if (uvm_map_lookup_entry(map, start, &entry) == FALSE) 1617 panic("uvm_fault_unwire_locked: address not in map"); 1618 1619 for (va = start; va < end ; va += PAGE_SIZE) { 1620 if (pmap_extract(pmap, va, &pa) == FALSE) 1621 continue; 1622 1623 /* 1624 * find the map entry for the current address. 1625 */ 1626 KASSERT(va >= entry->start); 1627 while (va >= entry->end) { 1628 next = RBT_NEXT(uvm_map_addr, entry); 1629 KASSERT(next != NULL && next->start <= entry->end); 1630 entry = next; 1631 } 1632 1633 /* 1634 * lock it. 1635 */ 1636 if (entry != oentry) { 1637 if (oentry != NULL) { 1638 uvm_map_unlock_entry(oentry); 1639 } 1640 uvm_map_lock_entry(entry); 1641 oentry = entry; 1642 } 1643 1644 /* 1645 * if the entry is no longer wired, tell the pmap. 1646 */ 1647 if (VM_MAPENT_ISWIRED(entry) == 0) 1648 pmap_unwire(pmap, va); 1649 1650 pg = PHYS_TO_VM_PAGE(pa); 1651 if (pg) { 1652 uvm_lock_pageq(); 1653 uvm_pageunwire(pg); 1654 uvm_unlock_pageq(); 1655 } 1656 } 1657 1658 if (oentry != NULL) { 1659 uvm_map_unlock_entry(entry); 1660 } 1661 } 1662 1663 /* 1664 * uvmfault_unlockmaps: unlock the maps 1665 */ 1666 void 1667 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked) 1668 { 1669 /* 1670 * ufi can be NULL when this isn't really a fault, 1671 * but merely paging in anon data. 1672 */ 1673 if (ufi == NULL) { 1674 return; 1675 } 1676 1677 uvmfault_update_stats(ufi); 1678 if (write_locked) { 1679 vm_map_unlock(ufi->map); 1680 } else { 1681 vm_map_unlock_read(ufi->map); 1682 } 1683 } 1684 1685 /* 1686 * uvmfault_unlockall: unlock everything passed in. 1687 * 1688 * => maps must be read-locked (not write-locked). 1689 */ 1690 void 1691 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap, 1692 struct uvm_object *uobj) 1693 { 1694 if (uobj) 1695 rw_exit(uobj->vmobjlock); 1696 if (amap != NULL) 1697 amap_unlock(amap); 1698 uvmfault_unlockmaps(ufi, FALSE); 1699 } 1700 1701 /* 1702 * uvmfault_lookup: lookup a virtual address in a map 1703 * 1704 * => caller must provide a uvm_faultinfo structure with the IN 1705 * params properly filled in 1706 * => we will lookup the map entry (handling submaps) as we go 1707 * => if the lookup is a success we will return with the maps locked 1708 * => if "write_lock" is TRUE, we write_lock the map, otherwise we only 1709 * get a read lock. 1710 * => note that submaps can only appear in the kernel and they are 1711 * required to use the same virtual addresses as the map they 1712 * are referenced by (thus address translation between the main 1713 * map and the submap is unnecessary). 1714 */ 1715 1716 boolean_t 1717 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock) 1718 { 1719 vm_map_t tmpmap; 1720 1721 /* 1722 * init ufi values for lookup. 1723 */ 1724 ufi->map = ufi->orig_map; 1725 ufi->size = ufi->orig_size; 1726 1727 /* 1728 * keep going down levels until we are done. note that there can 1729 * only be two levels so we won't loop very long. 1730 */ 1731 while (1) { 1732 if (ufi->orig_rvaddr < ufi->map->min_offset || 1733 ufi->orig_rvaddr >= ufi->map->max_offset) 1734 return FALSE; 1735 1736 /* lock map */ 1737 if (write_lock) { 1738 vm_map_lock(ufi->map); 1739 } else { 1740 vm_map_lock_read(ufi->map); 1741 } 1742 1743 /* lookup */ 1744 if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr, 1745 &ufi->entry)) { 1746 uvmfault_unlockmaps(ufi, write_lock); 1747 return FALSE; 1748 } 1749 1750 /* reduce size if necessary */ 1751 if (ufi->entry->end - ufi->orig_rvaddr < ufi->size) 1752 ufi->size = ufi->entry->end - ufi->orig_rvaddr; 1753 1754 /* 1755 * submap? replace map with the submap and lookup again. 1756 * note: VAs in submaps must match VAs in main map. 1757 */ 1758 if (UVM_ET_ISSUBMAP(ufi->entry)) { 1759 tmpmap = ufi->entry->object.sub_map; 1760 uvmfault_unlockmaps(ufi, write_lock); 1761 ufi->map = tmpmap; 1762 continue; 1763 } 1764 1765 /* 1766 * got it! 1767 */ 1768 ufi->mapv = ufi->map->timestamp; 1769 return TRUE; 1770 1771 } /* while loop */ 1772 1773 /*NOTREACHED*/ 1774 } 1775 1776 /* 1777 * uvmfault_relock: attempt to relock the same version of the map 1778 * 1779 * => fault data structures should be unlocked before calling. 1780 * => if a success (TRUE) maps will be locked after call. 1781 */ 1782 boolean_t 1783 uvmfault_relock(struct uvm_faultinfo *ufi) 1784 { 1785 /* 1786 * ufi can be NULL when this isn't really a fault, 1787 * but merely paging in anon data. 1788 */ 1789 if (ufi == NULL) { 1790 return TRUE; 1791 } 1792 1793 counters_inc(uvmexp_counters, flt_relck); 1794 1795 /* 1796 * relock map. fail if version mismatch (in which case nothing 1797 * gets locked). 1798 */ 1799 vm_map_lock_read(ufi->map); 1800 if (ufi->mapv != ufi->map->timestamp) { 1801 vm_map_unlock_read(ufi->map); 1802 return FALSE; 1803 } 1804 1805 counters_inc(uvmexp_counters, flt_relckok); 1806 return TRUE; /* got it! */ 1807 } 1808