xref: /openbsd-src/sys/kern/kern_fork.c (revision 8e0c768258d4632c51876b4397034bc3152bf8db)
1 /*	$OpenBSD: kern_fork.c,v 1.216 2019/10/22 21:19:22 cheloha Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 #include "kcov.h"
69 
70 int	nprocesses = 1;		/* process 0 */
71 int	nthreads = 1;		/* proc 0 */
72 int	randompid;		/* when set to 1, pid's go random */
73 struct	forkstat forkstat;
74 
75 void fork_return(void *);
76 pid_t alloctid(void);
77 pid_t allocpid(void);
78 int ispidtaken(pid_t);
79 
80 void unveil_copy(struct process *parent, struct process *child);
81 
82 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
83 struct process *process_new(struct proc *, struct process *, int);
84 int fork_check_maxthread(uid_t _uid);
85 
86 void
87 fork_return(void *arg)
88 {
89 	struct proc *p = (struct proc *)arg;
90 
91 	if (p->p_p->ps_flags & PS_TRACED)
92 		psignal(p, SIGTRAP);
93 
94 	child_return(p);
95 }
96 
97 int
98 sys_fork(struct proc *p, void *v, register_t *retval)
99 {
100 	int flags;
101 
102 	flags = FORK_FORK;
103 	if (p->p_p->ps_ptmask & PTRACE_FORK)
104 		flags |= FORK_PTRACE;
105 	return fork1(p, flags, fork_return, NULL, retval, NULL);
106 }
107 
108 int
109 sys_vfork(struct proc *p, void *v, register_t *retval)
110 {
111 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
112 	    retval, NULL);
113 }
114 
115 int
116 sys___tfork(struct proc *p, void *v, register_t *retval)
117 {
118 	struct sys___tfork_args /* {
119 		syscallarg(const struct __tfork) *param;
120 		syscallarg(size_t) psize;
121 	} */ *uap = v;
122 	size_t psize = SCARG(uap, psize);
123 	struct __tfork param = { 0 };
124 	int error;
125 
126 	if (psize == 0 || psize > sizeof(param))
127 		return EINVAL;
128 	if ((error = copyin(SCARG(uap, param), &param, psize)))
129 		return error;
130 #ifdef KTRACE
131 	if (KTRPOINT(p, KTR_STRUCT))
132 		ktrstruct(p, "tfork", &param, sizeof(param));
133 #endif
134 #ifdef TCB_INVALID
135 	if (TCB_INVALID(param.tf_tcb))
136 		return EINVAL;
137 #endif /* TCB_INVALID */
138 
139 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
140 	    retval);
141 }
142 
143 /*
144  * Allocate and initialize a thread (proc) structure, given the parent thread.
145  */
146 struct proc *
147 thread_new(struct proc *parent, vaddr_t uaddr)
148 {
149 	struct proc *p;
150 
151 	p = pool_get(&proc_pool, PR_WAITOK);
152 	p->p_stat = SIDL;			/* protect against others */
153 	p->p_flag = 0;
154 	p->p_limit = NULL;
155 
156 	/*
157 	 * Make a proc table entry for the new process.
158 	 * Start by zeroing the section of proc that is zero-initialized,
159 	 * then copy the section that is copied directly from the parent.
160 	 */
161 	memset(&p->p_startzero, 0,
162 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
163 	memcpy(&p->p_startcopy, &parent->p_startcopy,
164 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
165 	crhold(p->p_ucred);
166 	p->p_addr = (struct user *)uaddr;
167 
168 	/*
169 	 * Initialize the timeouts.
170 	 */
171 	timeout_set(&p->p_sleep_to, endtsleep, p);
172 
173 #ifdef WITNESS
174 	p->p_sleeplocks = NULL;
175 #endif
176 
177 #if NKCOV > 0
178 	p->p_kd = NULL;
179 #endif
180 
181 	return p;
182 }
183 
184 /*
185  * Initialize common bits of a process structure, given the initial thread.
186  */
187 void
188 process_initialize(struct process *pr, struct proc *p)
189 {
190 	/* initialize the thread links */
191 	pr->ps_mainproc = p;
192 	TAILQ_INIT(&pr->ps_threads);
193 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
194 	pr->ps_refcnt = 1;
195 	p->p_p = pr;
196 
197 	/* give the process the same creds as the initial thread */
198 	pr->ps_ucred = p->p_ucred;
199 	crhold(pr->ps_ucred);
200 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
201 
202 	LIST_INIT(&pr->ps_children);
203 	LIST_INIT(&pr->ps_ftlist);
204 	LIST_INIT(&pr->ps_kqlist);
205 	LIST_INIT(&pr->ps_sigiolst);
206 
207 	mtx_init(&pr->ps_mtx, IPL_MPFLOOR);
208 
209 	timeout_set(&pr->ps_realit_to, realitexpire, pr);
210 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
211 }
212 
213 
214 /*
215  * Allocate and initialize a new process.
216  */
217 struct process *
218 process_new(struct proc *p, struct process *parent, int flags)
219 {
220 	struct process *pr;
221 
222 	pr = pool_get(&process_pool, PR_WAITOK);
223 
224 	/*
225 	 * Make a process structure for the new process.
226 	 * Start by zeroing the section of proc that is zero-initialized,
227 	 * then copy the section that is copied directly from the parent.
228 	 */
229 	memset(&pr->ps_startzero, 0,
230 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
231 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
232 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
233 
234 	process_initialize(pr, p);
235 	pr->ps_pid = allocpid();
236 	lim_fork(parent, pr);
237 
238 	/* post-copy fixups */
239 	pr->ps_pptr = parent;
240 
241 	/* bump references to the text vnode (for sysctl) */
242 	pr->ps_textvp = parent->ps_textvp;
243 	if (pr->ps_textvp)
244 		vref(pr->ps_textvp);
245 
246 	/* copy unveil if unveil is active */
247 	unveil_copy(parent, pr);
248 
249 	pr->ps_flags = parent->ps_flags &
250 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
251 	if (parent->ps_session->s_ttyvp != NULL)
252 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
253 
254 	/*
255 	 * Duplicate sub-structures as needed.
256 	 * Increase reference counts on shared objects.
257 	 */
258 	if (flags & FORK_SHAREFILES)
259 		pr->ps_fd = fdshare(parent);
260 	else
261 		pr->ps_fd = fdcopy(parent);
262 	if (flags & FORK_SIGHAND)
263 		pr->ps_sigacts = sigactsshare(parent);
264 	else
265 		pr->ps_sigacts = sigactsinit(parent);
266 	if (flags & FORK_SHAREVM)
267 		pr->ps_vmspace = uvmspace_share(parent);
268 	else
269 		pr->ps_vmspace = uvmspace_fork(parent);
270 
271 	if (parent->ps_flags & PS_PROFIL)
272 		startprofclock(pr);
273 	if (flags & FORK_PTRACE)
274 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
275 	if (flags & FORK_NOZOMBIE)
276 		pr->ps_flags |= PS_NOZOMBIE;
277 	if (flags & FORK_SYSTEM)
278 		pr->ps_flags |= PS_SYSTEM;
279 
280 	/* mark as embryo to protect against others */
281 	pr->ps_flags |= PS_EMBRYO;
282 
283 	/* Force visibility of all of the above changes */
284 	membar_producer();
285 
286 	/* it's sufficiently inited to be globally visible */
287 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
288 
289 	return pr;
290 }
291 
292 /* print the 'table full' message once per 10 seconds */
293 struct timeval fork_tfmrate = { 10, 0 };
294 
295 int
296 fork_check_maxthread(uid_t uid)
297 {
298 	/*
299 	 * Although process entries are dynamically created, we still keep
300 	 * a global limit on the maximum number we will create. We reserve
301 	 * the last 5 processes to root. The variable nprocesses is the
302 	 * current number of processes, maxprocess is the limit.  Similar
303 	 * rules for threads (struct proc): we reserve the last 5 to root;
304 	 * the variable nthreads is the current number of procs, maxthread is
305 	 * the limit.
306 	 */
307 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
308 		static struct timeval lasttfm;
309 
310 		if (ratecheck(&lasttfm, &fork_tfmrate))
311 			tablefull("proc");
312 		return EAGAIN;
313 	}
314 	nthreads++;
315 
316 	return 0;
317 }
318 
319 static inline void
320 fork_thread_start(struct proc *p, struct proc *parent, int flags)
321 {
322 	struct cpu_info *ci;
323 	int s;
324 
325 	SCHED_LOCK(s);
326 	ci = sched_choosecpu_fork(parent, flags);
327 	setrunqueue(ci, p, p->p_priority);
328 	SCHED_UNLOCK(s);
329 }
330 
331 int
332 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
333     register_t *retval, struct proc **rnewprocp)
334 {
335 	struct process *curpr = curp->p_p;
336 	struct process *pr;
337 	struct proc *p;
338 	uid_t uid = curp->p_ucred->cr_ruid;
339 	struct vmspace *vm;
340 	int count;
341 	vaddr_t uaddr;
342 	int error;
343 	struct  ptrace_state *newptstat = NULL;
344 
345 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
346 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
347 	    | FORK_SYSTEM | FORK_SIGHAND)) == 0);
348 	KASSERT((flags & FORK_SIGHAND) == 0 || (flags & FORK_SHAREVM));
349 	KASSERT(func != NULL);
350 
351 	if ((error = fork_check_maxthread(uid)))
352 		return error;
353 
354 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
355 	    nprocesses >= maxprocess) {
356 		static struct timeval lasttfm;
357 
358 		if (ratecheck(&lasttfm, &fork_tfmrate))
359 			tablefull("process");
360 		nthreads--;
361 		return EAGAIN;
362 	}
363 	nprocesses++;
364 
365 	/*
366 	 * Increment the count of processes running with this uid.
367 	 * Don't allow a nonprivileged user to exceed their current limit.
368 	 */
369 	count = chgproccnt(uid, 1);
370 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
371 		(void)chgproccnt(uid, -1);
372 		nprocesses--;
373 		nthreads--;
374 		return EAGAIN;
375 	}
376 
377 	uaddr = uvm_uarea_alloc();
378 	if (uaddr == 0) {
379 		(void)chgproccnt(uid, -1);
380 		nprocesses--;
381 		nthreads--;
382 		return (ENOMEM);
383 	}
384 
385 	/*
386 	 * From now on, we're committed to the fork and cannot fail.
387 	 */
388 	p = thread_new(curp, uaddr);
389 	pr = process_new(p, curpr, flags);
390 
391 	p->p_fd		= pr->ps_fd;
392 	p->p_vmspace	= pr->ps_vmspace;
393 	if (pr->ps_flags & PS_SYSTEM)
394 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
395 
396 	if (flags & FORK_PPWAIT) {
397 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
398 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
399 	}
400 
401 #ifdef KTRACE
402 	/*
403 	 * Copy traceflag and tracefile if enabled.
404 	 * If not inherited, these were zeroed above.
405 	 */
406 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
407 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
408 		    curpr->ps_tracecred);
409 #endif
410 
411 	/*
412 	 * Finish creating the child thread.  cpu_fork() will copy
413 	 * and update the pcb and make the child ready to run.  If
414 	 * this is a normal user fork, the child will exit directly
415 	 * to user mode via child_return() on its first time slice
416 	 * and will not return here.  If this is a kernel thread,
417 	 * the specified entry point will be executed.
418 	 */
419 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
420 
421 	vm = pr->ps_vmspace;
422 
423 	if (flags & FORK_FORK) {
424 		forkstat.cntfork++;
425 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
426 	} else if (flags & FORK_VFORK) {
427 		forkstat.cntvfork++;
428 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
429 	} else {
430 		forkstat.cntkthread++;
431 	}
432 
433 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
434 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
435 
436 	p->p_tid = alloctid();
437 
438 	LIST_INSERT_HEAD(&allproc, p, p_list);
439 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
440 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
441 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
442 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
443 
444 	if (pr->ps_flags & PS_TRACED) {
445 		pr->ps_oppid = curpr->ps_pid;
446 		if (pr->ps_pptr != curpr->ps_pptr)
447 			proc_reparent(pr, curpr->ps_pptr);
448 
449 		/*
450 		 * Set ptrace status.
451 		 */
452 		if (newptstat != NULL) {
453 			pr->ps_ptstat = newptstat;
454 			newptstat = NULL;
455 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
456 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
457 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
458 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
459 		}
460 	}
461 
462 	/*
463 	 * For new processes, set accounting bits and mark as complete.
464 	 */
465 	nanouptime(&pr->ps_start);
466 	pr->ps_acflag = AFORK;
467 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
468 
469 	if ((flags & FORK_IDLE) == 0)
470 		fork_thread_start(p, curp, flags);
471 	else
472 		p->p_cpu = arg;
473 
474 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
475 
476 	/*
477 	 * Notify any interested parties about the new process.
478 	 */
479 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
480 
481 	/*
482 	 * Update stats now that we know the fork was successful.
483 	 */
484 	uvmexp.forks++;
485 	if (flags & FORK_PPWAIT)
486 		uvmexp.forks_ppwait++;
487 	if (flags & FORK_SHAREVM)
488 		uvmexp.forks_sharevm++;
489 
490 	/*
491 	 * Pass a pointer to the new process to the caller.
492 	 */
493 	if (rnewprocp != NULL)
494 		*rnewprocp = p;
495 
496 	/*
497 	 * Preserve synchronization semantics of vfork.  If waiting for
498 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
499 	 * on ourselves, and sleep on our process for the latter flag
500 	 * to go away.
501 	 * XXX Need to stop other rthreads in the parent
502 	 */
503 	if (flags & FORK_PPWAIT)
504 		while (curpr->ps_flags & PS_ISPWAIT)
505 			tsleep(curpr, PWAIT, "ppwait", 0);
506 
507 	/*
508 	 * If we're tracing the child, alert the parent too.
509 	 */
510 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
511 		psignal(curp, SIGTRAP);
512 
513 	/*
514 	 * Return child pid to parent process
515 	 */
516 	if (retval != NULL) {
517 		retval[0] = pr->ps_pid;
518 		retval[1] = 0;
519 	}
520 	return (0);
521 }
522 
523 int
524 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
525     register_t *retval)
526 {
527 	struct process *pr = curp->p_p;
528 	struct proc *p;
529 	pid_t tid;
530 	vaddr_t uaddr;
531 	int error;
532 
533 	if (stack == NULL)
534 		return EINVAL;
535 
536 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
537 		return error;
538 
539 	uaddr = uvm_uarea_alloc();
540 	if (uaddr == 0) {
541 		nthreads--;
542 		return ENOMEM;
543 	}
544 
545 	/*
546 	 * From now on, we're committed to the fork and cannot fail.
547 	 */
548 	p = thread_new(curp, uaddr);
549 	atomic_setbits_int(&p->p_flag, P_THREAD);
550 	sigstkinit(&p->p_sigstk);
551 
552 	/* other links */
553 	p->p_p = pr;
554 	pr->ps_refcnt++;
555 
556 	/* local copies */
557 	p->p_fd		= pr->ps_fd;
558 	p->p_vmspace	= pr->ps_vmspace;
559 
560 	/*
561 	 * Finish creating the child thread.  cpu_fork() will copy
562 	 * and update the pcb and make the child ready to run.  The
563 	 * child will exit directly to user mode via child_return()
564 	 * on its first time slice and will not return here.
565 	 */
566 	cpu_fork(curp, p, stack, tcb, child_return, p);
567 
568 	p->p_tid = alloctid();
569 
570 	LIST_INSERT_HEAD(&allproc, p, p_list);
571 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
572 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
573 
574 	/*
575 	 * if somebody else wants to take us to single threaded mode,
576 	 * count ourselves in.
577 	 */
578 	if (pr->ps_single) {
579 		pr->ps_singlecount++;
580 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
581 	}
582 
583 	/*
584 	 * Return tid to parent thread and copy it out to userspace
585 	 */
586 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
587 	retval[1] = 0;
588 	if (tidptr != NULL) {
589 		if (copyout(&tid, tidptr, sizeof(tid)))
590 			psignal(curp, SIGSEGV);
591 	}
592 
593 	fork_thread_start(p, curp, 0);
594 
595 	/*
596 	 * Update stats now that we know the fork was successful.
597 	 */
598 	forkstat.cnttfork++;
599 	uvmexp.forks++;
600 	uvmexp.forks_sharevm++;
601 
602 	return 0;
603 }
604 
605 
606 /* Find an unused tid */
607 pid_t
608 alloctid(void)
609 {
610 	pid_t tid;
611 
612 	do {
613 		/* (0 .. TID_MASK+1] */
614 		tid = 1 + (arc4random() & TID_MASK);
615 	} while (tfind(tid) != NULL);
616 
617 	return (tid);
618 }
619 
620 /*
621  * Checks for current use of a pid, either as a pid or pgid.
622  */
623 pid_t oldpids[128];
624 int
625 ispidtaken(pid_t pid)
626 {
627 	uint32_t i;
628 
629 	for (i = 0; i < nitems(oldpids); i++)
630 		if (pid == oldpids[i])
631 			return (1);
632 
633 	if (prfind(pid) != NULL)
634 		return (1);
635 	if (pgfind(pid) != NULL)
636 		return (1);
637 	if (zombiefind(pid) != NULL)
638 		return (1);
639 	return (0);
640 }
641 
642 /* Find an unused pid */
643 pid_t
644 allocpid(void)
645 {
646 	static pid_t lastpid;
647 	pid_t pid;
648 
649 	if (!randompid) {
650 		/* only used early on for system processes */
651 		pid = ++lastpid;
652 	} else {
653 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
654 		do {
655 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
656 			    lastpid;
657 		} while (ispidtaken(pid));
658 	}
659 
660 	return pid;
661 }
662 
663 void
664 freepid(pid_t pid)
665 {
666 	static uint32_t idx;
667 
668 	oldpids[idx++ % nitems(oldpids)] = pid;
669 }
670 
671 #if defined(MULTIPROCESSOR)
672 /*
673  * XXX This is a slight hack to get newly-formed processes to
674  * XXX acquire the kernel lock as soon as they run.
675  */
676 void
677 proc_trampoline_mp(void)
678 {
679 	SCHED_ASSERT_LOCKED();
680 	__mp_unlock(&sched_lock);
681 	spl0();
682 	SCHED_ASSERT_UNLOCKED();
683 	KERNEL_ASSERT_UNLOCKED();
684 
685 	KERNEL_LOCK();
686 }
687 #endif
688