1 /* $OpenBSD: kern_malloc.c,v 1.139 2019/05/15 21:25:50 tedu Exp $ */ 2 /* $NetBSD: kern_malloc.c,v 1.15.4.2 1996/06/13 17:10:56 cgd Exp $ */ 3 4 /* 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 33 */ 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/proc.h> 39 #include <sys/stdint.h> 40 #include <sys/systm.h> 41 #include <sys/sysctl.h> 42 #include <sys/time.h> 43 #include <sys/mutex.h> 44 #include <sys/rwlock.h> 45 46 #include <uvm/uvm_extern.h> 47 48 #if defined(DDB) 49 #include <machine/db_machdep.h> 50 #include <ddb/db_output.h> 51 #endif 52 53 static 54 #ifndef SMALL_KERNEL 55 __inline__ 56 #endif 57 long BUCKETINDX(size_t sz) 58 { 59 long b, d; 60 61 /* note that this relies upon MINALLOCSIZE being 1 << MINBUCKET */ 62 b = 7 + MINBUCKET; d = 4; 63 while (d != 0) { 64 if (sz <= (1 << b)) 65 b -= d; 66 else 67 b += d; 68 d >>= 1; 69 } 70 if (sz <= (1 << b)) 71 b += 0; 72 else 73 b += 1; 74 return b; 75 } 76 77 static struct vm_map kmem_map_store; 78 struct vm_map *kmem_map = NULL; 79 80 /* 81 * Default number of pages in kmem_map. We attempt to calculate this 82 * at run-time, but allow it to be either patched or set in the kernel 83 * config file. 84 */ 85 #ifndef NKMEMPAGES 86 #define NKMEMPAGES 0 87 #endif 88 u_int nkmempages = NKMEMPAGES; 89 90 /* 91 * Defaults for lower- and upper-bounds for the kmem_map page count. 92 * Can be overridden by kernel config options. 93 */ 94 #ifndef NKMEMPAGES_MIN 95 #define NKMEMPAGES_MIN 0 96 #endif 97 u_int nkmempages_min = 0; 98 99 #ifndef NKMEMPAGES_MAX 100 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 101 #endif 102 u_int nkmempages_max = 0; 103 104 struct mutex malloc_mtx = MUTEX_INITIALIZER(IPL_VM); 105 struct kmembuckets bucket[MINBUCKET + 16]; 106 #ifdef KMEMSTATS 107 struct kmemstats kmemstats[M_LAST]; 108 #endif 109 struct kmemusage *kmemusage; 110 char *kmembase, *kmemlimit; 111 char buckstring[16 * sizeof("123456,")]; 112 int buckstring_init = 0; 113 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 114 char *memname[] = INITKMEMNAMES; 115 char *memall = NULL; 116 struct rwlock sysctl_kmemlock = RWLOCK_INITIALIZER("sysctlklk"); 117 #endif 118 119 /* 120 * Normally the freelist structure is used only to hold the list pointer 121 * for free objects. However, when running with diagnostics, the first 122 * 8 bytes of the structure is unused except for diagnostic information, 123 * and the free list pointer is at offset 8 in the structure. Since the 124 * first 8 bytes is the portion of the structure most often modified, this 125 * helps to detect memory reuse problems and avoid free list corruption. 126 */ 127 struct kmem_freelist { 128 int32_t kf_spare0; 129 int16_t kf_type; 130 int16_t kf_spare1; 131 XSIMPLEQ_ENTRY(kmem_freelist) kf_flist; 132 }; 133 134 #ifdef DIAGNOSTIC 135 /* 136 * This structure provides a set of masks to catch unaligned frees. 137 */ 138 const long addrmask[] = { 0, 139 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 140 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 141 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 142 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 143 }; 144 145 #endif /* DIAGNOSTIC */ 146 147 #ifndef SMALL_KERNEL 148 struct timeval malloc_errintvl = { 5, 0 }; 149 struct timeval malloc_lasterr; 150 #endif 151 152 /* 153 * Allocate a block of memory 154 */ 155 void * 156 malloc(size_t size, int type, int flags) 157 { 158 struct kmembuckets *kbp; 159 struct kmemusage *kup; 160 struct kmem_freelist *freep; 161 long indx, npg, allocsize; 162 caddr_t va, cp; 163 int s; 164 #ifdef DIAGNOSTIC 165 int freshalloc; 166 char *savedtype; 167 #endif 168 #ifdef KMEMSTATS 169 struct kmemstats *ksp = &kmemstats[type]; 170 int wake; 171 172 if (((unsigned long)type) <= 1 || ((unsigned long)type) >= M_LAST) 173 panic("malloc: bogus type %d", type); 174 #endif 175 176 KASSERT(flags & (M_WAITOK | M_NOWAIT)); 177 178 #ifdef DIAGNOSTIC 179 if ((flags & M_NOWAIT) == 0) { 180 extern int pool_debug; 181 assertwaitok(); 182 if (pool_debug == 2) 183 yield(); 184 } 185 #endif 186 187 if (size > 65535 * PAGE_SIZE) { 188 if (flags & M_CANFAIL) { 189 #ifndef SMALL_KERNEL 190 /* XXX lock */ 191 if (ratecheck(&malloc_lasterr, &malloc_errintvl)) 192 printf("malloc(): allocation too large, " 193 "type = %d, size = %lu\n", type, size); 194 #endif 195 return (NULL); 196 } else 197 panic("malloc: allocation too large, " 198 "type = %d, size = %lu\n", type, size); 199 } 200 201 indx = BUCKETINDX(size); 202 if (size > MAXALLOCSAVE) 203 allocsize = round_page(size); 204 else 205 allocsize = 1 << indx; 206 kbp = &bucket[indx]; 207 mtx_enter(&malloc_mtx); 208 #ifdef KMEMSTATS 209 while (ksp->ks_memuse >= ksp->ks_limit) { 210 if (flags & M_NOWAIT) { 211 mtx_leave(&malloc_mtx); 212 return (NULL); 213 } 214 #ifdef DIAGNOSTIC 215 if (ISSET(flags, M_WAITOK) && curproc == &proc0) 216 panic("%s: cannot sleep for memory during boot", 217 __func__); 218 #endif 219 if (ksp->ks_limblocks < 65535) 220 ksp->ks_limblocks++; 221 msleep(ksp, &malloc_mtx, PSWP+2, memname[type], 0); 222 } 223 ksp->ks_memuse += allocsize; /* account for this early */ 224 ksp->ks_size |= 1 << indx; 225 #endif 226 if (XSIMPLEQ_FIRST(&kbp->kb_freelist) == NULL) { 227 mtx_leave(&malloc_mtx); 228 npg = atop(round_page(allocsize)); 229 s = splvm(); 230 va = (caddr_t)uvm_km_kmemalloc_pla(kmem_map, NULL, 231 (vsize_t)ptoa(npg), 0, 232 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) | 233 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0), 234 no_constraint.ucr_low, no_constraint.ucr_high, 235 0, 0, 0); 236 splx(s); 237 if (va == NULL) { 238 /* 239 * Kmem_malloc() can return NULL, even if it can 240 * wait, if there is no map space available, because 241 * it can't fix that problem. Neither can we, 242 * right now. (We should release pages which 243 * are completely free and which are in buckets 244 * with too many free elements.) 245 */ 246 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0) 247 panic("malloc: out of space in kmem_map"); 248 249 #ifdef KMEMSTATS 250 mtx_enter(&malloc_mtx); 251 ksp->ks_memuse -= allocsize; 252 wake = ksp->ks_memuse + allocsize >= ksp->ks_limit && 253 ksp->ks_memuse < ksp->ks_limit; 254 mtx_leave(&malloc_mtx); 255 if (wake) 256 wakeup(ksp); 257 #endif 258 return (NULL); 259 } 260 mtx_enter(&malloc_mtx); 261 #ifdef KMEMSTATS 262 kbp->kb_total += kbp->kb_elmpercl; 263 #endif 264 kup = btokup(va); 265 kup->ku_indx = indx; 266 #ifdef DIAGNOSTIC 267 freshalloc = 1; 268 #endif 269 if (allocsize > MAXALLOCSAVE) { 270 kup->ku_pagecnt = npg; 271 goto out; 272 } 273 #ifdef KMEMSTATS 274 kup->ku_freecnt = kbp->kb_elmpercl; 275 kbp->kb_totalfree += kbp->kb_elmpercl; 276 #endif 277 cp = va + (npg * PAGE_SIZE) - allocsize; 278 for (;;) { 279 freep = (struct kmem_freelist *)cp; 280 #ifdef DIAGNOSTIC 281 /* 282 * Copy in known text to detect modification 283 * after freeing. 284 */ 285 poison_mem(cp, allocsize); 286 freep->kf_type = M_FREE; 287 #endif /* DIAGNOSTIC */ 288 XSIMPLEQ_INSERT_HEAD(&kbp->kb_freelist, freep, 289 kf_flist); 290 if (cp <= va) 291 break; 292 cp -= allocsize; 293 } 294 } else { 295 #ifdef DIAGNOSTIC 296 freshalloc = 0; 297 #endif 298 } 299 freep = XSIMPLEQ_FIRST(&kbp->kb_freelist); 300 XSIMPLEQ_REMOVE_HEAD(&kbp->kb_freelist, kf_flist); 301 va = (caddr_t)freep; 302 #ifdef DIAGNOSTIC 303 savedtype = (unsigned)freep->kf_type < M_LAST ? 304 memname[freep->kf_type] : "???"; 305 if (freshalloc == 0 && XSIMPLEQ_FIRST(&kbp->kb_freelist)) { 306 int rv; 307 vaddr_t addr = (vaddr_t)XSIMPLEQ_FIRST(&kbp->kb_freelist); 308 309 vm_map_lock(kmem_map); 310 rv = uvm_map_checkprot(kmem_map, addr, 311 addr + sizeof(struct kmem_freelist), PROT_WRITE); 312 vm_map_unlock(kmem_map); 313 314 if (!rv) { 315 printf("%s %zd of object %p size 0x%lx %s %s" 316 " (invalid addr %p)\n", 317 "Data modified on freelist: word", 318 (int32_t *)&addr - (int32_t *)kbp, va, size, 319 "previous type", savedtype, (void *)addr); 320 } 321 } 322 323 /* Fill the fields that we've used with poison */ 324 poison_mem(freep, sizeof(*freep)); 325 326 /* and check that the data hasn't been modified. */ 327 if (freshalloc == 0) { 328 size_t pidx; 329 uint32_t pval; 330 if (poison_check(va, allocsize, &pidx, &pval)) { 331 panic("%s %zd of object %p size 0x%lx %s %s" 332 " (0x%x != 0x%x)\n", 333 "Data modified on freelist: word", 334 pidx, va, size, "previous type", 335 savedtype, ((int32_t*)va)[pidx], pval); 336 } 337 } 338 339 freep->kf_spare0 = 0; 340 #endif /* DIAGNOSTIC */ 341 #ifdef KMEMSTATS 342 kup = btokup(va); 343 if (kup->ku_indx != indx) 344 panic("malloc: wrong bucket"); 345 if (kup->ku_freecnt == 0) 346 panic("malloc: lost data"); 347 kup->ku_freecnt--; 348 kbp->kb_totalfree--; 349 out: 350 kbp->kb_calls++; 351 ksp->ks_inuse++; 352 ksp->ks_calls++; 353 if (ksp->ks_memuse > ksp->ks_maxused) 354 ksp->ks_maxused = ksp->ks_memuse; 355 #else 356 out: 357 #endif 358 mtx_leave(&malloc_mtx); 359 360 if ((flags & M_ZERO) && va != NULL) 361 memset(va, 0, size); 362 return (va); 363 } 364 365 /* 366 * Free a block of memory allocated by malloc. 367 */ 368 void 369 free(void *addr, int type, size_t freedsize) 370 { 371 struct kmembuckets *kbp; 372 struct kmemusage *kup; 373 struct kmem_freelist *freep; 374 long size; 375 int s; 376 #ifdef DIAGNOSTIC 377 long alloc; 378 #endif 379 #ifdef KMEMSTATS 380 struct kmemstats *ksp = &kmemstats[type]; 381 int wake; 382 #endif 383 384 if (addr == NULL) 385 return; 386 387 #ifdef DIAGNOSTIC 388 if (addr < (void *)kmembase || addr >= (void *)kmemlimit) 389 panic("free: non-malloced addr %p type %s", addr, 390 memname[type]); 391 #endif 392 393 mtx_enter(&malloc_mtx); 394 kup = btokup(addr); 395 size = 1 << kup->ku_indx; 396 kbp = &bucket[kup->ku_indx]; 397 if (size > MAXALLOCSAVE) 398 size = kup->ku_pagecnt << PAGE_SHIFT; 399 #ifdef DIAGNOSTIC 400 #if 0 401 if (freedsize == 0) { 402 static int zerowarnings; 403 if (zerowarnings < 5) { 404 zerowarnings++; 405 printf("free with zero size: (%d)\n", type); 406 #ifdef DDB 407 db_stack_dump(); 408 #endif 409 } 410 #endif 411 if (freedsize != 0 && freedsize > size) 412 panic("free: size too large %zu > %ld (%p) type %s", 413 freedsize, size, addr, memname[type]); 414 if (freedsize != 0 && size > MINALLOCSIZE && freedsize <= size / 2) 415 panic("free: size too small %zu <= %ld / 2 (%p) type %s", 416 freedsize, size, addr, memname[type]); 417 /* 418 * Check for returns of data that do not point to the 419 * beginning of the allocation. 420 */ 421 if (size > PAGE_SIZE) 422 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 423 else 424 alloc = addrmask[kup->ku_indx]; 425 if (((u_long)addr & alloc) != 0) 426 panic("free: unaligned addr %p, size %ld, type %s, mask %ld", 427 addr, size, memname[type], alloc); 428 #endif /* DIAGNOSTIC */ 429 if (size > MAXALLOCSAVE) { 430 u_short pagecnt = kup->ku_pagecnt; 431 432 kup->ku_indx = 0; 433 kup->ku_pagecnt = 0; 434 mtx_leave(&malloc_mtx); 435 s = splvm(); 436 uvm_km_free(kmem_map, (vaddr_t)addr, ptoa(pagecnt)); 437 splx(s); 438 #ifdef KMEMSTATS 439 mtx_enter(&malloc_mtx); 440 ksp->ks_memuse -= size; 441 wake = ksp->ks_memuse + size >= ksp->ks_limit && 442 ksp->ks_memuse < ksp->ks_limit; 443 ksp->ks_inuse--; 444 kbp->kb_total -= 1; 445 mtx_leave(&malloc_mtx); 446 if (wake) 447 wakeup(ksp); 448 #endif 449 return; 450 } 451 freep = (struct kmem_freelist *)addr; 452 #ifdef DIAGNOSTIC 453 /* 454 * Check for multiple frees. Use a quick check to see if 455 * it looks free before laboriously searching the freelist. 456 */ 457 if (freep->kf_spare0 == poison_value(freep)) { 458 struct kmem_freelist *fp; 459 XSIMPLEQ_FOREACH(fp, &kbp->kb_freelist, kf_flist) { 460 if (addr != fp) 461 continue; 462 printf("multiply freed item %p\n", addr); 463 panic("free: duplicated free"); 464 } 465 } 466 /* 467 * Copy in known text to detect modification after freeing 468 * and to make it look free. Also, save the type being freed 469 * so we can list likely culprit if modification is detected 470 * when the object is reallocated. 471 */ 472 poison_mem(addr, size); 473 freep->kf_spare0 = poison_value(freep); 474 475 freep->kf_type = type; 476 #endif /* DIAGNOSTIC */ 477 #ifdef KMEMSTATS 478 kup->ku_freecnt++; 479 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 480 if (kup->ku_freecnt > kbp->kb_elmpercl) 481 panic("free: multiple frees"); 482 else if (kbp->kb_totalfree > kbp->kb_highwat) 483 kbp->kb_couldfree++; 484 } 485 kbp->kb_totalfree++; 486 ksp->ks_memuse -= size; 487 wake = ksp->ks_memuse + size >= ksp->ks_limit && 488 ksp->ks_memuse < ksp->ks_limit; 489 ksp->ks_inuse--; 490 #endif 491 XSIMPLEQ_INSERT_TAIL(&kbp->kb_freelist, freep, kf_flist); 492 mtx_leave(&malloc_mtx); 493 #ifdef KMEMSTATS 494 if (wake) 495 wakeup(ksp); 496 #endif 497 } 498 499 /* 500 * Compute the number of pages that kmem_map will map, that is, 501 * the size of the kernel malloc arena. 502 */ 503 void 504 kmeminit_nkmempages(void) 505 { 506 u_int npages; 507 508 if (nkmempages != 0) { 509 /* 510 * It's already been set (by us being here before, or 511 * by patching or kernel config options), bail out now. 512 */ 513 return; 514 } 515 516 /* 517 * We can't initialize these variables at compilation time, since 518 * the page size may not be known (on sparc GENERIC kernels, for 519 * example). But we still want the MD code to be able to provide 520 * better values. 521 */ 522 if (nkmempages_min == 0) 523 nkmempages_min = NKMEMPAGES_MIN; 524 if (nkmempages_max == 0) 525 nkmempages_max = NKMEMPAGES_MAX; 526 527 /* 528 * We use the following (simple) formula: 529 * 530 * - Starting point is physical memory / 4. 531 * 532 * - Clamp it down to nkmempages_max. 533 * 534 * - Round it up to nkmempages_min. 535 */ 536 npages = physmem / 4; 537 538 if (npages > nkmempages_max) 539 npages = nkmempages_max; 540 541 if (npages < nkmempages_min) 542 npages = nkmempages_min; 543 544 nkmempages = npages; 545 } 546 547 /* 548 * Initialize the kernel memory allocator 549 */ 550 void 551 kmeminit(void) 552 { 553 vaddr_t base, limit; 554 long indx; 555 556 #ifdef DIAGNOSTIC 557 if (sizeof(struct kmem_freelist) > (1 << MINBUCKET)) 558 panic("kmeminit: minbucket too small/struct freelist too big"); 559 #endif 560 561 /* 562 * Compute the number of kmem_map pages, if we have not 563 * done so already. 564 */ 565 kmeminit_nkmempages(); 566 base = vm_map_min(kernel_map); 567 kmem_map = uvm_km_suballoc(kernel_map, &base, &limit, 568 (vsize_t)nkmempages << PAGE_SHIFT, 569 #ifdef KVA_GUARDPAGES 570 VM_MAP_INTRSAFE | VM_MAP_GUARDPAGES, 571 #else 572 VM_MAP_INTRSAFE, 573 #endif 574 FALSE, &kmem_map_store); 575 kmembase = (char *)base; 576 kmemlimit = (char *)limit; 577 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 578 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 579 for (indx = 0; indx < MINBUCKET + 16; indx++) { 580 XSIMPLEQ_INIT(&bucket[indx].kb_freelist); 581 } 582 #ifdef KMEMSTATS 583 for (indx = 0; indx < MINBUCKET + 16; indx++) { 584 if (1 << indx >= PAGE_SIZE) 585 bucket[indx].kb_elmpercl = 1; 586 else 587 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 588 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 589 } 590 for (indx = 0; indx < M_LAST; indx++) 591 kmemstats[indx].ks_limit = nkmempages * PAGE_SIZE * 6 / 10; 592 #endif 593 } 594 595 /* 596 * Return kernel malloc statistics information. 597 */ 598 int 599 sysctl_malloc(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, 600 size_t newlen, struct proc *p) 601 { 602 struct kmembuckets kb; 603 #ifdef KMEMSTATS 604 struct kmemstats km; 605 #endif 606 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 607 int error; 608 #endif 609 int i, siz; 610 611 if (namelen != 2 && name[0] != KERN_MALLOC_BUCKETS && 612 name[0] != KERN_MALLOC_KMEMNAMES) 613 return (ENOTDIR); /* overloaded */ 614 615 switch (name[0]) { 616 case KERN_MALLOC_BUCKETS: 617 /* Initialize the first time */ 618 if (buckstring_init == 0) { 619 buckstring_init = 1; 620 memset(buckstring, 0, sizeof(buckstring)); 621 for (siz = 0, i = MINBUCKET; i < MINBUCKET + 16; i++) { 622 snprintf(buckstring + siz, 623 sizeof buckstring - siz, 624 "%d,", (u_int)(1<<i)); 625 siz += strlen(buckstring + siz); 626 } 627 /* Remove trailing comma */ 628 if (siz) 629 buckstring[siz - 1] = '\0'; 630 } 631 return (sysctl_rdstring(oldp, oldlenp, newp, buckstring)); 632 633 case KERN_MALLOC_BUCKET: 634 mtx_enter(&malloc_mtx); 635 memcpy(&kb, &bucket[BUCKETINDX(name[1])], sizeof(kb)); 636 mtx_leave(&malloc_mtx); 637 memset(&kb.kb_freelist, 0, sizeof(kb.kb_freelist)); 638 return (sysctl_rdstruct(oldp, oldlenp, newp, &kb, sizeof(kb))); 639 case KERN_MALLOC_KMEMSTATS: 640 #ifdef KMEMSTATS 641 if ((name[1] < 0) || (name[1] >= M_LAST)) 642 return (EINVAL); 643 mtx_enter(&malloc_mtx); 644 memcpy(&km, &kmemstats[name[1]], sizeof(km)); 645 mtx_leave(&malloc_mtx); 646 return (sysctl_rdstruct(oldp, oldlenp, newp, &km, sizeof(km))); 647 #else 648 return (EOPNOTSUPP); 649 #endif 650 case KERN_MALLOC_KMEMNAMES: 651 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 652 error = rw_enter(&sysctl_kmemlock, RW_WRITE|RW_INTR); 653 if (error) 654 return (error); 655 if (memall == NULL) { 656 int totlen; 657 658 /* Figure out how large a buffer we need */ 659 for (totlen = 0, i = 0; i < M_LAST; i++) { 660 if (memname[i]) 661 totlen += strlen(memname[i]); 662 totlen++; 663 } 664 memall = malloc(totlen + M_LAST, M_SYSCTL, 665 M_WAITOK|M_ZERO); 666 for (siz = 0, i = 0; i < M_LAST; i++) { 667 snprintf(memall + siz, 668 totlen + M_LAST - siz, 669 "%s,", memname[i] ? memname[i] : ""); 670 siz += strlen(memall + siz); 671 } 672 /* Remove trailing comma */ 673 if (siz) 674 memall[siz - 1] = '\0'; 675 676 /* Now, convert all spaces to underscores */ 677 for (i = 0; i < totlen; i++) 678 if (memall[i] == ' ') 679 memall[i] = '_'; 680 } 681 rw_exit_write(&sysctl_kmemlock); 682 return (sysctl_rdstring(oldp, oldlenp, newp, memall)); 683 #else 684 return (EOPNOTSUPP); 685 #endif 686 default: 687 return (EOPNOTSUPP); 688 } 689 /* NOTREACHED */ 690 } 691 692 /* 693 * Round up a size to how much malloc would actually allocate. 694 */ 695 size_t 696 malloc_roundup(size_t sz) 697 { 698 if (sz > MAXALLOCSAVE) 699 return round_page(sz); 700 701 return (1 << BUCKETINDX(sz)); 702 } 703 704 #if defined(DDB) 705 706 void 707 malloc_printit( 708 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 709 { 710 #ifdef KMEMSTATS 711 struct kmemstats *km; 712 int i; 713 714 (*pr)("%15s %5s %6s %7s %6s %9s %8s %8s\n", 715 "Type", "InUse", "MemUse", "HighUse", "Limit", "Requests", 716 "Type Lim", "Kern Lim"); 717 for (i = 0, km = kmemstats; i < M_LAST; i++, km++) { 718 if (!km->ks_calls || !memname[i]) 719 continue; 720 721 (*pr)("%15s %5ld %6ldK %7ldK %6ldK %9ld %8d %8d\n", 722 memname[i], km->ks_inuse, km->ks_memuse / 1024, 723 km->ks_maxused / 1024, km->ks_limit / 1024, 724 km->ks_calls, km->ks_limblocks, km->ks_mapblocks); 725 } 726 #else 727 (*pr)("No KMEMSTATS compiled in\n"); 728 #endif 729 } 730 #endif /* DDB */ 731 732 /* 733 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> 734 * 735 * Permission to use, copy, modify, and distribute this software for any 736 * purpose with or without fee is hereby granted, provided that the above 737 * copyright notice and this permission notice appear in all copies. 738 * 739 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 740 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 741 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 742 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 743 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 744 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 745 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 746 */ 747 748 /* 749 * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX 750 * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW 751 */ 752 #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4)) 753 754 void * 755 mallocarray(size_t nmemb, size_t size, int type, int flags) 756 { 757 if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) && 758 nmemb > 0 && SIZE_MAX / nmemb < size) { 759 if (flags & M_CANFAIL) 760 return (NULL); 761 panic("mallocarray: overflow %zu * %zu", nmemb, size); 762 } 763 return (malloc(size * nmemb, type, flags)); 764 } 765