1 /* $OpenBSD: kern_malloc.c,v 1.114 2014/07/13 14:59:28 tedu Exp $ */ 2 /* $NetBSD: kern_malloc.c,v 1.15.4.2 1996/06/13 17:10:56 cgd Exp $ */ 3 4 /* 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 33 */ 34 35 #include <sys/param.h> 36 #include <sys/proc.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/systm.h> 40 #include <sys/sysctl.h> 41 #include <sys/time.h> 42 #include <sys/rwlock.h> 43 44 #include <dev/rndvar.h> 45 46 #include <uvm/uvm_extern.h> 47 48 static 49 #ifndef SMALL_KERNEL 50 __inline__ 51 #endif 52 long BUCKETINDX(size_t sz) 53 { 54 long b, d; 55 56 /* note that this relies upon MINALLOCSIZE being 1 << MINBUCKET */ 57 b = 7 + MINBUCKET; d = 4; 58 while (d != 0) { 59 if (sz <= (1 << b)) 60 b -= d; 61 else 62 b += d; 63 d >>= 1; 64 } 65 if (sz <= (1 << b)) 66 b += 0; 67 else 68 b += 1; 69 return b; 70 } 71 72 static struct vm_map kmem_map_store; 73 struct vm_map *kmem_map = NULL; 74 75 /* 76 * Default number of pages in kmem_map. We attempt to calculate this 77 * at run-time, but allow it to be either patched or set in the kernel 78 * config file. 79 */ 80 #ifndef NKMEMPAGES 81 #define NKMEMPAGES 0 82 #endif 83 u_int nkmempages = NKMEMPAGES; 84 85 /* 86 * Defaults for lower- and upper-bounds for the kmem_map page count. 87 * Can be overridden by kernel config options. 88 */ 89 #ifndef NKMEMPAGES_MIN 90 #define NKMEMPAGES_MIN 0 91 #endif 92 u_int nkmempages_min = 0; 93 94 #ifndef NKMEMPAGES_MAX 95 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 96 #endif 97 u_int nkmempages_max = 0; 98 99 struct kmembuckets bucket[MINBUCKET + 16]; 100 #ifdef KMEMSTATS 101 struct kmemstats kmemstats[M_LAST]; 102 #endif 103 struct kmemusage *kmemusage; 104 char *kmembase, *kmemlimit; 105 char buckstring[16 * sizeof("123456,")]; 106 int buckstring_init = 0; 107 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 108 char *memname[] = INITKMEMNAMES; 109 char *memall = NULL; 110 struct rwlock sysctl_kmemlock = RWLOCK_INITIALIZER("sysctlklk"); 111 #endif 112 113 /* 114 * Normally the freelist structure is used only to hold the list pointer 115 * for free objects. However, when running with diagnostics, the first 116 * 8 bytes of the structure is unused except for diagnostic information, 117 * and the free list pointer is at offset 8 in the structure. Since the 118 * first 8 bytes is the portion of the structure most often modified, this 119 * helps to detect memory reuse problems and avoid free list corruption. 120 */ 121 struct kmem_freelist { 122 int32_t kf_spare0; 123 int16_t kf_type; 124 int16_t kf_spare1; 125 XSIMPLEQ_ENTRY(kmem_freelist) kf_flist; 126 }; 127 128 #ifdef DIAGNOSTIC 129 /* 130 * This structure provides a set of masks to catch unaligned frees. 131 */ 132 const long addrmask[] = { 0, 133 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 134 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 135 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 136 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 137 }; 138 139 #endif /* DIAGNOSTIC */ 140 141 #ifndef SMALL_KERNEL 142 struct timeval malloc_errintvl = { 5, 0 }; 143 struct timeval malloc_lasterr; 144 #endif 145 146 /* 147 * Allocate a block of memory 148 */ 149 void * 150 malloc(size_t size, int type, int flags) 151 { 152 struct kmembuckets *kbp; 153 struct kmemusage *kup; 154 struct kmem_freelist *freep; 155 long indx, npg, allocsize; 156 int s; 157 caddr_t va, cp; 158 #ifdef DIAGNOSTIC 159 int freshalloc; 160 char *savedtype; 161 #endif 162 #ifdef KMEMSTATS 163 struct kmemstats *ksp = &kmemstats[type]; 164 165 if (((unsigned long)type) <= 1 || ((unsigned long)type) >= M_LAST) 166 panic("malloc - bogus type"); 167 #endif 168 169 KASSERT(flags & (M_WAITOK | M_NOWAIT)); 170 171 if ((flags & M_NOWAIT) == 0) { 172 extern int pool_debug; 173 #ifdef DIAGNOSTIC 174 assertwaitok(); 175 if (pool_debug == 2) 176 yield(); 177 #endif 178 if (!cold && pool_debug) { 179 KERNEL_UNLOCK(); 180 KERNEL_LOCK(); 181 } 182 } 183 184 #ifdef MALLOC_DEBUG 185 if (debug_malloc(size, type, flags, (void **)&va)) { 186 if ((flags & M_ZERO) && va != NULL) 187 memset(va, 0, size); 188 return (va); 189 } 190 #endif 191 192 if (size > 65535 * PAGE_SIZE) { 193 if (flags & M_CANFAIL) { 194 #ifndef SMALL_KERNEL 195 if (ratecheck(&malloc_lasterr, &malloc_errintvl)) 196 printf("malloc(): allocation too large, " 197 "type = %d, size = %lu\n", type, size); 198 #endif 199 return (NULL); 200 } else 201 panic("malloc: allocation too large, " 202 "type = %d, size = %lu\n", type, size); 203 } 204 205 indx = BUCKETINDX(size); 206 kbp = &bucket[indx]; 207 s = splvm(); 208 #ifdef KMEMSTATS 209 while (ksp->ks_memuse >= ksp->ks_limit) { 210 if (flags & M_NOWAIT) { 211 splx(s); 212 return (NULL); 213 } 214 if (ksp->ks_limblocks < 65535) 215 ksp->ks_limblocks++; 216 tsleep(ksp, PSWP+2, memname[type], 0); 217 } 218 ksp->ks_size |= 1 << indx; 219 #endif 220 if (size > MAXALLOCSAVE) 221 allocsize = round_page(size); 222 else 223 allocsize = 1 << indx; 224 if (XSIMPLEQ_FIRST(&kbp->kb_freelist) == NULL) { 225 npg = atop(round_page(allocsize)); 226 va = (caddr_t)uvm_km_kmemalloc_pla(kmem_map, NULL, 227 (vsize_t)ptoa(npg), 0, 228 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) | 229 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0), 230 no_constraint.ucr_low, no_constraint.ucr_high, 231 0, 0, 0); 232 if (va == NULL) { 233 /* 234 * Kmem_malloc() can return NULL, even if it can 235 * wait, if there is no map space available, because 236 * it can't fix that problem. Neither can we, 237 * right now. (We should release pages which 238 * are completely free and which are in buckets 239 * with too many free elements.) 240 */ 241 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0) 242 panic("malloc: out of space in kmem_map"); 243 splx(s); 244 return (NULL); 245 } 246 #ifdef KMEMSTATS 247 kbp->kb_total += kbp->kb_elmpercl; 248 #endif 249 kup = btokup(va); 250 kup->ku_indx = indx; 251 #ifdef DIAGNOSTIC 252 freshalloc = 1; 253 #endif 254 if (allocsize > MAXALLOCSAVE) { 255 kup->ku_pagecnt = npg; 256 #ifdef KMEMSTATS 257 ksp->ks_memuse += allocsize; 258 #endif 259 goto out; 260 } 261 #ifdef KMEMSTATS 262 kup->ku_freecnt = kbp->kb_elmpercl; 263 kbp->kb_totalfree += kbp->kb_elmpercl; 264 #endif 265 cp = va + (npg * PAGE_SIZE) - allocsize; 266 for (;;) { 267 freep = (struct kmem_freelist *)cp; 268 #ifdef DIAGNOSTIC 269 /* 270 * Copy in known text to detect modification 271 * after freeing. 272 */ 273 poison_mem(cp, allocsize); 274 freep->kf_type = M_FREE; 275 #endif /* DIAGNOSTIC */ 276 XSIMPLEQ_INSERT_HEAD(&kbp->kb_freelist, freep, kf_flist); 277 if (cp <= va) 278 break; 279 cp -= allocsize; 280 } 281 } else { 282 #ifdef DIAGNOSTIC 283 freshalloc = 0; 284 #endif 285 } 286 freep = XSIMPLEQ_FIRST(&kbp->kb_freelist); 287 XSIMPLEQ_REMOVE_HEAD(&kbp->kb_freelist, kf_flist); 288 va = (caddr_t)freep; 289 #ifdef DIAGNOSTIC 290 savedtype = (unsigned)freep->kf_type < M_LAST ? 291 memname[freep->kf_type] : "???"; 292 if (freshalloc == 0 && XSIMPLEQ_FIRST(&kbp->kb_freelist)) { 293 int rv; 294 vaddr_t addr = (vaddr_t)XSIMPLEQ_FIRST(&kbp->kb_freelist); 295 296 vm_map_lock(kmem_map); 297 rv = uvm_map_checkprot(kmem_map, addr, 298 addr + sizeof(struct kmem_freelist), VM_PROT_WRITE); 299 vm_map_unlock(kmem_map); 300 301 if (!rv) { 302 printf("%s %zd of object %p size 0x%lx %s %s" 303 " (invalid addr %p)\n", 304 "Data modified on freelist: word", 305 (int32_t *)&addr - (int32_t *)kbp, va, size, 306 "previous type", savedtype, (void *)addr); 307 } 308 } 309 310 /* Fill the fields that we've used with poison */ 311 poison_mem(freep, sizeof(*freep)); 312 313 /* and check that the data hasn't been modified. */ 314 if (freshalloc == 0) { 315 size_t pidx; 316 uint32_t pval; 317 if (poison_check(va, allocsize, &pidx, &pval)) { 318 panic("%s %zd of object %p size 0x%lx %s %s" 319 " (0x%x != 0x%x)\n", 320 "Data modified on freelist: word", 321 pidx, va, size, "previous type", 322 savedtype, ((int32_t*)va)[pidx], pval); 323 } 324 } 325 326 freep->kf_spare0 = 0; 327 #endif /* DIAGNOSTIC */ 328 #ifdef KMEMSTATS 329 kup = btokup(va); 330 if (kup->ku_indx != indx) 331 panic("malloc: wrong bucket"); 332 if (kup->ku_freecnt == 0) 333 panic("malloc: lost data"); 334 kup->ku_freecnt--; 335 kbp->kb_totalfree--; 336 ksp->ks_memuse += 1 << indx; 337 out: 338 kbp->kb_calls++; 339 ksp->ks_inuse++; 340 ksp->ks_calls++; 341 if (ksp->ks_memuse > ksp->ks_maxused) 342 ksp->ks_maxused = ksp->ks_memuse; 343 #else 344 out: 345 #endif 346 splx(s); 347 348 if ((flags & M_ZERO) && va != NULL) 349 memset(va, 0, size); 350 return (va); 351 } 352 353 /* 354 * Free a block of memory allocated by malloc. 355 */ 356 void 357 free(void *addr, int type, size_t freedsize) 358 { 359 struct kmembuckets *kbp; 360 struct kmemusage *kup; 361 struct kmem_freelist *freep; 362 long size; 363 int s; 364 #ifdef DIAGNOSTIC 365 long alloc; 366 #endif 367 #ifdef KMEMSTATS 368 struct kmemstats *ksp = &kmemstats[type]; 369 #endif 370 371 if (addr == NULL) 372 return; 373 374 #ifdef MALLOC_DEBUG 375 if (debug_free(addr, type)) 376 return; 377 #endif 378 379 #ifdef DIAGNOSTIC 380 if (addr < (void *)kmembase || addr >= (void *)kmemlimit) 381 panic("free: non-malloced addr %p type %s", addr, 382 memname[type]); 383 #endif 384 385 kup = btokup(addr); 386 size = 1 << kup->ku_indx; 387 kbp = &bucket[kup->ku_indx]; 388 s = splvm(); 389 #ifdef DIAGNOSTIC 390 if (freedsize != 0 && freedsize > size) 391 panic("freed too much: %zu > %ld (%p)", freedsize, size, addr); 392 if (freedsize != 0 && size > MINALLOCSIZE && freedsize < size / 2) 393 panic("freed too little: %zu < %ld / 2 (%p)", 394 freedsize, size, addr); 395 /* 396 * Check for returns of data that do not point to the 397 * beginning of the allocation. 398 */ 399 if (size > PAGE_SIZE) 400 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 401 else 402 alloc = addrmask[kup->ku_indx]; 403 if (((u_long)addr & alloc) != 0) 404 panic("free: unaligned addr %p, size %ld, type %s, mask %ld", 405 addr, size, memname[type], alloc); 406 #endif /* DIAGNOSTIC */ 407 if (size > MAXALLOCSAVE) { 408 uvm_km_free(kmem_map, (vaddr_t)addr, ptoa(kup->ku_pagecnt)); 409 #ifdef KMEMSTATS 410 size = kup->ku_pagecnt << PAGE_SHIFT; 411 ksp->ks_memuse -= size; 412 kup->ku_indx = 0; 413 kup->ku_pagecnt = 0; 414 if (ksp->ks_memuse + size >= ksp->ks_limit && 415 ksp->ks_memuse < ksp->ks_limit) 416 wakeup(ksp); 417 ksp->ks_inuse--; 418 kbp->kb_total -= 1; 419 #endif 420 splx(s); 421 return; 422 } 423 freep = (struct kmem_freelist *)addr; 424 #ifdef DIAGNOSTIC 425 /* 426 * Check for multiple frees. Use a quick check to see if 427 * it looks free before laboriously searching the freelist. 428 */ 429 if (freep->kf_spare0 == poison_value(freep)) { 430 struct kmem_freelist *fp; 431 XSIMPLEQ_FOREACH(fp, &kbp->kb_freelist, kf_flist) { 432 if (addr != fp) 433 continue; 434 printf("multiply freed item %p\n", addr); 435 panic("free: duplicated free"); 436 } 437 } 438 /* 439 * Copy in known text to detect modification after freeing 440 * and to make it look free. Also, save the type being freed 441 * so we can list likely culprit if modification is detected 442 * when the object is reallocated. 443 */ 444 poison_mem(addr, size); 445 freep->kf_spare0 = poison_value(freep); 446 447 freep->kf_type = type; 448 #endif /* DIAGNOSTIC */ 449 #ifdef KMEMSTATS 450 kup->ku_freecnt++; 451 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 452 if (kup->ku_freecnt > kbp->kb_elmpercl) 453 panic("free: multiple frees"); 454 else if (kbp->kb_totalfree > kbp->kb_highwat) 455 kbp->kb_couldfree++; 456 } 457 kbp->kb_totalfree++; 458 ksp->ks_memuse -= size; 459 if (ksp->ks_memuse + size >= ksp->ks_limit && 460 ksp->ks_memuse < ksp->ks_limit) 461 wakeup(ksp); 462 ksp->ks_inuse--; 463 #endif 464 XSIMPLEQ_INSERT_TAIL(&kbp->kb_freelist, freep, kf_flist); 465 splx(s); 466 } 467 468 /* 469 * Compute the number of pages that kmem_map will map, that is, 470 * the size of the kernel malloc arena. 471 */ 472 void 473 kmeminit_nkmempages(void) 474 { 475 u_int npages; 476 477 if (nkmempages != 0) { 478 /* 479 * It's already been set (by us being here before, or 480 * by patching or kernel config options), bail out now. 481 */ 482 return; 483 } 484 485 /* 486 * We can't initialize these variables at compilation time, since 487 * the page size may not be known (on sparc GENERIC kernels, for 488 * example). But we still want the MD code to be able to provide 489 * better values. 490 */ 491 if (nkmempages_min == 0) 492 nkmempages_min = NKMEMPAGES_MIN; 493 if (nkmempages_max == 0) 494 nkmempages_max = NKMEMPAGES_MAX; 495 496 /* 497 * We use the following (simple) formula: 498 * 499 * - Starting point is physical memory / 4. 500 * 501 * - Clamp it down to nkmempages_max. 502 * 503 * - Round it up to nkmempages_min. 504 */ 505 npages = physmem / 4; 506 507 if (npages > nkmempages_max) 508 npages = nkmempages_max; 509 510 if (npages < nkmempages_min) 511 npages = nkmempages_min; 512 513 nkmempages = npages; 514 } 515 516 /* 517 * Initialize the kernel memory allocator 518 */ 519 void 520 kmeminit(void) 521 { 522 vaddr_t base, limit; 523 long indx; 524 525 #ifdef DIAGNOSTIC 526 if (sizeof(struct kmem_freelist) > (1 << MINBUCKET)) 527 panic("kmeminit: minbucket too small/struct freelist too big"); 528 #endif 529 530 /* 531 * Compute the number of kmem_map pages, if we have not 532 * done so already. 533 */ 534 kmeminit_nkmempages(); 535 base = vm_map_min(kernel_map); 536 kmem_map = uvm_km_suballoc(kernel_map, &base, &limit, 537 (vsize_t)nkmempages << PAGE_SHIFT, 538 #ifdef KVA_GUARDPAGES 539 VM_MAP_INTRSAFE | VM_MAP_GUARDPAGES, 540 #else 541 VM_MAP_INTRSAFE, 542 #endif 543 FALSE, &kmem_map_store); 544 kmembase = (char *)base; 545 kmemlimit = (char *)limit; 546 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 547 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 548 for (indx = 0; indx < MINBUCKET + 16; indx++) { 549 XSIMPLEQ_INIT(&bucket[indx].kb_freelist); 550 } 551 #ifdef KMEMSTATS 552 for (indx = 0; indx < MINBUCKET + 16; indx++) { 553 if (1 << indx >= PAGE_SIZE) 554 bucket[indx].kb_elmpercl = 1; 555 else 556 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 557 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 558 } 559 for (indx = 0; indx < M_LAST; indx++) 560 kmemstats[indx].ks_limit = nkmempages * PAGE_SIZE * 6 / 10; 561 #endif 562 #ifdef MALLOC_DEBUG 563 debug_malloc_init(); 564 #endif 565 } 566 567 /* 568 * Return kernel malloc statistics information. 569 */ 570 int 571 sysctl_malloc(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, 572 size_t newlen, struct proc *p) 573 { 574 struct kmembuckets kb; 575 int i, siz; 576 577 if (namelen != 2 && name[0] != KERN_MALLOC_BUCKETS && 578 name[0] != KERN_MALLOC_KMEMNAMES) 579 return (ENOTDIR); /* overloaded */ 580 581 switch (name[0]) { 582 case KERN_MALLOC_BUCKETS: 583 /* Initialize the first time */ 584 if (buckstring_init == 0) { 585 buckstring_init = 1; 586 memset(buckstring, 0, sizeof(buckstring)); 587 for (siz = 0, i = MINBUCKET; i < MINBUCKET + 16; i++) { 588 snprintf(buckstring + siz, 589 sizeof buckstring - siz, 590 "%d,", (u_int)(1<<i)); 591 siz += strlen(buckstring + siz); 592 } 593 /* Remove trailing comma */ 594 if (siz) 595 buckstring[siz - 1] = '\0'; 596 } 597 return (sysctl_rdstring(oldp, oldlenp, newp, buckstring)); 598 599 case KERN_MALLOC_BUCKET: 600 bcopy(&bucket[BUCKETINDX(name[1])], &kb, sizeof(kb)); 601 memset(&kb.kb_freelist, 0, sizeof(kb.kb_freelist)); 602 return (sysctl_rdstruct(oldp, oldlenp, newp, &kb, sizeof(kb))); 603 case KERN_MALLOC_KMEMSTATS: 604 #ifdef KMEMSTATS 605 if ((name[1] < 0) || (name[1] >= M_LAST)) 606 return (EINVAL); 607 return (sysctl_rdstruct(oldp, oldlenp, newp, 608 &kmemstats[name[1]], sizeof(struct kmemstats))); 609 #else 610 return (EOPNOTSUPP); 611 #endif 612 case KERN_MALLOC_KMEMNAMES: 613 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 614 if (memall == NULL) { 615 int totlen; 616 617 i = rw_enter(&sysctl_kmemlock, RW_WRITE|RW_INTR); 618 if (i) 619 return (i); 620 621 /* Figure out how large a buffer we need */ 622 for (totlen = 0, i = 0; i < M_LAST; i++) { 623 if (memname[i]) 624 totlen += strlen(memname[i]); 625 totlen++; 626 } 627 memall = malloc(totlen + M_LAST, M_SYSCTL, 628 M_WAITOK|M_ZERO); 629 for (siz = 0, i = 0; i < M_LAST; i++) { 630 snprintf(memall + siz, 631 totlen + M_LAST - siz, 632 "%s,", memname[i] ? memname[i] : ""); 633 siz += strlen(memall + siz); 634 } 635 /* Remove trailing comma */ 636 if (siz) 637 memall[siz - 1] = '\0'; 638 639 /* Now, convert all spaces to underscores */ 640 for (i = 0; i < totlen; i++) 641 if (memall[i] == ' ') 642 memall[i] = '_'; 643 rw_exit_write(&sysctl_kmemlock); 644 } 645 return (sysctl_rdstring(oldp, oldlenp, newp, memall)); 646 #else 647 return (EOPNOTSUPP); 648 #endif 649 default: 650 return (EOPNOTSUPP); 651 } 652 /* NOTREACHED */ 653 } 654 655 /* 656 * Round up a size to how much malloc would actually allocate. 657 */ 658 size_t 659 malloc_roundup(size_t sz) 660 { 661 if (sz > MAXALLOCSAVE) 662 return round_page(sz); 663 664 return (1 << BUCKETINDX(sz)); 665 } 666 667 #if defined(DDB) 668 #include <machine/db_machdep.h> 669 #include <ddb/db_interface.h> 670 #include <ddb/db_output.h> 671 672 void 673 malloc_printit( 674 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 675 { 676 #ifdef KMEMSTATS 677 struct kmemstats *km; 678 int i; 679 680 (*pr)("%15s %5s %6s %7s %6s %9s %8s %8s\n", 681 "Type", "InUse", "MemUse", "HighUse", "Limit", "Requests", 682 "Type Lim", "Kern Lim"); 683 for (i = 0, km = kmemstats; i < M_LAST; i++, km++) { 684 if (!km->ks_calls || !memname[i]) 685 continue; 686 687 (*pr)("%15s %5ld %6ldK %7ldK %6ldK %9ld %8d %8d\n", 688 memname[i], km->ks_inuse, km->ks_memuse / 1024, 689 km->ks_maxused / 1024, km->ks_limit / 1024, 690 km->ks_calls, km->ks_limblocks, km->ks_mapblocks); 691 } 692 #else 693 (*pr)("No KMEMSTATS compiled in\n"); 694 #endif 695 } 696 #endif /* DDB */ 697 698 /* 699 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> 700 * 701 * Permission to use, copy, modify, and distribute this software for any 702 * purpose with or without fee is hereby granted, provided that the above 703 * copyright notice and this permission notice appear in all copies. 704 * 705 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 706 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 707 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 708 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 709 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 710 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 711 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 712 */ 713 714 /* 715 * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX 716 * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW 717 */ 718 #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4)) 719 720 void * 721 mallocarray(size_t nmemb, size_t size, int type, int flags) 722 { 723 if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) && 724 nmemb > 0 && SIZE_MAX / nmemb < size) { 725 if (flags & M_CANFAIL) 726 return (NULL); 727 panic("mallocarray overflow: %zu * %zu", nmemb, size); 728 } 729 return (malloc(size * nmemb, type, flags)); 730 } 731