xref: /openbsd-src/sys/dev/pci/if_wpi.c (revision a0747c9f67a4ae71ccb71e62a28d1ea19e06a63c)
1 /*	$OpenBSD: if_wpi.c,v 1.155 2020/12/12 11:48:53 jan Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006-2008
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/kernel.h>
30 #include <sys/rwlock.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/conf.h>
35 #include <sys/device.h>
36 #include <sys/task.h>
37 #include <sys/endian.h>
38 
39 #include <machine/bus.h>
40 #include <machine/intr.h>
41 
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44 #include <dev/pci/pcidevs.h>
45 
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/if_ether.h>
55 
56 #include <net80211/ieee80211_var.h>
57 #include <net80211/ieee80211_amrr.h>
58 #include <net80211/ieee80211_radiotap.h>
59 
60 #include <dev/pci/if_wpireg.h>
61 #include <dev/pci/if_wpivar.h>
62 
63 static const struct pci_matchid wpi_devices[] = {
64 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 },
65 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2 }
66 };
67 
68 int		wpi_match(struct device *, void *, void *);
69 void		wpi_attach(struct device *, struct device *, void *);
70 #if NBPFILTER > 0
71 void		wpi_radiotap_attach(struct wpi_softc *);
72 #endif
73 int		wpi_detach(struct device *, int);
74 int		wpi_activate(struct device *, int);
75 void		wpi_wakeup(struct wpi_softc *);
76 void		wpi_init_task(void *);
77 int		wpi_nic_lock(struct wpi_softc *);
78 int		wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
79 int		wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
80 		    void **, bus_size_t, bus_size_t);
81 void		wpi_dma_contig_free(struct wpi_dma_info *);
82 int		wpi_alloc_shared(struct wpi_softc *);
83 void		wpi_free_shared(struct wpi_softc *);
84 int		wpi_alloc_fwmem(struct wpi_softc *);
85 void		wpi_free_fwmem(struct wpi_softc *);
86 int		wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
87 void		wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
88 void		wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
89 int		wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
90 		    int);
91 void		wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
92 void		wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
93 int		wpi_read_eeprom(struct wpi_softc *);
94 void		wpi_read_eeprom_channels(struct wpi_softc *, int);
95 void		wpi_read_eeprom_group(struct wpi_softc *, int);
96 struct		ieee80211_node *wpi_node_alloc(struct ieee80211com *);
97 void		wpi_newassoc(struct ieee80211com *, struct ieee80211_node *,
98 		    int);
99 int		wpi_media_change(struct ifnet *);
100 int		wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
101 void		wpi_iter_func(void *, struct ieee80211_node *);
102 void		wpi_calib_timeout(void *);
103 int		wpi_ccmp_decap(struct wpi_softc *, struct mbuf *,
104 		    struct ieee80211_key *);
105 void		wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
106 		    struct wpi_rx_data *, struct mbuf_list *);
107 void		wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
108 void		wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
109 void		wpi_notif_intr(struct wpi_softc *);
110 void		wpi_fatal_intr(struct wpi_softc *);
111 int		wpi_intr(void *);
112 int		wpi_tx(struct wpi_softc *, struct mbuf *,
113 		    struct ieee80211_node *);
114 void		wpi_start(struct ifnet *);
115 void		wpi_watchdog(struct ifnet *);
116 int		wpi_ioctl(struct ifnet *, u_long, caddr_t);
117 int		wpi_cmd(struct wpi_softc *, int, const void *, int, int);
118 int		wpi_mrr_setup(struct wpi_softc *);
119 void		wpi_updateedca(struct ieee80211com *);
120 void		wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
121 int		wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
122 void		wpi_power_calibration(struct wpi_softc *);
123 int		wpi_set_txpower(struct wpi_softc *, int);
124 int		wpi_get_power_index(struct wpi_softc *,
125 		    struct wpi_power_group *, struct ieee80211_channel *, int);
126 int		wpi_set_pslevel(struct wpi_softc *, int, int, int);
127 int		wpi_config(struct wpi_softc *);
128 int		wpi_scan(struct wpi_softc *, uint16_t);
129 int		wpi_auth(struct wpi_softc *);
130 int		wpi_run(struct wpi_softc *);
131 int		wpi_set_key(struct ieee80211com *, struct ieee80211_node *,
132 		    struct ieee80211_key *);
133 void		wpi_delete_key(struct ieee80211com *, struct ieee80211_node *,
134 		    struct ieee80211_key *);
135 int		wpi_post_alive(struct wpi_softc *);
136 int		wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
137 int		wpi_load_firmware(struct wpi_softc *);
138 int		wpi_read_firmware(struct wpi_softc *);
139 int		wpi_clock_wait(struct wpi_softc *);
140 int		wpi_apm_init(struct wpi_softc *);
141 void		wpi_apm_stop_master(struct wpi_softc *);
142 void		wpi_apm_stop(struct wpi_softc *);
143 void		wpi_nic_config(struct wpi_softc *);
144 int		wpi_hw_init(struct wpi_softc *);
145 void		wpi_hw_stop(struct wpi_softc *);
146 int		wpi_init(struct ifnet *);
147 void		wpi_stop(struct ifnet *, int);
148 
149 #ifdef WPI_DEBUG
150 #define DPRINTF(x)	do { if (wpi_debug > 0) printf x; } while (0)
151 #define DPRINTFN(n, x)	do { if (wpi_debug >= (n)) printf x; } while (0)
152 int wpi_debug = 0;
153 #else
154 #define DPRINTF(x)
155 #define DPRINTFN(n, x)
156 #endif
157 
158 struct cfdriver wpi_cd = {
159 	NULL, "wpi", DV_IFNET
160 };
161 
162 struct cfattach wpi_ca = {
163 	sizeof (struct wpi_softc), wpi_match, wpi_attach, wpi_detach,
164 	wpi_activate
165 };
166 
167 int
168 wpi_match(struct device *parent, void *match, void *aux)
169 {
170 	return pci_matchbyid((struct pci_attach_args *)aux, wpi_devices,
171 	    nitems(wpi_devices));
172 }
173 
174 void
175 wpi_attach(struct device *parent, struct device *self, void *aux)
176 {
177 	struct wpi_softc *sc = (struct wpi_softc *)self;
178 	struct ieee80211com *ic = &sc->sc_ic;
179 	struct ifnet *ifp = &ic->ic_if;
180 	struct pci_attach_args *pa = aux;
181 	const char *intrstr;
182 	pci_intr_handle_t ih;
183 	pcireg_t memtype, reg;
184 	int i, error;
185 
186 	sc->sc_pct = pa->pa_pc;
187 	sc->sc_pcitag = pa->pa_tag;
188 	sc->sc_dmat = pa->pa_dmat;
189 
190 	/*
191 	 * Get the offset of the PCI Express Capability Structure in PCI
192 	 * Configuration Space (the vendor driver hard-codes it as E0h.)
193 	 */
194 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
195 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
196 	if (error == 0) {
197 		printf(": PCIe capability structure not found!\n");
198 		return;
199 	}
200 
201 	/* Clear device-specific "PCI retry timeout" register (41h). */
202 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
203 	reg &= ~0xff00;
204 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
205 
206 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WPI_PCI_BAR0);
207 	error = pci_mapreg_map(pa, WPI_PCI_BAR0, memtype, 0, &sc->sc_st,
208 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
209 	if (error != 0) {
210 		printf(": can't map mem space\n");
211 		return;
212 	}
213 
214 	/* Install interrupt handler. */
215 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
216 		printf(": can't map interrupt\n");
217 		return;
218 	}
219 	intrstr = pci_intr_string(sc->sc_pct, ih);
220 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc,
221 	    sc->sc_dev.dv_xname);
222 	if (sc->sc_ih == NULL) {
223 		printf(": can't establish interrupt");
224 		if (intrstr != NULL)
225 			printf(" at %s", intrstr);
226 		printf("\n");
227 		return;
228 	}
229 	printf(": %s", intrstr);
230 
231 	/* Power ON adapter. */
232 	if ((error = wpi_apm_init(sc)) != 0) {
233 		printf(": could not power ON adapter\n");
234 		return;
235 	}
236 
237 	/* Read MAC address, channels, etc from EEPROM. */
238 	if ((error = wpi_read_eeprom(sc)) != 0) {
239 		printf(": could not read EEPROM\n");
240 		return;
241 	}
242 
243 	/* Allocate DMA memory for firmware transfers. */
244 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
245 		printf(": could not allocate memory for firmware\n");
246 		return;
247 	}
248 
249 	/* Allocate shared area. */
250 	if ((error = wpi_alloc_shared(sc)) != 0) {
251 		printf(": could not allocate shared area\n");
252 		goto fail1;
253 	}
254 
255 	/* Allocate TX rings. */
256 	for (i = 0; i < WPI_NTXQUEUES; i++) {
257 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
258 			printf(": could not allocate TX ring %d\n", i);
259 			goto fail2;
260 		}
261 	}
262 
263 	/* Allocate RX ring. */
264 	if ((error = wpi_alloc_rx_ring(sc, &sc->rxq)) != 0) {
265 		printf(": could not allocate Rx ring\n");
266 		goto fail2;
267 	}
268 
269 	/* Power OFF adapter. */
270 	wpi_apm_stop(sc);
271 	/* Clear pending interrupts. */
272 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
273 
274 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
275 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
276 	ic->ic_state = IEEE80211_S_INIT;
277 
278 	/* Set device capabilities. */
279 	ic->ic_caps =
280 	    IEEE80211_C_WEP |		/* WEP */
281 	    IEEE80211_C_RSN |		/* WPA/RSN */
282 	    IEEE80211_C_SCANALL |	/* device scans all channels at once */
283 	    IEEE80211_C_SCANALLBAND |	/* driver scans all bands at once */
284 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
285 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
286 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
287 	    IEEE80211_C_PMGT;		/* power saving supported */
288 
289 	/* Set supported rates. */
290 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
291 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
292 	if (sc->sc_flags & WPI_FLAG_HAS_5GHZ) {
293 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
294 		    ieee80211_std_rateset_11a;
295 	}
296 
297 	/* IBSS channel undefined for now. */
298 	ic->ic_ibss_chan = &ic->ic_channels[0];
299 
300 	ifp->if_softc = sc;
301 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
302 	ifp->if_ioctl = wpi_ioctl;
303 	ifp->if_start = wpi_start;
304 	ifp->if_watchdog = wpi_watchdog;
305 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
306 
307 	if_attach(ifp);
308 	ieee80211_ifattach(ifp);
309 	ic->ic_node_alloc = wpi_node_alloc;
310 	ic->ic_newassoc = wpi_newassoc;
311 	ic->ic_updateedca = wpi_updateedca;
312 	ic->ic_set_key = wpi_set_key;
313 	ic->ic_delete_key = wpi_delete_key;
314 
315 	/* Override 802.11 state transition machine. */
316 	sc->sc_newstate = ic->ic_newstate;
317 	ic->ic_newstate = wpi_newstate;
318 	ieee80211_media_init(ifp, wpi_media_change, ieee80211_media_status);
319 
320 	sc->amrr.amrr_min_success_threshold =  1;
321 	sc->amrr.amrr_max_success_threshold = 15;
322 
323 #if NBPFILTER > 0
324 	wpi_radiotap_attach(sc);
325 #endif
326 	timeout_set(&sc->calib_to, wpi_calib_timeout, sc);
327 	rw_init(&sc->sc_rwlock, "wpilock");
328 	task_set(&sc->init_task, wpi_init_task, sc);
329 	return;
330 
331 	/* Free allocated memory if something failed during attachment. */
332 fail2:	while (--i >= 0)
333 		wpi_free_tx_ring(sc, &sc->txq[i]);
334 	wpi_free_shared(sc);
335 fail1:	wpi_free_fwmem(sc);
336 }
337 
338 #if NBPFILTER > 0
339 /*
340  * Attach the interface to 802.11 radiotap.
341  */
342 void
343 wpi_radiotap_attach(struct wpi_softc *sc)
344 {
345 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
346 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
347 
348 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
349 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
350 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
351 
352 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
353 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
354 	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
355 }
356 #endif
357 
358 int
359 wpi_detach(struct device *self, int flags)
360 {
361 	struct wpi_softc *sc = (struct wpi_softc *)self;
362 	struct ifnet *ifp = &sc->sc_ic.ic_if;
363 	int qid;
364 
365 	timeout_del(&sc->calib_to);
366 	task_del(systq, &sc->init_task);
367 
368 	/* Uninstall interrupt handler. */
369 	if (sc->sc_ih != NULL)
370 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
371 
372 	/* Free DMA resources. */
373 	wpi_free_rx_ring(sc, &sc->rxq);
374 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
375 		wpi_free_tx_ring(sc, &sc->txq[qid]);
376 	wpi_free_shared(sc);
377 	wpi_free_fwmem(sc);
378 
379 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
380 
381 	ieee80211_ifdetach(ifp);
382 	if_detach(ifp);
383 
384 	return 0;
385 }
386 
387 int
388 wpi_activate(struct device *self, int act)
389 {
390 	struct wpi_softc *sc = (struct wpi_softc *)self;
391 	struct ifnet *ifp = &sc->sc_ic.ic_if;
392 
393 	switch (act) {
394 	case DVACT_SUSPEND:
395 		if (ifp->if_flags & IFF_RUNNING)
396 			wpi_stop(ifp, 0);
397 		break;
398 	case DVACT_WAKEUP:
399 		wpi_wakeup(sc);
400 		break;
401 	}
402 
403 	return 0;
404 }
405 
406 void
407 wpi_wakeup(struct wpi_softc *sc)
408 {
409 	pcireg_t reg;
410 
411 	/* Clear device-specific "PCI retry timeout" register (41h). */
412 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
413 	reg &= ~0xff00;
414 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg);
415 
416 	wpi_init_task(sc);
417 }
418 
419 void
420 wpi_init_task(void *arg1)
421 {
422 	struct wpi_softc *sc = arg1;
423 	struct ifnet *ifp = &sc->sc_ic.ic_if;
424 	int s;
425 
426 	rw_enter_write(&sc->sc_rwlock);
427 	s = splnet();
428 
429 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
430 		wpi_init(ifp);
431 
432 	splx(s);
433 	rw_exit_write(&sc->sc_rwlock);
434 }
435 
436 int
437 wpi_nic_lock(struct wpi_softc *sc)
438 {
439 	int ntries;
440 
441 	/* Request exclusive access to NIC. */
442 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
443 
444 	/* Spin until we actually get the lock. */
445 	for (ntries = 0; ntries < 1000; ntries++) {
446 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
447 		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
448 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
449 			return 0;
450 		DELAY(10);
451 	}
452 	return ETIMEDOUT;
453 }
454 
455 static __inline void
456 wpi_nic_unlock(struct wpi_softc *sc)
457 {
458 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
459 }
460 
461 static __inline uint32_t
462 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
463 {
464 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
465 	WPI_BARRIER_READ_WRITE(sc);
466 	return WPI_READ(sc, WPI_PRPH_RDATA);
467 }
468 
469 static __inline void
470 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
471 {
472 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
473 	WPI_BARRIER_WRITE(sc);
474 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
475 }
476 
477 static __inline void
478 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
479 {
480 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
481 }
482 
483 static __inline void
484 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
485 {
486 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
487 }
488 
489 static __inline void
490 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
491     const uint32_t *data, int count)
492 {
493 	for (; count > 0; count--, data++, addr += 4)
494 		wpi_prph_write(sc, addr, *data);
495 }
496 
497 #ifdef WPI_DEBUG
498 
499 static __inline uint32_t
500 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
501 {
502 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
503 	WPI_BARRIER_READ_WRITE(sc);
504 	return WPI_READ(sc, WPI_MEM_RDATA);
505 }
506 
507 static __inline void
508 wpi_mem_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
509 {
510 	WPI_WRITE(sc, WPI_MEM_WADDR, addr);
511 	WPI_BARRIER_WRITE(sc);
512 	WPI_WRITE(sc, WPI_MEM_WDATA, data);
513 }
514 
515 static __inline void
516 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
517     int count)
518 {
519 	for (; count > 0; count--, addr += 4)
520 		*data++ = wpi_mem_read(sc, addr);
521 }
522 
523 #endif
524 
525 int
526 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
527 {
528 	uint8_t *out = data;
529 	uint32_t val;
530 	int error, ntries;
531 
532 	if ((error = wpi_nic_lock(sc)) != 0)
533 		return error;
534 
535 	for (; count > 0; count -= 2, addr++) {
536 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
537 		WPI_CLRBITS(sc, WPI_EEPROM, WPI_EEPROM_CMD);
538 
539 		for (ntries = 0; ntries < 10; ntries++) {
540 			val = WPI_READ(sc, WPI_EEPROM);
541 			if (val & WPI_EEPROM_READ_VALID)
542 				break;
543 			DELAY(5);
544 		}
545 		if (ntries == 10) {
546 			printf("%s: could not read EEPROM\n",
547 			    sc->sc_dev.dv_xname);
548 			return ETIMEDOUT;
549 		}
550 		*out++ = val >> 16;
551 		if (count > 1)
552 			*out++ = val >> 24;
553 	}
554 
555 	wpi_nic_unlock(sc);
556 	return 0;
557 }
558 
559 int
560 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
561     bus_size_t size, bus_size_t alignment)
562 {
563 	int nsegs, error;
564 
565 	dma->tag = tag;
566 	dma->size = size;
567 
568 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
569 	    &dma->map);
570 	if (error != 0)
571 		goto fail;
572 
573 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
574 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
575 	if (error != 0)
576 		goto fail;
577 
578 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
579 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
580 	if (error != 0)
581 		goto fail;
582 
583 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
584 	    BUS_DMA_NOWAIT);
585 	if (error != 0)
586 		goto fail;
587 
588 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
589 
590 	dma->paddr = dma->map->dm_segs[0].ds_addr;
591 	if (kvap != NULL)
592 		*kvap = dma->vaddr;
593 
594 	return 0;
595 
596 fail:	wpi_dma_contig_free(dma);
597 	return error;
598 }
599 
600 void
601 wpi_dma_contig_free(struct wpi_dma_info *dma)
602 {
603 	if (dma->map != NULL) {
604 		if (dma->vaddr != NULL) {
605 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
606 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
607 			bus_dmamap_unload(dma->tag, dma->map);
608 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
609 			bus_dmamem_free(dma->tag, &dma->seg, 1);
610 			dma->vaddr = NULL;
611 		}
612 		bus_dmamap_destroy(dma->tag, dma->map);
613 		dma->map = NULL;
614 	}
615 }
616 
617 int
618 wpi_alloc_shared(struct wpi_softc *sc)
619 {
620 	/* Shared buffer must be aligned on a 4KB boundary. */
621 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
622 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
623 }
624 
625 void
626 wpi_free_shared(struct wpi_softc *sc)
627 {
628 	wpi_dma_contig_free(&sc->shared_dma);
629 }
630 
631 int
632 wpi_alloc_fwmem(struct wpi_softc *sc)
633 {
634 	/* Allocate enough contiguous space to store text and data. */
635 	return wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
636 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
637 }
638 
639 void
640 wpi_free_fwmem(struct wpi_softc *sc)
641 {
642 	wpi_dma_contig_free(&sc->fw_dma);
643 }
644 
645 int
646 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
647 {
648 	bus_size_t size;
649 	int i, error;
650 
651 	ring->cur = 0;
652 
653 	/* Allocate RX descriptors (16KB aligned.) */
654 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
655 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
656 	    (void **)&ring->desc, size, 16 * 1024);
657 	if (error != 0) {
658 		printf("%s: could not allocate RX ring DMA memory\n",
659 		    sc->sc_dev.dv_xname);
660 		goto fail;
661 	}
662 
663 	/*
664 	 * Allocate and map RX buffers.
665 	 */
666 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
667 		struct wpi_rx_data *data = &ring->data[i];
668 
669 		error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
670 		    WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
671 		if (error != 0) {
672 			printf("%s: could not create RX buf DMA map\n",
673 			    sc->sc_dev.dv_xname);
674 			goto fail;
675 		}
676 
677 		data->m = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE);
678 		if (data->m == NULL) {
679 			printf("%s: could not allocate RX mbuf\n",
680 			    sc->sc_dev.dv_xname);
681 			error = ENOBUFS;
682 			goto fail;
683 		}
684 
685 		error = bus_dmamap_load(sc->sc_dmat, data->map,
686 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
687 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
688 		if (error != 0) {
689 			printf("%s: can't map mbuf (error %d)\n",
690 			    sc->sc_dev.dv_xname, error);
691 			goto fail;
692 		}
693 
694 		/* Set physical address of RX buffer. */
695 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr);
696 	}
697 
698 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
699 	    BUS_DMASYNC_PREWRITE);
700 
701 	return 0;
702 
703 fail:	wpi_free_rx_ring(sc, ring);
704 	return error;
705 }
706 
707 void
708 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
709 {
710 	int ntries;
711 
712 	if (wpi_nic_lock(sc) == 0) {
713 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
714 		for (ntries = 0; ntries < 100; ntries++) {
715 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
716 			    WPI_FH_RX_STATUS_IDLE)
717 				break;
718 			DELAY(10);
719 		}
720 		wpi_nic_unlock(sc);
721 	}
722 	ring->cur = 0;
723 }
724 
725 void
726 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
727 {
728 	int i;
729 
730 	wpi_dma_contig_free(&ring->desc_dma);
731 
732 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
733 		struct wpi_rx_data *data = &ring->data[i];
734 
735 		if (data->m != NULL) {
736 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
737 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
738 			bus_dmamap_unload(sc->sc_dmat, data->map);
739 			m_freem(data->m);
740 		}
741 		if (data->map != NULL)
742 			bus_dmamap_destroy(sc->sc_dmat, data->map);
743 	}
744 }
745 
746 int
747 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
748 {
749 	bus_addr_t paddr;
750 	bus_size_t size;
751 	int i, error;
752 
753 	ring->qid = qid;
754 	ring->queued = 0;
755 	ring->cur = 0;
756 
757 	/* Allocate TX descriptors (16KB aligned.) */
758 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
759 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
760 	    (void **)&ring->desc, size, 16 * 1024);
761 	if (error != 0) {
762 		printf("%s: could not allocate TX ring DMA memory\n",
763 		    sc->sc_dev.dv_xname);
764 		goto fail;
765 	}
766 
767 	/* Update shared area with ring physical address. */
768 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
769 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
770 	    sizeof (struct wpi_shared), BUS_DMASYNC_PREWRITE);
771 
772 	/*
773 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
774 	 * to allocate commands space for other rings.
775 	 * XXX Do we really need to allocate descriptors for other rings?
776 	 */
777 	if (qid > 4)
778 		return 0;
779 
780 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
781 	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
782 	    (void **)&ring->cmd, size, 4);
783 	if (error != 0) {
784 		printf("%s: could not allocate TX cmd DMA memory\n",
785 		    sc->sc_dev.dv_xname);
786 		goto fail;
787 	}
788 
789 	paddr = ring->cmd_dma.paddr;
790 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
791 		struct wpi_tx_data *data = &ring->data[i];
792 
793 		data->cmd_paddr = paddr;
794 		paddr += sizeof (struct wpi_tx_cmd);
795 
796 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
797 		    WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
798 		    &data->map);
799 		if (error != 0) {
800 			printf("%s: could not create TX buf DMA map\n",
801 			    sc->sc_dev.dv_xname);
802 			goto fail;
803 		}
804 	}
805 	return 0;
806 
807 fail:	wpi_free_tx_ring(sc, ring);
808 	return error;
809 }
810 
811 void
812 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
813 {
814 	int i;
815 
816 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
817 		struct wpi_tx_data *data = &ring->data[i];
818 
819 		if (data->m != NULL) {
820 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
821 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
822 			bus_dmamap_unload(sc->sc_dmat, data->map);
823 			m_freem(data->m);
824 			data->m = NULL;
825 		}
826 	}
827 	/* Clear TX descriptors. */
828 	memset(ring->desc, 0, ring->desc_dma.size);
829 	sc->qfullmsk &= ~(1 << ring->qid);
830 	ring->queued = 0;
831 	ring->cur = 0;
832 }
833 
834 void
835 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
836 {
837 	int i;
838 
839 	wpi_dma_contig_free(&ring->desc_dma);
840 	wpi_dma_contig_free(&ring->cmd_dma);
841 
842 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
843 		struct wpi_tx_data *data = &ring->data[i];
844 
845 		if (data->m != NULL) {
846 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
847 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
848 			bus_dmamap_unload(sc->sc_dmat, data->map);
849 			m_freem(data->m);
850 		}
851 		if (data->map != NULL)
852 			bus_dmamap_destroy(sc->sc_dmat, data->map);
853 	}
854 }
855 
856 int
857 wpi_read_eeprom(struct wpi_softc *sc)
858 {
859 	struct ieee80211com *ic = &sc->sc_ic;
860 	char domain[4];
861 	int i;
862 
863 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
864 		printf("%s: bad EEPROM signature\n", sc->sc_dev.dv_xname);
865 		return EIO;
866 	}
867 	/* Clear HW ownership of EEPROM. */
868 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
869 
870 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
871 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
872 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
873 
874 	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, letoh16(sc->rev),
875 	    sc->type));
876 
877 	/* Read and print regulatory domain (4 ASCII characters.) */
878 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
879 	printf(", %.4s", domain);
880 
881 	/* Read and print MAC address. */
882 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
883 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
884 
885 	/* Read the list of authorized channels. */
886 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
887 		wpi_read_eeprom_channels(sc, i);
888 
889 	/* Read the list of TX power groups. */
890 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
891 		wpi_read_eeprom_group(sc, i);
892 
893 	return 0;
894 }
895 
896 void
897 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
898 {
899 	struct ieee80211com *ic = &sc->sc_ic;
900 	const struct wpi_chan_band *band = &wpi_bands[n];
901 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
902 	int chan, i;
903 
904 	wpi_read_prom_data(sc, band->addr, channels,
905 	    band->nchan * sizeof (struct wpi_eeprom_chan));
906 
907 	for (i = 0; i < band->nchan; i++) {
908 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
909 			continue;
910 
911 		chan = band->chan[i];
912 
913 		if (n == 0) {	/* 2GHz band */
914 			ic->ic_channels[chan].ic_freq =
915 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
916 			ic->ic_channels[chan].ic_flags =
917 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
918 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
919 
920 		} else {	/* 5GHz band */
921 			/*
922 			 * Some adapters support channels 7, 8, 11 and 12
923 			 * both in the 2GHz and 4.9GHz bands.
924 			 * Because of limitations in our net80211 layer,
925 			 * we don't support them in the 4.9GHz band.
926 			 */
927 			if (chan <= 14)
928 				continue;
929 
930 			ic->ic_channels[chan].ic_freq =
931 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
932 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
933 			/* We have at least one valid 5GHz channel. */
934 			sc->sc_flags |= WPI_FLAG_HAS_5GHZ;
935 		}
936 
937 		/* Is active scan allowed on this channel? */
938 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
939 			ic->ic_channels[chan].ic_flags |=
940 			    IEEE80211_CHAN_PASSIVE;
941 		}
942 
943 		/* Save maximum allowed TX power for this channel. */
944 		sc->maxpwr[chan] = channels[i].maxpwr;
945 
946 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
947 		    chan, channels[i].flags, sc->maxpwr[chan]));
948 	}
949 }
950 
951 void
952 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
953 {
954 	struct wpi_power_group *group = &sc->groups[n];
955 	struct wpi_eeprom_group rgroup;
956 	int i;
957 
958 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
959 	    sizeof rgroup);
960 
961 	/* Save TX power group information. */
962 	group->chan   = rgroup.chan;
963 	group->maxpwr = rgroup.maxpwr;
964 	/* Retrieve temperature at which the samples were taken. */
965 	group->temp   = (int16_t)letoh16(rgroup.temp);
966 
967 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
968 	    group->chan, group->maxpwr, group->temp));
969 
970 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
971 		group->samples[i].index = rgroup.samples[i].index;
972 		group->samples[i].power = rgroup.samples[i].power;
973 
974 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
975 		    group->samples[i].index, group->samples[i].power));
976 	}
977 }
978 
979 struct ieee80211_node *
980 wpi_node_alloc(struct ieee80211com *ic)
981 {
982 	return malloc(sizeof (struct wpi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
983 }
984 
985 void
986 wpi_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
987 {
988 	struct wpi_softc *sc = ic->ic_if.if_softc;
989 	struct wpi_node *wn = (void *)ni;
990 	uint8_t rate;
991 	int ridx, i;
992 
993 	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
994 	/* Start at lowest available bit-rate, AMRR will raise. */
995 	ni->ni_txrate = 0;
996 
997 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
998 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
999 		/* Map 802.11 rate to HW rate index. */
1000 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
1001 			if (wpi_rates[ridx].rate == rate)
1002 				break;
1003 		wn->ridx[i] = ridx;
1004 	}
1005 }
1006 
1007 int
1008 wpi_media_change(struct ifnet *ifp)
1009 {
1010 	struct wpi_softc *sc = ifp->if_softc;
1011 	struct ieee80211com *ic = &sc->sc_ic;
1012 	uint8_t rate, ridx;
1013 	int error;
1014 
1015 	error = ieee80211_media_change(ifp);
1016 	if (error != ENETRESET)
1017 		return error;
1018 
1019 	if (ic->ic_fixed_rate != -1) {
1020 		rate = ic->ic_sup_rates[ic->ic_curmode].
1021 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1022 		/* Map 802.11 rate to HW rate index. */
1023 		for (ridx = 0; ridx <= WPI_RIDX_MAX; ridx++)
1024 			if (wpi_rates[ridx].rate == rate)
1025 				break;
1026 		sc->fixed_ridx = ridx;
1027 	}
1028 
1029 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1030 	    (IFF_UP | IFF_RUNNING)) {
1031 		wpi_stop(ifp, 0);
1032 		error = wpi_init(ifp);
1033 	}
1034 	return error;
1035 }
1036 
1037 int
1038 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1039 {
1040 	struct ifnet *ifp = &ic->ic_if;
1041 	struct wpi_softc *sc = ifp->if_softc;
1042 	int error;
1043 
1044 	timeout_del(&sc->calib_to);
1045 
1046 	switch (nstate) {
1047 	case IEEE80211_S_SCAN:
1048 		/* Make the link LED blink while we're scanning. */
1049 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1050 
1051 		if ((error = wpi_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1052 			printf("%s: could not initiate scan\n",
1053 			    sc->sc_dev.dv_xname);
1054 			return error;
1055 		}
1056 		if (ifp->if_flags & IFF_DEBUG)
1057 			printf("%s: %s -> %s\n", ifp->if_xname,
1058 			    ieee80211_state_name[ic->ic_state],
1059 			    ieee80211_state_name[nstate]);
1060 		ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1061 		ieee80211_node_cleanup(ic, ic->ic_bss);
1062 		ic->ic_state = nstate;
1063 		return 0;
1064 
1065 	case IEEE80211_S_ASSOC:
1066 		if (ic->ic_state != IEEE80211_S_RUN)
1067 			break;
1068 		/* FALLTHROUGH */
1069 	case IEEE80211_S_AUTH:
1070 		/* Reset state to handle reassociations correctly. */
1071 		sc->rxon.associd = 0;
1072 		sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1073 
1074 		if ((error = wpi_auth(sc)) != 0) {
1075 			printf("%s: could not move to auth state\n",
1076 			    sc->sc_dev.dv_xname);
1077 			return error;
1078 		}
1079 		break;
1080 
1081 	case IEEE80211_S_RUN:
1082 		if ((error = wpi_run(sc)) != 0) {
1083 			printf("%s: could not move to run state\n",
1084 			    sc->sc_dev.dv_xname);
1085 			return error;
1086 		}
1087 		break;
1088 
1089 	case IEEE80211_S_INIT:
1090 		break;
1091 	}
1092 
1093 	return sc->sc_newstate(ic, nstate, arg);
1094 }
1095 
1096 void
1097 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1098 {
1099 	struct wpi_softc *sc = arg;
1100 	struct wpi_node *wn = (struct wpi_node *)ni;
1101 
1102 	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1103 }
1104 
1105 void
1106 wpi_calib_timeout(void *arg)
1107 {
1108 	struct wpi_softc *sc = arg;
1109 	struct ieee80211com *ic = &sc->sc_ic;
1110 	int s;
1111 
1112 	s = splnet();
1113 	/* Automatic rate control triggered every 500ms. */
1114 	if (ic->ic_fixed_rate == -1) {
1115 		if (ic->ic_opmode == IEEE80211_M_STA)
1116 			wpi_iter_func(sc, ic->ic_bss);
1117 		else
1118 			ieee80211_iterate_nodes(ic, wpi_iter_func, sc);
1119 	}
1120 
1121 	/* Force automatic TX power calibration every 60 secs. */
1122 	if (++sc->calib_cnt >= 120) {
1123 		wpi_power_calibration(sc);
1124 		sc->calib_cnt = 0;
1125 	}
1126 	splx(s);
1127 
1128 	/* Automatic rate control triggered every 500ms. */
1129 	timeout_add_msec(&sc->calib_to, 500);
1130 }
1131 
1132 int
1133 wpi_ccmp_decap(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_key *k)
1134 {
1135 	struct ieee80211com *ic = &sc->sc_ic;
1136 	struct ieee80211_frame *wh;
1137 	uint64_t pn, *prsc;
1138 	uint8_t *ivp;
1139 	uint8_t tid;
1140 	int hdrlen;
1141 
1142 	wh = mtod(m, struct ieee80211_frame *);
1143 	hdrlen = ieee80211_get_hdrlen(wh);
1144 	ivp = (uint8_t *)wh + hdrlen;
1145 
1146 	/* Check that ExtIV bit is set. */
1147 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1148 		DPRINTF(("CCMP decap ExtIV not set\n"));
1149 		return 1;
1150 	}
1151 	tid = ieee80211_has_qos(wh) ?
1152 	    ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1153 	prsc = &k->k_rsc[tid];
1154 
1155 	/* Extract the 48-bit PN from the CCMP header. */
1156 	pn = (uint64_t)ivp[0]       |
1157 	     (uint64_t)ivp[1] <<  8 |
1158 	     (uint64_t)ivp[4] << 16 |
1159 	     (uint64_t)ivp[5] << 24 |
1160 	     (uint64_t)ivp[6] << 32 |
1161 	     (uint64_t)ivp[7] << 40;
1162 	if (pn <= *prsc) {
1163 		DPRINTF(("CCMP replayed\n"));
1164 		ic->ic_stats.is_ccmp_replays++;
1165 		return 1;
1166 	}
1167 	/* Last seen packet number is updated in ieee80211_inputm(). */
1168 
1169 	/* Strip MIC. IV will be stripped by ieee80211_inputm(). */
1170 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1171 	return 0;
1172 }
1173 
1174 void
1175 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1176     struct wpi_rx_data *data, struct mbuf_list *ml)
1177 {
1178 	struct ieee80211com *ic = &sc->sc_ic;
1179 	struct ifnet *ifp = &ic->ic_if;
1180 	struct wpi_rx_ring *ring = &sc->rxq;
1181 	struct wpi_rx_stat *stat;
1182 	struct wpi_rx_head *head;
1183 	struct wpi_rx_tail *tail;
1184 	struct ieee80211_frame *wh;
1185 	struct ieee80211_rxinfo rxi;
1186 	struct ieee80211_node *ni;
1187 	struct mbuf *m, *m1;
1188 	uint32_t flags;
1189 	int error;
1190 
1191 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, WPI_RBUF_SIZE,
1192 	    BUS_DMASYNC_POSTREAD);
1193 	stat = (struct wpi_rx_stat *)(desc + 1);
1194 
1195 	if (stat->len > WPI_STAT_MAXLEN) {
1196 		printf("%s: invalid RX statistic header\n",
1197 		    sc->sc_dev.dv_xname);
1198 		ifp->if_ierrors++;
1199 		return;
1200 	}
1201 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1202 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + letoh16(head->len));
1203 	flags = letoh32(tail->flags);
1204 
1205 	/* Discard frames with a bad FCS early. */
1206 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1207 		DPRINTFN(2, ("rx tail flags error %x\n", flags));
1208 		ifp->if_ierrors++;
1209 		return;
1210 	}
1211 	/* Discard frames that are too short. */
1212 	if (letoh16(head->len) < sizeof (*wh)) {
1213 		DPRINTF(("frame too short: %d\n", letoh16(head->len)));
1214 		ic->ic_stats.is_rx_tooshort++;
1215 		ifp->if_ierrors++;
1216 		return;
1217 	}
1218 
1219 	m1 = MCLGETL(NULL, M_DONTWAIT, WPI_RBUF_SIZE);
1220 	if (m1 == NULL) {
1221 		ic->ic_stats.is_rx_nombuf++;
1222 		ifp->if_ierrors++;
1223 		return;
1224 	}
1225 	bus_dmamap_unload(sc->sc_dmat, data->map);
1226 
1227 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
1228 	    WPI_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1229 	if (error != 0) {
1230 		m_freem(m1);
1231 
1232 		/* Try to reload the old mbuf. */
1233 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1234 		    mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1235 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1236 		if (error != 0) {
1237 			panic("%s: could not load old RX mbuf",
1238 			    sc->sc_dev.dv_xname);
1239 		}
1240 		/* Physical address may have changed. */
1241 		ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1242 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1243 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1244 		    BUS_DMASYNC_PREWRITE);
1245 		ifp->if_ierrors++;
1246 		return;
1247 	}
1248 
1249 	m = data->m;
1250 	data->m = m1;
1251 	/* Update RX descriptor. */
1252 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr);
1253 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1254 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
1255 	    BUS_DMASYNC_PREWRITE);
1256 
1257 	/* Finalize mbuf. */
1258 	m->m_data = (caddr_t)(head + 1);
1259 	m->m_pkthdr.len = m->m_len = letoh16(head->len);
1260 
1261 	/* Grab a reference to the source node. */
1262 	wh = mtod(m, struct ieee80211_frame *);
1263 	ni = ieee80211_find_rxnode(ic, wh);
1264 
1265 	rxi.rxi_flags = 0;
1266 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1267 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1268 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
1269 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
1270 		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) {
1271 			ic->ic_stats.is_ccmp_dec_errs++;
1272 			ifp->if_ierrors++;
1273 			m_freem(m);
1274 			ieee80211_release_node(ic, ni);
1275 			return;
1276 		}
1277 		/* Check whether decryption was successful or not. */
1278 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1279 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
1280 			ic->ic_stats.is_ccmp_dec_errs++;
1281 			ifp->if_ierrors++;
1282 			m_freem(m);
1283 			ieee80211_release_node(ic, ni);
1284 			return;
1285 		}
1286 		if (wpi_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) {
1287 			ifp->if_ierrors++;
1288 			m_freem(m);
1289 			ieee80211_release_node(ic, ni);
1290 			return;
1291 		}
1292 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
1293 	}
1294 
1295 #if NBPFILTER > 0
1296 	if (sc->sc_drvbpf != NULL) {
1297 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1298 
1299 		tap->wr_flags = 0;
1300 		if (letoh16(head->flags) & 0x4)
1301 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1302 		tap->wr_chan_freq =
1303 		    htole16(ic->ic_channels[head->chan].ic_freq);
1304 		tap->wr_chan_flags =
1305 		    htole16(ic->ic_channels[head->chan].ic_flags);
1306 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1307 		tap->wr_dbm_antnoise = (int8_t)letoh16(stat->noise);
1308 		tap->wr_tsft = tail->tstamp;
1309 		tap->wr_antenna = (letoh16(head->flags) >> 4) & 0xf;
1310 		switch (head->rate) {
1311 		/* CCK rates. */
1312 		case  10: tap->wr_rate =   2; break;
1313 		case  20: tap->wr_rate =   4; break;
1314 		case  55: tap->wr_rate =  11; break;
1315 		case 110: tap->wr_rate =  22; break;
1316 		/* OFDM rates. */
1317 		case 0xd: tap->wr_rate =  12; break;
1318 		case 0xf: tap->wr_rate =  18; break;
1319 		case 0x5: tap->wr_rate =  24; break;
1320 		case 0x7: tap->wr_rate =  36; break;
1321 		case 0x9: tap->wr_rate =  48; break;
1322 		case 0xb: tap->wr_rate =  72; break;
1323 		case 0x1: tap->wr_rate =  96; break;
1324 		case 0x3: tap->wr_rate = 108; break;
1325 		/* Unknown rate: should not happen. */
1326 		default:  tap->wr_rate =   0;
1327 		}
1328 
1329 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
1330 		    m, BPF_DIRECTION_IN);
1331 	}
1332 #endif
1333 
1334 	/* Send the frame to the 802.11 layer. */
1335 	rxi.rxi_rssi = stat->rssi;
1336 	rxi.rxi_tstamp = 0;	/* unused */
1337 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
1338 
1339 	/* Node is no longer needed. */
1340 	ieee80211_release_node(ic, ni);
1341 }
1342 
1343 void
1344 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1345 {
1346 	struct ieee80211com *ic = &sc->sc_ic;
1347 	struct ifnet *ifp = &ic->ic_if;
1348 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1349 	struct wpi_tx_data *data = &ring->data[desc->idx];
1350 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1351 	struct wpi_node *wn = (struct wpi_node *)data->ni;
1352 
1353 	/* Update rate control statistics. */
1354 	wn->amn.amn_txcnt++;
1355 	if (stat->retrycnt > 0)
1356 		wn->amn.amn_retrycnt++;
1357 
1358 	if ((letoh32(stat->status) & 0xff) != 1)
1359 		ifp->if_oerrors++;
1360 
1361 	/* Unmap and free mbuf. */
1362 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1363 	    BUS_DMASYNC_POSTWRITE);
1364 	bus_dmamap_unload(sc->sc_dmat, data->map);
1365 	m_freem(data->m);
1366 	data->m = NULL;
1367 	ieee80211_release_node(ic, data->ni);
1368 	data->ni = NULL;
1369 
1370 	sc->sc_tx_timer = 0;
1371 	if (--ring->queued < WPI_TX_RING_LOMARK) {
1372 		sc->qfullmsk &= ~(1 << ring->qid);
1373 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
1374 			ifq_clr_oactive(&ifp->if_snd);
1375 			(*ifp->if_start)(ifp);
1376 		}
1377 	}
1378 }
1379 
1380 void
1381 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1382 {
1383 	struct wpi_tx_ring *ring = &sc->txq[4];
1384 	struct wpi_tx_data *data;
1385 
1386 	if ((desc->qid & 7) != 4)
1387 		return;	/* Not a command ack. */
1388 
1389 	data = &ring->data[desc->idx];
1390 
1391 	/* If the command was mapped in an mbuf, free it. */
1392 	if (data->m != NULL) {
1393 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1394 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1395 		bus_dmamap_unload(sc->sc_dmat, data->map);
1396 		m_freem(data->m);
1397 		data->m = NULL;
1398 	}
1399 	wakeup(&ring->cmd[desc->idx]);
1400 }
1401 
1402 void
1403 wpi_notif_intr(struct wpi_softc *sc)
1404 {
1405 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1406 	struct ieee80211com *ic = &sc->sc_ic;
1407 	struct ifnet *ifp = &ic->ic_if;
1408 	uint32_t hw;
1409 
1410 	bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1411 	    sizeof (struct wpi_shared), BUS_DMASYNC_POSTREAD);
1412 
1413 	hw = letoh32(sc->shared->next);
1414 	while (sc->rxq.cur != hw) {
1415 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1416 		struct wpi_rx_desc *desc;
1417 
1418 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
1419 		    BUS_DMASYNC_POSTREAD);
1420 		desc = mtod(data->m, struct wpi_rx_desc *);
1421 
1422 		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1423 		    "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
1424 		    letoh32(desc->len)));
1425 
1426 		if (!(desc->qid & 0x80))	/* Reply to a command. */
1427 			wpi_cmd_done(sc, desc);
1428 
1429 		switch (desc->type) {
1430 		case WPI_RX_DONE:
1431 			/* An 802.11 frame has been received. */
1432 			wpi_rx_done(sc, desc, data, &ml);
1433 			break;
1434 
1435 		case WPI_TX_DONE:
1436 			/* An 802.11 frame has been transmitted. */
1437 			wpi_tx_done(sc, desc);
1438 			break;
1439 
1440 		case WPI_UC_READY:
1441 		{
1442 			struct wpi_ucode_info *uc =
1443 			    (struct wpi_ucode_info *)(desc + 1);
1444 
1445 			/* The microcontroller is ready. */
1446 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1447 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
1448 			DPRINTF(("microcode alive notification version %x "
1449 			    "alive %x\n", letoh32(uc->version),
1450 			    letoh32(uc->valid)));
1451 
1452 			if (letoh32(uc->valid) != 1) {
1453 				printf("%s: microcontroller initialization "
1454 				    "failed\n", sc->sc_dev.dv_xname);
1455 			}
1456 			if (uc->subtype != WPI_UCODE_INIT) {
1457 				/* Save the address of the error log. */
1458 				sc->errptr = letoh32(uc->errptr);
1459 			}
1460 			break;
1461 		}
1462 		case WPI_STATE_CHANGED:
1463 		{
1464 			uint32_t *status = (uint32_t *)(desc + 1);
1465 
1466 			/* Enabled/disabled notification. */
1467 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1468 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
1469 			DPRINTF(("state changed to %x\n", letoh32(*status)));
1470 
1471 			if (letoh32(*status) & 1) {
1472 				/* The radio button has to be pushed. */
1473 				printf("%s: Radio transmitter is off\n",
1474 				    sc->sc_dev.dv_xname);
1475 				/* Turn the interface down. */
1476 				wpi_stop(ifp, 1);
1477 				return;	/* No further processing. */
1478 			}
1479 			break;
1480 		}
1481 		case WPI_START_SCAN:
1482 		{
1483 			struct wpi_start_scan *scan =
1484 			    (struct wpi_start_scan *)(desc + 1);
1485 
1486 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1487 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1488 			DPRINTFN(2, ("scanning channel %d status %x\n",
1489 			    scan->chan, letoh32(scan->status)));
1490 
1491 			/* Fix current channel. */
1492 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1493 			break;
1494 		}
1495 		case WPI_STOP_SCAN:
1496 		{
1497 			struct wpi_stop_scan *scan =
1498 			    (struct wpi_stop_scan *)(desc + 1);
1499 
1500 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1501 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
1502 			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1503 			    scan->nchan, scan->status, scan->chan));
1504 
1505 			if (scan->status == 1 && scan->chan <= 14 &&
1506 			    (sc->sc_flags & WPI_FLAG_HAS_5GHZ)) {
1507 				/*
1508 				 * We just finished scanning 2GHz channels,
1509 				 * start scanning 5GHz ones.
1510 				 */
1511 				if (wpi_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
1512 					break;
1513 			}
1514 			ieee80211_end_scan(ifp);
1515 			break;
1516 		}
1517 		}
1518 
1519 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1520 	}
1521 	if_input(&ic->ic_if, &ml);
1522 
1523 	/* Tell the firmware what we have processed. */
1524 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1525 	WPI_WRITE(sc, WPI_FH_RX_WPTR, hw & ~7);
1526 }
1527 
1528 #ifdef WPI_DEBUG
1529 /*
1530  * Dump the error log of the firmware when a firmware panic occurs.  Although
1531  * we can't debug the firmware because it is neither open source nor free, it
1532  * can help us to identify certain classes of problems.
1533  */
1534 void
1535 wpi_fatal_intr(struct wpi_softc *sc)
1536 {
1537 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
1538 	struct wpi_fwdump dump;
1539 	uint32_t i, offset, count;
1540 
1541 	/* Check that the error log address is valid. */
1542 	if (sc->errptr < WPI_FW_DATA_BASE ||
1543 	    sc->errptr + sizeof (dump) >
1544 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
1545 		printf("%s: bad firmware error log address 0x%08x\n",
1546 		    sc->sc_dev.dv_xname, sc->errptr);
1547 		return;
1548 	}
1549 
1550 	if (wpi_nic_lock(sc) != 0) {
1551 		printf("%s: could not read firmware error log\n",
1552 		    sc->sc_dev.dv_xname);
1553 		return;
1554 	}
1555 	/* Read number of entries in the log. */
1556 	count = wpi_mem_read(sc, sc->errptr);
1557 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
1558 		printf("%s: invalid count field (count=%u)\n",
1559 		    sc->sc_dev.dv_xname, count);
1560 		wpi_nic_unlock(sc);
1561 		return;
1562 	}
1563 	/* Skip "count" field. */
1564 	offset = sc->errptr + sizeof (uint32_t);
1565 	printf("firmware error log (count=%u):\n", count);
1566 	for (i = 0; i < count; i++) {
1567 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
1568 		    sizeof (dump) / sizeof (uint32_t));
1569 
1570 		printf("  error type = \"%s\" (0x%08X)\n",
1571 		    (dump.desc < N(wpi_fw_errmsg)) ?
1572 			wpi_fw_errmsg[dump.desc] : "UNKNOWN",
1573 		    dump.desc);
1574 		printf("  error data      = 0x%08X\n",
1575 		    dump.data);
1576 		printf("  branch link     = 0x%08X%08X\n",
1577 		    dump.blink[0], dump.blink[1]);
1578 		printf("  interrupt link  = 0x%08X%08X\n",
1579 		    dump.ilink[0], dump.ilink[1]);
1580 		printf("  time            = %u\n", dump.time);
1581 
1582 		offset += sizeof (dump);
1583 	}
1584 	wpi_nic_unlock(sc);
1585 	/* Dump driver status (TX and RX rings) while we're here. */
1586 	printf("driver status:\n");
1587 	for (i = 0; i < 6; i++) {
1588 		struct wpi_tx_ring *ring = &sc->txq[i];
1589 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
1590 		    i, ring->qid, ring->cur, ring->queued);
1591 	}
1592 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
1593 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
1594 #undef N
1595 }
1596 #endif
1597 
1598 int
1599 wpi_intr(void *arg)
1600 {
1601 	struct wpi_softc *sc = arg;
1602 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1603 	uint32_t r1, r2;
1604 
1605 	/* Disable interrupts. */
1606 	WPI_WRITE(sc, WPI_MASK, 0);
1607 
1608 	r1 = WPI_READ(sc, WPI_INT);
1609 	r2 = WPI_READ(sc, WPI_FH_INT);
1610 
1611 	if (r1 == 0 && r2 == 0) {
1612 		if (ifp->if_flags & IFF_UP)
1613 			WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1614 		return 0;	/* Interrupt not for us. */
1615 	}
1616 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
1617 		return 0;	/* Hardware gone! */
1618 
1619 	/* Acknowledge interrupts. */
1620 	WPI_WRITE(sc, WPI_INT, r1);
1621 	WPI_WRITE(sc, WPI_FH_INT, r2);
1622 
1623 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
1624 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
1625 		/* Dump firmware error log and stop. */
1626 #ifdef WPI_DEBUG
1627 		wpi_fatal_intr(sc);
1628 #endif
1629 		wpi_stop(ifp, 1);
1630 		task_add(systq, &sc->init_task);
1631 		return 1;
1632 	}
1633 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
1634 	    (r2 & WPI_FH_INT_RX))
1635 		wpi_notif_intr(sc);
1636 
1637 	if (r1 & WPI_INT_ALIVE)
1638 		wakeup(sc);	/* Firmware is alive. */
1639 
1640 	/* Re-enable interrupts. */
1641 	if (ifp->if_flags & IFF_UP)
1642 		WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
1643 
1644 	return 1;
1645 }
1646 
1647 int
1648 wpi_tx(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1649 {
1650 	struct ieee80211com *ic = &sc->sc_ic;
1651 	struct wpi_node *wn = (void *)ni;
1652 	struct wpi_tx_ring *ring;
1653 	struct wpi_tx_desc *desc;
1654 	struct wpi_tx_data *data;
1655 	struct wpi_tx_cmd *cmd;
1656 	struct wpi_cmd_data *tx;
1657 	const struct wpi_rate *rinfo;
1658 	struct ieee80211_frame *wh;
1659 	struct ieee80211_key *k = NULL;
1660 	enum ieee80211_edca_ac ac;
1661 	uint32_t flags;
1662 	uint16_t qos;
1663 	u_int hdrlen;
1664 	uint8_t *ivp, tid, ridx, type;
1665 	int i, totlen, hasqos, error;
1666 
1667 	wh = mtod(m, struct ieee80211_frame *);
1668 	hdrlen = ieee80211_get_hdrlen(wh);
1669 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1670 
1671 	/* Select EDCA Access Category and TX ring for this frame. */
1672 	if ((hasqos = ieee80211_has_qos(wh))) {
1673 		qos = ieee80211_get_qos(wh);
1674 		tid = qos & IEEE80211_QOS_TID;
1675 		ac = ieee80211_up_to_ac(ic, tid);
1676 	} else {
1677 		tid = 0;
1678 		ac = EDCA_AC_BE;
1679 	}
1680 
1681 	ring = &sc->txq[ac];
1682 	desc = &ring->desc[ring->cur];
1683 	data = &ring->data[ring->cur];
1684 
1685 	/* Choose a TX rate index. */
1686 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1687 	    type != IEEE80211_FC0_TYPE_DATA) {
1688 		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1689 		    WPI_RIDX_OFDM6 : WPI_RIDX_CCK1;
1690 	} else if (ic->ic_fixed_rate != -1) {
1691 		ridx = sc->fixed_ridx;
1692 	} else
1693 		ridx = wn->ridx[ni->ni_txrate];
1694 	rinfo = &wpi_rates[ridx];
1695 
1696 #if NBPFILTER > 0
1697 	if (sc->sc_drvbpf != NULL) {
1698 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1699 
1700 		tap->wt_flags = 0;
1701 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1702 		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1703 		tap->wt_rate = rinfo->rate;
1704 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
1705 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
1706 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1707 
1708 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
1709 		    m, BPF_DIRECTION_OUT);
1710 	}
1711 #endif
1712 
1713 	totlen = m->m_pkthdr.len;
1714 
1715 	/* Encrypt the frame if need be. */
1716 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1717 		/* Retrieve key for TX. */
1718 		k = ieee80211_get_txkey(ic, wh, ni);
1719 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
1720 			/* Do software encryption. */
1721 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
1722 				return ENOBUFS;
1723 			/* 802.11 header may have moved. */
1724 			wh = mtod(m, struct ieee80211_frame *);
1725 			totlen = m->m_pkthdr.len;
1726 
1727 		} else	/* HW appends CCMP MIC. */
1728 			totlen += IEEE80211_CCMP_HDRLEN;
1729 	}
1730 
1731 	/* Prepare TX firmware command. */
1732 	cmd = &ring->cmd[ring->cur];
1733 	cmd->code = WPI_CMD_TX_DATA;
1734 	cmd->flags = 0;
1735 	cmd->qid = ring->qid;
1736 	cmd->idx = ring->cur;
1737 
1738 	tx = (struct wpi_cmd_data *)cmd->data;
1739 	/* NB: No need to clear tx, all fields are reinitialized here. */
1740 
1741 	flags = 0;
1742 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1743 		/* Unicast frame, check if an ACK is expected. */
1744 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
1745 		    IEEE80211_QOS_ACK_POLICY_NOACK)
1746 			flags |= WPI_TX_NEED_ACK;
1747 	}
1748 
1749 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1750 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1751 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1752 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1753 			flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1754 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1755 		    ridx <= WPI_RIDX_OFDM54) {
1756 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1757 				flags |= WPI_TX_NEED_CTS | WPI_TX_FULL_TXOP;
1758 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1759 				flags |= WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP;
1760 		}
1761 	}
1762 
1763 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1764 	    type != IEEE80211_FC0_TYPE_DATA)
1765 		tx->id = WPI_ID_BROADCAST;
1766 	else
1767 		tx->id = wn->id;
1768 
1769 	if (type == IEEE80211_FC0_TYPE_MGT) {
1770 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1771 
1772 #ifndef IEEE80211_STA_ONLY
1773 		/* Tell HW to set timestamp in probe responses. */
1774 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1775 			flags |= WPI_TX_INSERT_TSTAMP;
1776 #endif
1777 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1778 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1779 			tx->timeout = htole16(3);
1780 		else
1781 			tx->timeout = htole16(2);
1782 	} else
1783 		tx->timeout = htole16(0);
1784 
1785 	tx->len = htole16(totlen);
1786 	tx->tid = tid;
1787 	tx->rts_ntries = 7;
1788 	tx->data_ntries = 15;
1789 	tx->ofdm_mask = 0xff;
1790 	tx->cck_mask = 0x0f;
1791 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1792 	tx->plcp = rinfo->plcp;
1793 
1794 	/* Copy 802.11 header in TX command. */
1795 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1796 
1797 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
1798 		/* Trim 802.11 header and prepend CCMP IV. */
1799 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
1800 		ivp = mtod(m, uint8_t *);
1801 		k->k_tsc++;
1802 		ivp[0] = k->k_tsc;
1803 		ivp[1] = k->k_tsc >> 8;
1804 		ivp[2] = 0;
1805 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
1806 		ivp[4] = k->k_tsc >> 16;
1807 		ivp[5] = k->k_tsc >> 24;
1808 		ivp[6] = k->k_tsc >> 32;
1809 		ivp[7] = k->k_tsc >> 40;
1810 
1811 		tx->security = WPI_CIPHER_CCMP;
1812 		memcpy(tx->key, k->k_key, k->k_len);
1813 	} else {
1814 		/* Trim 802.11 header. */
1815 		m_adj(m, hdrlen);
1816 		tx->security = 0;
1817 	}
1818 	tx->flags = htole32(flags);
1819 
1820 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1821 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1822 	if (error != 0 && error != EFBIG) {
1823 		printf("%s: can't map mbuf (error %d)\n",
1824 		    sc->sc_dev.dv_xname, error);
1825 		m_freem(m);
1826 		return error;
1827 	}
1828 	if (error != 0) {
1829 		/* Too many DMA segments, linearize mbuf. */
1830 		if (m_defrag(m, M_DONTWAIT)) {
1831 			m_freem(m);
1832 			return ENOBUFS;
1833 		}
1834 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1835 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1836 		if (error != 0) {
1837 			printf("%s: can't map mbuf (error %d)\n",
1838 			    sc->sc_dev.dv_xname, error);
1839 			m_freem(m);
1840 			return error;
1841 		}
1842 	}
1843 
1844 	data->m = m;
1845 	data->ni = ni;
1846 
1847 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1848 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
1849 
1850 	/* Fill TX descriptor. */
1851 	desc->flags = htole32(WPI_PAD32(m->m_pkthdr.len) << 28 |
1852 	    (1 + data->map->dm_nsegs) << 24);
1853 	/* First DMA segment is used by the TX command. */
1854 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1855 	    ring->cur * sizeof (struct wpi_tx_cmd));
1856 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1857 	    ((hdrlen + 3) & ~3));
1858 	/* Other DMA segments are for data payload. */
1859 	for (i = 1; i <= data->map->dm_nsegs; i++) {
1860 		desc->segs[i].addr =
1861 		    htole32(data->map->dm_segs[i - 1].ds_addr);
1862 		desc->segs[i].len  =
1863 		    htole32(data->map->dm_segs[i - 1].ds_len);
1864 	}
1865 
1866 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1867 	    BUS_DMASYNC_PREWRITE);
1868 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
1869 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
1870 	    BUS_DMASYNC_PREWRITE);
1871 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
1872 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
1873 	    BUS_DMASYNC_PREWRITE);
1874 
1875 	/* Kick TX ring. */
1876 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
1877 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1878 
1879 	/* Mark TX ring as full if we reach a certain threshold. */
1880 	if (++ring->queued > WPI_TX_RING_HIMARK)
1881 		sc->qfullmsk |= 1 << ring->qid;
1882 
1883 	return 0;
1884 }
1885 
1886 void
1887 wpi_start(struct ifnet *ifp)
1888 {
1889 	struct wpi_softc *sc = ifp->if_softc;
1890 	struct ieee80211com *ic = &sc->sc_ic;
1891 	struct ieee80211_node *ni;
1892 	struct mbuf *m;
1893 
1894 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
1895 		return;
1896 
1897 	for (;;) {
1898 		if (sc->qfullmsk != 0) {
1899 			ifq_set_oactive(&ifp->if_snd);
1900 			break;
1901 		}
1902 		/* Send pending management frames first. */
1903 		m = mq_dequeue(&ic->ic_mgtq);
1904 		if (m != NULL) {
1905 			ni = m->m_pkthdr.ph_cookie;
1906 			goto sendit;
1907 		}
1908 		if (ic->ic_state != IEEE80211_S_RUN)
1909 			break;
1910 
1911 		/* Encapsulate and send data frames. */
1912 		m = ifq_dequeue(&ifp->if_snd);
1913 		if (m == NULL)
1914 			break;
1915 #if NBPFILTER > 0
1916 		if (ifp->if_bpf != NULL)
1917 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
1918 #endif
1919 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
1920 			continue;
1921 sendit:
1922 #if NBPFILTER > 0
1923 		if (ic->ic_rawbpf != NULL)
1924 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
1925 #endif
1926 		if (wpi_tx(sc, m, ni) != 0) {
1927 			ieee80211_release_node(ic, ni);
1928 			ifp->if_oerrors++;
1929 			continue;
1930 		}
1931 
1932 		sc->sc_tx_timer = 5;
1933 		ifp->if_timer = 1;
1934 	}
1935 }
1936 
1937 void
1938 wpi_watchdog(struct ifnet *ifp)
1939 {
1940 	struct wpi_softc *sc = ifp->if_softc;
1941 
1942 	ifp->if_timer = 0;
1943 
1944 	if (sc->sc_tx_timer > 0) {
1945 		if (--sc->sc_tx_timer == 0) {
1946 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1947 			wpi_stop(ifp, 1);
1948 			ifp->if_oerrors++;
1949 			return;
1950 		}
1951 		ifp->if_timer = 1;
1952 	}
1953 
1954 	ieee80211_watchdog(ifp);
1955 }
1956 
1957 int
1958 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1959 {
1960 	struct wpi_softc *sc = ifp->if_softc;
1961 	struct ieee80211com *ic = &sc->sc_ic;
1962 	int s, error = 0;
1963 
1964 	error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
1965 	if (error)
1966 		return error;
1967 	s = splnet();
1968 
1969 	switch (cmd) {
1970 	case SIOCSIFADDR:
1971 		ifp->if_flags |= IFF_UP;
1972 		/* FALLTHROUGH */
1973 	case SIOCSIFFLAGS:
1974 		if (ifp->if_flags & IFF_UP) {
1975 			if (!(ifp->if_flags & IFF_RUNNING))
1976 				error = wpi_init(ifp);
1977 		} else {
1978 			if (ifp->if_flags & IFF_RUNNING)
1979 				wpi_stop(ifp, 1);
1980 		}
1981 		break;
1982 
1983 	case SIOCS80211POWER:
1984 		error = ieee80211_ioctl(ifp, cmd, data);
1985 		if (error != ENETRESET)
1986 			break;
1987 		if (ic->ic_state == IEEE80211_S_RUN) {
1988 			if (ic->ic_flags & IEEE80211_F_PMGTON)
1989 				error = wpi_set_pslevel(sc, 0, 3, 0);
1990 			else	/* back to CAM */
1991 				error = wpi_set_pslevel(sc, 0, 0, 0);
1992 		} else {
1993 			/* Defer until transition to IEEE80211_S_RUN. */
1994 			error = 0;
1995 		}
1996 		break;
1997 
1998 	default:
1999 		error = ieee80211_ioctl(ifp, cmd, data);
2000 	}
2001 
2002 	if (error == ENETRESET) {
2003 		error = 0;
2004 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2005 		    (IFF_UP | IFF_RUNNING)) {
2006 			wpi_stop(ifp, 0);
2007 			error = wpi_init(ifp);
2008 		}
2009 	}
2010 
2011 	splx(s);
2012 	rw_exit_write(&sc->sc_rwlock);
2013 	return error;
2014 }
2015 
2016 /*
2017  * Send a command to the firmware.
2018  */
2019 int
2020 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2021 {
2022 	struct wpi_tx_ring *ring = &sc->txq[4];
2023 	struct wpi_tx_desc *desc;
2024 	struct wpi_tx_data *data;
2025 	struct wpi_tx_cmd *cmd;
2026 	struct mbuf *m;
2027 	bus_addr_t paddr;
2028 	int totlen, error;
2029 
2030 	desc = &ring->desc[ring->cur];
2031 	data = &ring->data[ring->cur];
2032 	totlen = 4 + size;
2033 
2034 	if (size > sizeof cmd->data) {
2035 		/* Command is too large to fit in a descriptor. */
2036 		if (totlen > MCLBYTES)
2037 			return EINVAL;
2038 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2039 		if (m == NULL)
2040 			return ENOMEM;
2041 		if (totlen > MHLEN) {
2042 			MCLGET(m, M_DONTWAIT);
2043 			if (!(m->m_flags & M_EXT)) {
2044 				m_freem(m);
2045 				return ENOMEM;
2046 			}
2047 		}
2048 		cmd = mtod(m, struct wpi_tx_cmd *);
2049 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
2050 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2051 		if (error != 0) {
2052 			m_freem(m);
2053 			return error;
2054 		}
2055 		data->m = m;
2056 		paddr = data->map->dm_segs[0].ds_addr;
2057 	} else {
2058 		cmd = &ring->cmd[ring->cur];
2059 		paddr = data->cmd_paddr;
2060 	}
2061 
2062 	cmd->code = code;
2063 	cmd->flags = 0;
2064 	cmd->qid = ring->qid;
2065 	cmd->idx = ring->cur;
2066 	memcpy(cmd->data, buf, size);
2067 
2068 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2069 	desc->segs[0].addr = htole32(paddr);
2070 	desc->segs[0].len  = htole32(totlen);
2071 
2072 	if (size > sizeof cmd->data) {
2073 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
2074 		    BUS_DMASYNC_PREWRITE);
2075 	} else {
2076 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
2077 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
2078 		    BUS_DMASYNC_PREWRITE);
2079 	}
2080 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2081 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
2082 	    BUS_DMASYNC_PREWRITE);
2083 
2084 	/* Kick command ring. */
2085 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2086 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
2087 
2088 	return async ? 0 : tsleep_nsec(cmd, PCATCH, "wpicmd", SEC_TO_NSEC(1));
2089 }
2090 
2091 /*
2092  * Configure HW multi-rate retries.
2093  */
2094 int
2095 wpi_mrr_setup(struct wpi_softc *sc)
2096 {
2097 	struct ieee80211com *ic = &sc->sc_ic;
2098 	struct wpi_mrr_setup mrr;
2099 	int i, error;
2100 
2101 	/* CCK rates (not used with 802.11a). */
2102 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2103 		mrr.rates[i].flags = 0;
2104 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2105 		/* Fallback to the immediate lower CCK rate (if any.) */
2106 		mrr.rates[i].next =
2107 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2108 		/* Try one time at this rate before falling back to "next". */
2109 		mrr.rates[i].ntries = 1;
2110 	}
2111 	/* OFDM rates (not used with 802.11b). */
2112 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2113 		mrr.rates[i].flags = 0;
2114 		mrr.rates[i].plcp = wpi_rates[i].plcp;
2115 		/* Fallback to the immediate lower rate (if any.) */
2116 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2117 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2118 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2119 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2120 		    i - 1;
2121 		/* Try one time at this rate before falling back to "next". */
2122 		mrr.rates[i].ntries = 1;
2123 	}
2124 	/* Setup MRR for control frames. */
2125 	mrr.which = htole32(WPI_MRR_CTL);
2126 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2127 	if (error != 0) {
2128 		printf("%s: could not setup MRR for control frames\n",
2129 		    sc->sc_dev.dv_xname);
2130 		return error;
2131 	}
2132 	/* Setup MRR for data frames. */
2133 	mrr.which = htole32(WPI_MRR_DATA);
2134 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2135 	if (error != 0) {
2136 		printf("%s: could not setup MRR for data frames\n",
2137 		    sc->sc_dev.dv_xname);
2138 		return error;
2139 	}
2140 	return 0;
2141 }
2142 
2143 void
2144 wpi_updateedca(struct ieee80211com *ic)
2145 {
2146 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2147 	struct wpi_softc *sc = ic->ic_softc;
2148 	struct wpi_edca_params cmd;
2149 	int aci;
2150 
2151 	memset(&cmd, 0, sizeof cmd);
2152 	cmd.flags = htole32(WPI_EDCA_UPDATE);
2153 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2154 		const struct ieee80211_edca_ac_params *ac =
2155 		    &ic->ic_edca_ac[aci];
2156 		cmd.ac[aci].aifsn = ac->ac_aifsn;
2157 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->ac_ecwmin));
2158 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->ac_ecwmax));
2159 		cmd.ac[aci].txoplimit =
2160 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
2161 	}
2162 	(void)wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
2163 #undef WPI_EXP2
2164 }
2165 
2166 void
2167 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2168 {
2169 	struct wpi_cmd_led led;
2170 
2171 	led.which = which;
2172 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2173 	led.off = off;
2174 	led.on = on;
2175 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2176 }
2177 
2178 int
2179 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
2180 {
2181 	struct wpi_cmd_timing cmd;
2182 	uint64_t val, mod;
2183 
2184 	memset(&cmd, 0, sizeof cmd);
2185 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
2186 	cmd.bintval = htole16(ni->ni_intval);
2187 	cmd.lintval = htole16(10);
2188 
2189 	/* Compute remaining time until next beacon. */
2190 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2191 	mod = letoh64(cmd.tstamp) % val;
2192 	cmd.binitval = htole32((uint32_t)(val - mod));
2193 
2194 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
2195 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
2196 
2197 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
2198 }
2199 
2200 /*
2201  * This function is called periodically (every minute) to adjust TX power
2202  * based on temperature variation.
2203  */
2204 void
2205 wpi_power_calibration(struct wpi_softc *sc)
2206 {
2207 	int temp;
2208 
2209 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
2210 	/* Sanity-check temperature. */
2211 	if (temp < -260 || temp > 25) {
2212 		/* This can't be correct, ignore. */
2213 		DPRINTF(("out-of-range temperature reported: %d\n", temp));
2214 		return;
2215 	}
2216 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
2217 	/* Adjust TX power if need be (delta > 6). */
2218 	if (abs(temp - sc->temp) > 6) {
2219 		/* Record temperature of last calibration. */
2220 		sc->temp = temp;
2221 		(void)wpi_set_txpower(sc, 1);
2222 	}
2223 }
2224 
2225 /*
2226  * Set TX power for current channel (each rate has its own power settings).
2227  */
2228 int
2229 wpi_set_txpower(struct wpi_softc *sc, int async)
2230 {
2231 	struct ieee80211com *ic = &sc->sc_ic;
2232 	struct ieee80211_channel *ch;
2233 	struct wpi_power_group *group;
2234 	struct wpi_cmd_txpower cmd;
2235 	u_int chan;
2236 	int idx, i;
2237 
2238 	/* Retrieve current channel from last RXON. */
2239 	chan = sc->rxon.chan;
2240 	DPRINTF(("setting TX power for channel %d\n", chan));
2241 	ch = &ic->ic_channels[chan];
2242 
2243 	/* Find the TX power group to which this channel belongs. */
2244 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2245 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2246 			if (chan <= group->chan)
2247 				break;
2248 	} else
2249 		group = &sc->groups[0];
2250 
2251 	memset(&cmd, 0, sizeof cmd);
2252 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2253 	cmd.chan = htole16(chan);
2254 
2255 	/* Set TX power for all OFDM and CCK rates. */
2256 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
2257 		/* Retrieve TX power for this channel/rate. */
2258 		idx = wpi_get_power_index(sc, group, ch, i);
2259 
2260 		cmd.rates[i].plcp = wpi_rates[i].plcp;
2261 
2262 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2263 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2264 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2265 		} else {
2266 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2267 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2268 		}
2269 		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2270 		    wpi_rates[i].rate, idx));
2271 	}
2272 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
2273 }
2274 
2275 /*
2276  * Determine TX power index for a given channel/rate combination.
2277  * This takes into account the regulatory information from EEPROM and the
2278  * current temperature.
2279  */
2280 int
2281 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2282     struct ieee80211_channel *c, int ridx)
2283 {
2284 /* Fixed-point arithmetic division using a n-bit fractional part. */
2285 #define fdivround(a, b, n)	\
2286 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2287 
2288 /* Linear interpolation. */
2289 #define interpolate(x, x1, y1, x2, y2, n)	\
2290 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2291 
2292 	struct ieee80211com *ic = &sc->sc_ic;
2293 	struct wpi_power_sample *sample;
2294 	int pwr, idx;
2295 	u_int chan;
2296 
2297 	/* Get channel number. */
2298 	chan = ieee80211_chan2ieee(ic, c);
2299 
2300 	/* Default TX power is group maximum TX power minus 3dB. */
2301 	pwr = group->maxpwr / 2;
2302 
2303 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
2304 	switch (ridx) {
2305 	case WPI_RIDX_OFDM36:
2306 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2307 		break;
2308 	case WPI_RIDX_OFDM48:
2309 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2310 		break;
2311 	case WPI_RIDX_OFDM54:
2312 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2313 		break;
2314 	}
2315 
2316 	/* Never exceed the channel maximum allowed TX power. */
2317 	pwr = MIN(pwr, sc->maxpwr[chan]);
2318 
2319 	/* Retrieve TX power index into gain tables from samples. */
2320 	for (sample = group->samples; sample < &group->samples[3]; sample++)
2321 		if (pwr > sample[1].power)
2322 			break;
2323 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
2324 	idx = interpolate(pwr, sample[0].power, sample[0].index,
2325 	    sample[1].power, sample[1].index, 19);
2326 
2327 	/*-
2328 	 * Adjust power index based on current temperature:
2329 	 * - if cooler than factory-calibrated: decrease output power
2330 	 * - if warmer than factory-calibrated: increase output power
2331 	 */
2332 	idx -= (sc->temp - group->temp) * 11 / 100;
2333 
2334 	/* Decrease TX power for CCK rates (-5dB). */
2335 	if (ridx >= WPI_RIDX_CCK1)
2336 		idx += 10;
2337 
2338 	/* Make sure idx stays in a valid range. */
2339 	if (idx < 0)
2340 		idx = 0;
2341 	else if (idx > WPI_MAX_PWR_INDEX)
2342 		idx = WPI_MAX_PWR_INDEX;
2343 	return idx;
2344 
2345 #undef interpolate
2346 #undef fdivround
2347 }
2348 
2349 /*
2350  * Set STA mode power saving level (between 0 and 5).
2351  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
2352  */
2353 int
2354 wpi_set_pslevel(struct wpi_softc *sc, int dtim, int level, int async)
2355 {
2356 	struct wpi_pmgt_cmd cmd;
2357 	const struct wpi_pmgt *pmgt;
2358 	uint32_t max, skip_dtim;
2359 	pcireg_t reg;
2360 	int i;
2361 
2362 	/* Select which PS parameters to use. */
2363 	if (dtim <= 10)
2364 		pmgt = &wpi_pmgt[0][level];
2365 	else
2366 		pmgt = &wpi_pmgt[1][level];
2367 
2368 	memset(&cmd, 0, sizeof cmd);
2369 	if (level != 0)	/* not CAM */
2370 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
2371 	/* Retrieve PCIe Active State Power Management (ASPM). */
2372 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
2373 	    sc->sc_cap_off + PCI_PCIE_LCSR);
2374 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
2375 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
2376 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
2377 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
2378 
2379 	if (dtim == 0) {
2380 		dtim = 1;
2381 		skip_dtim = 0;
2382 	} else
2383 		skip_dtim = pmgt->skip_dtim;
2384 	if (skip_dtim != 0) {
2385 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
2386 		max = pmgt->intval[4];
2387 		if (max == (uint32_t)-1)
2388 			max = dtim * (skip_dtim + 1);
2389 		else if (max > dtim)
2390 			max = (max / dtim) * dtim;
2391 	} else
2392 		max = dtim;
2393 	for (i = 0; i < 5; i++)
2394 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
2395 
2396 	DPRINTF(("setting power saving level to %d\n", level));
2397 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
2398 }
2399 
2400 int
2401 wpi_config(struct wpi_softc *sc)
2402 {
2403 	struct ieee80211com *ic = &sc->sc_ic;
2404 	struct ifnet *ifp = &ic->ic_if;
2405 	struct wpi_bluetooth bluetooth;
2406 	struct wpi_node_info node;
2407 	int error;
2408 
2409 	/* Set power saving level to CAM during initialization. */
2410 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
2411 		printf("%s: could not set power saving level\n",
2412 		    sc->sc_dev.dv_xname);
2413 		return error;
2414 	}
2415 
2416 	/* Configure bluetooth coexistence. */
2417 	memset(&bluetooth, 0, sizeof bluetooth);
2418 	bluetooth.flags = WPI_BT_COEX_MODE_4WIRE;
2419 	bluetooth.lead_time = WPI_BT_LEAD_TIME_DEF;
2420 	bluetooth.max_kill = WPI_BT_MAX_KILL_DEF;
2421 	error = wpi_cmd(sc, WPI_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
2422 	if (error != 0) {
2423 		printf("%s: could not configure bluetooth coexistence\n",
2424 		    sc->sc_dev.dv_xname);
2425 		return error;
2426 	}
2427 
2428 	/* Configure adapter. */
2429 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
2430 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2431 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
2432 	/* Set default channel. */
2433 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2434 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2435 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
2436 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2437 	switch (ic->ic_opmode) {
2438 	case IEEE80211_M_STA:
2439 		sc->rxon.mode = WPI_MODE_STA;
2440 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
2441 		break;
2442 	case IEEE80211_M_MONITOR:
2443 		sc->rxon.mode = WPI_MODE_MONITOR;
2444 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST |
2445 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2446 		break;
2447 	default:
2448 		/* Should not get there. */
2449 		break;
2450 	}
2451 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
2452 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
2453 	DPRINTF(("setting configuration\n"));
2454 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2455 	    0);
2456 	if (error != 0) {
2457 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2458 		return error;
2459 	}
2460 
2461 	/* Configuration has changed, set TX power accordingly. */
2462 	if ((error = wpi_set_txpower(sc, 0)) != 0) {
2463 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2464 		return error;
2465 	}
2466 
2467 	/* Add broadcast node. */
2468 	memset(&node, 0, sizeof node);
2469 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2470 	node.id = WPI_ID_BROADCAST;
2471 	node.plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2472 	node.action = htole32(WPI_ACTION_SET_RATE);
2473 	node.antenna = WPI_ANTENNA_BOTH;
2474 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2475 	if (error != 0) {
2476 		printf("%s: could not add broadcast node\n",
2477 		    sc->sc_dev.dv_xname);
2478 		return error;
2479 	}
2480 
2481 	if ((error = wpi_mrr_setup(sc)) != 0) {
2482 		printf("%s: could not setup MRR\n", sc->sc_dev.dv_xname);
2483 		return error;
2484 	}
2485 	return 0;
2486 }
2487 
2488 int
2489 wpi_scan(struct wpi_softc *sc, uint16_t flags)
2490 {
2491 	struct ieee80211com *ic = &sc->sc_ic;
2492 	struct wpi_scan_hdr *hdr;
2493 	struct wpi_cmd_data *tx;
2494 	struct wpi_scan_essid *essid;
2495 	struct wpi_scan_chan *chan;
2496 	struct ieee80211_frame *wh;
2497 	struct ieee80211_rateset *rs;
2498 	struct ieee80211_channel *c;
2499 	uint8_t *buf, *frm;
2500 	int buflen, error;
2501 
2502 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
2503 	if (buf == NULL) {
2504 		printf("%s: could not allocate buffer for scan command\n",
2505 		    sc->sc_dev.dv_xname);
2506 		return ENOMEM;
2507 	}
2508 	hdr = (struct wpi_scan_hdr *)buf;
2509 	/*
2510 	 * Move to the next channel if no frames are received within 10ms
2511 	 * after sending the probe request.
2512 	 */
2513 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
2514 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
2515 
2516 	tx = (struct wpi_cmd_data *)(hdr + 1);
2517 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
2518 	tx->id = WPI_ID_BROADCAST;
2519 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2520 
2521 	if (flags & IEEE80211_CHAN_5GHZ) {
2522 		hdr->crc_threshold = htole16(1);
2523 		/* Send probe requests at 6Mbps. */
2524 		tx->plcp = wpi_rates[WPI_RIDX_OFDM6].plcp;
2525 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2526 	} else {
2527 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
2528 		/* Send probe requests at 1Mbps. */
2529 		tx->plcp = wpi_rates[WPI_RIDX_CCK1].plcp;
2530 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2531 	}
2532 
2533 	essid = (struct wpi_scan_essid *)(tx + 1);
2534 	if (ic->ic_des_esslen != 0) {
2535 		essid[0].id  = IEEE80211_ELEMID_SSID;
2536 		essid[0].len = ic->ic_des_esslen;
2537 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2538 	}
2539 	/*
2540 	 * Build a probe request frame.  Most of the following code is a
2541 	 * copy & paste of what is done in net80211.
2542 	 */
2543 	wh = (struct ieee80211_frame *)(essid + 4);
2544 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2545 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2546 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2547 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2548 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2549 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2550 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
2551 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
2552 
2553 	frm = (uint8_t *)(wh + 1);
2554 	frm = ieee80211_add_ssid(frm, NULL, 0);
2555 	frm = ieee80211_add_rates(frm, rs);
2556 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
2557 		frm = ieee80211_add_xrates(frm, rs);
2558 
2559 	/* Set length of probe request. */
2560 	tx->len = htole16(frm - (uint8_t *)wh);
2561 
2562 	chan = (struct wpi_scan_chan *)frm;
2563 	for (c  = &ic->ic_channels[1];
2564 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2565 		if ((c->ic_flags & flags) != flags)
2566 			continue;
2567 
2568 		chan->chan = ieee80211_chan2ieee(ic, c);
2569 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
2570 		chan->flags = 0;
2571 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
2572 			chan->flags |= WPI_CHAN_ACTIVE;
2573 		if (ic->ic_des_esslen != 0)
2574 			chan->flags |= WPI_CHAN_NPBREQS(1);
2575 		chan->dsp_gain = 0x6e;
2576 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2577 			chan->rf_gain = 0x3b;
2578 			chan->active  = htole16(24);
2579 			chan->passive = htole16(110);
2580 		} else {
2581 			chan->rf_gain = 0x28;
2582 			chan->active  = htole16(36);
2583 			chan->passive = htole16(120);
2584 		}
2585 		hdr->nchan++;
2586 		chan++;
2587 	}
2588 
2589 	buflen = (uint8_t *)chan - buf;
2590 	hdr->len = htole16(buflen);
2591 
2592 	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
2593 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
2594 	free(buf, M_DEVBUF, WPI_SCAN_MAXSZ);
2595 	return error;
2596 }
2597 
2598 int
2599 wpi_auth(struct wpi_softc *sc)
2600 {
2601 	struct ieee80211com *ic = &sc->sc_ic;
2602 	struct ieee80211_node *ni = ic->ic_bss;
2603 	struct wpi_node_info node;
2604 	int error;
2605 
2606 	/* Update adapter configuration. */
2607 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
2608 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2609 	sc->rxon.flags = htole32(WPI_RXON_TSF);
2610 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2611 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
2612 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2613 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2614 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2615 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2616 	switch (ic->ic_curmode) {
2617 	case IEEE80211_MODE_11A:
2618 		sc->rxon.cck_mask  = 0;
2619 		sc->rxon.ofdm_mask = 0x15;
2620 		break;
2621 	case IEEE80211_MODE_11B:
2622 		sc->rxon.cck_mask  = 0x03;
2623 		sc->rxon.ofdm_mask = 0;
2624 		break;
2625 	default:	/* Assume 802.11b/g. */
2626 		sc->rxon.cck_mask  = 0x0f;
2627 		sc->rxon.ofdm_mask = 0x15;
2628 	}
2629 	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
2630 	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
2631 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2632 	    1);
2633 	if (error != 0) {
2634 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2635 		return error;
2636 	}
2637 
2638 	/* Configuration has changed, set TX power accordingly. */
2639 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2640 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2641 		return error;
2642 	}
2643 	/*
2644 	 * Reconfiguring RXON clears the firmware nodes table so we must
2645 	 * add the broadcast node again.
2646 	 */
2647 	memset(&node, 0, sizeof node);
2648 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
2649 	node.id = WPI_ID_BROADCAST;
2650 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2651 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2652 	node.action = htole32(WPI_ACTION_SET_RATE);
2653 	node.antenna = WPI_ANTENNA_BOTH;
2654 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2655 	if (error != 0) {
2656 		printf("%s: could not add broadcast node\n",
2657 		    sc->sc_dev.dv_xname);
2658 		return error;
2659 	}
2660 	return 0;
2661 }
2662 
2663 int
2664 wpi_run(struct wpi_softc *sc)
2665 {
2666 	struct ieee80211com *ic = &sc->sc_ic;
2667 	struct ieee80211_node *ni = ic->ic_bss;
2668 	struct wpi_node_info node;
2669 	int error;
2670 
2671 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2672 		/* Link LED blinks while monitoring. */
2673 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2674 		return 0;
2675 	}
2676 	if ((error = wpi_set_timing(sc, ni)) != 0) {
2677 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
2678 		return error;
2679 	}
2680 
2681 	/* Update adapter configuration. */
2682 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
2683 	/* Short preamble and slot time are negotiated when associating. */
2684 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
2685 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2686 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
2687 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2688 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
2689 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
2690 	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
2691 	error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, sizeof (struct wpi_rxon),
2692 	    1);
2693 	if (error != 0) {
2694 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
2695 		return error;
2696 	}
2697 
2698 	/* Configuration has changed, set TX power accordingly. */
2699 	if ((error = wpi_set_txpower(sc, 1)) != 0) {
2700 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
2701 		return error;
2702 	}
2703 
2704 	/* Fake a join to init the TX rate. */
2705 	((struct wpi_node *)ni)->id = WPI_ID_BSS;
2706 	wpi_newassoc(ic, ni, 1);
2707 
2708 	/* Add BSS node. */
2709 	memset(&node, 0, sizeof node);
2710 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2711 	node.id = WPI_ID_BSS;
2712 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2713 	    wpi_rates[WPI_RIDX_OFDM6].plcp : wpi_rates[WPI_RIDX_CCK1].plcp;
2714 	node.action = htole32(WPI_ACTION_SET_RATE);
2715 	node.antenna = WPI_ANTENNA_BOTH;
2716 	DPRINTF(("adding BSS node\n"));
2717 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2718 	if (error != 0) {
2719 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
2720 		return error;
2721 	}
2722 
2723 	/* Start periodic calibration timer. */
2724 	sc->calib_cnt = 0;
2725 	timeout_add_msec(&sc->calib_to, 500);
2726 
2727 	/* Link LED always on while associated. */
2728 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2729 
2730 	/* Enable power-saving mode if requested by user. */
2731 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
2732 		(void)wpi_set_pslevel(sc, 0, 3, 1);
2733 
2734 	return 0;
2735 }
2736 
2737 /*
2738  * We support CCMP hardware encryption/decryption of unicast frames only.
2739  * HW support for TKIP really sucks.  We should let TKIP die anyway.
2740  */
2741 int
2742 wpi_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2743     struct ieee80211_key *k)
2744 {
2745 	struct wpi_softc *sc = ic->ic_softc;
2746 	struct wpi_node *wn = (void *)ni;
2747 	struct wpi_node_info node;
2748 	uint16_t kflags;
2749 
2750 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2751 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
2752 		return ieee80211_set_key(ic, ni, k);
2753 
2754 	kflags = WPI_KFLAG_CCMP | WPI_KFLAG_KID(k->k_id);
2755 	memset(&node, 0, sizeof node);
2756 	node.id = wn->id;
2757 	node.control = WPI_NODE_UPDATE;
2758 	node.flags = WPI_FLAG_SET_KEY;
2759 	node.kflags = htole16(kflags);
2760 	memcpy(node.key, k->k_key, k->k_len);
2761 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
2762 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2763 }
2764 
2765 void
2766 wpi_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2767     struct ieee80211_key *k)
2768 {
2769 	struct wpi_softc *sc = ic->ic_softc;
2770 	struct wpi_node *wn = (void *)ni;
2771 	struct wpi_node_info node;
2772 
2773 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
2774 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
2775 		/* See comment about other ciphers above. */
2776 		ieee80211_delete_key(ic, ni, k);
2777 		return;
2778 	}
2779 	if (ic->ic_state != IEEE80211_S_RUN)
2780 		return;	/* Nothing to do. */
2781 	memset(&node, 0, sizeof node);
2782 	node.id = wn->id;
2783 	node.control = WPI_NODE_UPDATE;
2784 	node.flags = WPI_FLAG_SET_KEY;
2785 	node.kflags = 0;
2786 	DPRINTF(("delete keys for node %d\n", node.id));
2787 	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2788 }
2789 
2790 int
2791 wpi_post_alive(struct wpi_softc *sc)
2792 {
2793 	int ntries, error;
2794 
2795 	/* Check (again) that the radio is not disabled. */
2796 	if ((error = wpi_nic_lock(sc)) != 0)
2797 		return error;
2798 	/* NB: Runtime firmware must be up and running. */
2799 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
2800 		printf("%s: radio is disabled by hardware switch\n",
2801 		    sc->sc_dev.dv_xname);
2802 		wpi_nic_unlock(sc);
2803 		return EPERM;	/* :-) */
2804 	}
2805 	wpi_nic_unlock(sc);
2806 
2807 	/* Wait for thermal sensor to calibrate. */
2808 	for (ntries = 0; ntries < 1000; ntries++) {
2809 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
2810 			break;
2811 		DELAY(10);
2812 	}
2813 	if (ntries == 1000) {
2814 		printf("%s: timeout waiting for thermal sensor calibration\n",
2815 		    sc->sc_dev.dv_xname);
2816 		return ETIMEDOUT;
2817 	}
2818 	DPRINTF(("temperature %d\n", sc->temp));
2819 	return 0;
2820 }
2821 
2822 /*
2823  * The firmware boot code is small and is intended to be copied directly into
2824  * the NIC internal memory (no DMA transfer.)
2825  */
2826 int
2827 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
2828 {
2829 	int error, ntries;
2830 
2831 	size /= sizeof (uint32_t);
2832 
2833 	if ((error = wpi_nic_lock(sc)) != 0)
2834 		return error;
2835 
2836 	/* Copy microcode image into NIC memory. */
2837 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
2838 	    (const uint32_t *)ucode, size);
2839 
2840 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
2841 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
2842 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
2843 
2844 	/* Start boot load now. */
2845 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
2846 
2847 	/* Wait for transfer to complete. */
2848 	for (ntries = 0; ntries < 1000; ntries++) {
2849 		if (!(wpi_prph_read(sc, WPI_BSM_WR_CTRL) &
2850 		    WPI_BSM_WR_CTRL_START))
2851 			break;
2852 		DELAY(10);
2853 	}
2854 	if (ntries == 1000) {
2855 		printf("%s: could not load boot firmware\n",
2856 		    sc->sc_dev.dv_xname);
2857 		wpi_nic_unlock(sc);
2858 		return ETIMEDOUT;
2859 	}
2860 
2861 	/* Enable boot after power up. */
2862 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
2863 
2864 	wpi_nic_unlock(sc);
2865 	return 0;
2866 }
2867 
2868 int
2869 wpi_load_firmware(struct wpi_softc *sc)
2870 {
2871 	struct wpi_fw_info *fw = &sc->fw;
2872 	struct wpi_dma_info *dma = &sc->fw_dma;
2873 	int error;
2874 
2875 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
2876 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
2877 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
2878 	    BUS_DMASYNC_PREWRITE);
2879 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2880 	    fw->init.text, fw->init.textsz);
2881 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2882 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
2883 
2884 	/* Tell adapter where to find initialization sections. */
2885 	if ((error = wpi_nic_lock(sc)) != 0)
2886 		return error;
2887 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2888 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
2889 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2890 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2891 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
2892 	wpi_nic_unlock(sc);
2893 
2894 	/* Load firmware boot code. */
2895 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
2896 	if (error != 0) {
2897 		printf("%s: could not load boot firmware\n",
2898 		    sc->sc_dev.dv_xname);
2899 		return error;
2900 	}
2901 	/* Now press "execute". */
2902 	WPI_WRITE(sc, WPI_RESET, 0);
2903 
2904 	/* Wait at most one second for first alive notification. */
2905 	if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
2906 		printf("%s: timeout waiting for adapter to initialize\n",
2907 		    sc->sc_dev.dv_xname);
2908 		return error;
2909 	}
2910 
2911 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
2912 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
2913 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
2914 	    BUS_DMASYNC_PREWRITE);
2915 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ,
2916 	    fw->main.text, fw->main.textsz);
2917 	bus_dmamap_sync(sc->sc_dmat, dma->map, WPI_FW_DATA_MAXSZ,
2918 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
2919 
2920 	/* Tell adapter where to find runtime sections. */
2921 	if ((error = wpi_nic_lock(sc)) != 0)
2922 		return error;
2923 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
2924 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
2925 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
2926 	    dma->paddr + WPI_FW_DATA_MAXSZ);
2927 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
2928 	    WPI_FW_UPDATED | fw->main.textsz);
2929 	wpi_nic_unlock(sc);
2930 
2931 	return 0;
2932 }
2933 
2934 int
2935 wpi_read_firmware(struct wpi_softc *sc)
2936 {
2937 	struct wpi_fw_info *fw = &sc->fw;
2938 	const struct wpi_firmware_hdr *hdr;
2939 	int error;
2940 
2941 	/* Read firmware image from filesystem. */
2942 	if ((error = loadfirmware("wpi-3945abg", &fw->data, &fw->datalen)) != 0) {
2943 		printf("%s: error, %d, could not read firmware %s\n",
2944 		    sc->sc_dev.dv_xname, error, "wpi-3945abg");
2945 		return error;
2946 	}
2947 	if (fw->datalen < sizeof (*hdr)) {
2948 		printf("%s: truncated firmware header: %zu bytes\n",
2949 		    sc->sc_dev.dv_xname, fw->datalen);
2950 		free(fw->data, M_DEVBUF, fw->datalen);
2951 		return EINVAL;
2952 	}
2953 	/* Extract firmware header information. */
2954 	hdr = (struct wpi_firmware_hdr *)fw->data;
2955 	fw->main.textsz = letoh32(hdr->main_textsz);
2956 	fw->main.datasz = letoh32(hdr->main_datasz);
2957 	fw->init.textsz = letoh32(hdr->init_textsz);
2958 	fw->init.datasz = letoh32(hdr->init_datasz);
2959 	fw->boot.textsz = letoh32(hdr->boot_textsz);
2960 	fw->boot.datasz = 0;
2961 
2962 	/* Sanity-check firmware header. */
2963 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
2964 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
2965 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
2966 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
2967 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
2968 	    (fw->boot.textsz & 3) != 0) {
2969 		printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname);
2970 		free(fw->data, M_DEVBUF, fw->datalen);
2971 		return EINVAL;
2972 	}
2973 
2974 	/* Check that all firmware sections fit. */
2975 	if (fw->datalen < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
2976 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
2977 		printf("%s: firmware file too short: %zu bytes\n",
2978 		    sc->sc_dev.dv_xname, fw->datalen);
2979 		free(fw->data, M_DEVBUF, fw->datalen);
2980 		return EINVAL;
2981 	}
2982 
2983 	/* Get pointers to firmware sections. */
2984 	fw->main.text = (const uint8_t *)(hdr + 1);
2985 	fw->main.data = fw->main.text + fw->main.textsz;
2986 	fw->init.text = fw->main.data + fw->main.datasz;
2987 	fw->init.data = fw->init.text + fw->init.textsz;
2988 	fw->boot.text = fw->init.data + fw->init.datasz;
2989 
2990 	return 0;
2991 }
2992 
2993 int
2994 wpi_clock_wait(struct wpi_softc *sc)
2995 {
2996 	int ntries;
2997 
2998 	/* Set "initialization complete" bit. */
2999 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
3000 
3001 	/* Wait for clock stabilization. */
3002 	for (ntries = 0; ntries < 25000; ntries++) {
3003 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
3004 			return 0;
3005 		DELAY(100);
3006 	}
3007 	printf("%s: timeout waiting for clock stabilization\n",
3008 	    sc->sc_dev.dv_xname);
3009 	return ETIMEDOUT;
3010 }
3011 
3012 int
3013 wpi_apm_init(struct wpi_softc *sc)
3014 {
3015 	int error;
3016 
3017 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
3018 	/* Disable L0s. */
3019 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
3020 
3021 	if ((error = wpi_clock_wait(sc)) != 0)
3022 		return error;
3023 
3024 	if ((error = wpi_nic_lock(sc)) != 0)
3025 		return error;
3026 	/* Enable DMA. */
3027 	wpi_prph_write(sc, WPI_APMG_CLK_ENA,
3028 	    WPI_APMG_CLK_DMA_CLK_RQT | WPI_APMG_CLK_BSM_CLK_RQT);
3029 	DELAY(20);
3030 	/* Disable L1. */
3031 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
3032 	wpi_nic_unlock(sc);
3033 
3034 	return 0;
3035 }
3036 
3037 void
3038 wpi_apm_stop_master(struct wpi_softc *sc)
3039 {
3040 	int ntries;
3041 
3042 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
3043 
3044 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
3045 	    WPI_GP_CNTRL_MAC_PS)
3046 		return;	/* Already asleep. */
3047 
3048 	for (ntries = 0; ntries < 100; ntries++) {
3049 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
3050 			return;
3051 		DELAY(10);
3052 	}
3053 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
3054 }
3055 
3056 void
3057 wpi_apm_stop(struct wpi_softc *sc)
3058 {
3059 	wpi_apm_stop_master(sc);
3060 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
3061 }
3062 
3063 void
3064 wpi_nic_config(struct wpi_softc *sc)
3065 {
3066 	pcireg_t reg;
3067 	uint8_t rev;
3068 
3069 	/* Voodoo from the reference driver. */
3070 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3071 	rev = PCI_REVISION(reg);
3072 	if ((rev & 0xc0) == 0x40)
3073 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
3074 	else if (!(rev & 0x80))
3075 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
3076 
3077 	if (sc->cap == 0x80)
3078 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
3079 
3080 	if ((letoh16(sc->rev) & 0xf0) == 0xd0)
3081 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3082 	else
3083 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
3084 
3085 	if (sc->type > 1)
3086 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
3087 }
3088 
3089 int
3090 wpi_hw_init(struct wpi_softc *sc)
3091 {
3092 	int chnl, ntries, error;
3093 
3094 	/* Clear pending interrupts. */
3095 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3096 
3097 	if ((error = wpi_apm_init(sc)) != 0) {
3098 		printf("%s: could not power ON adapter\n",
3099 		    sc->sc_dev.dv_xname);
3100 		return error;
3101 	}
3102 
3103 	/* Select VMAIN power source. */
3104 	if ((error = wpi_nic_lock(sc)) != 0)
3105 		return error;
3106 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
3107 	wpi_nic_unlock(sc);
3108 	/* Spin until VMAIN gets selected. */
3109 	for (ntries = 0; ntries < 5000; ntries++) {
3110 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
3111 			break;
3112 		DELAY(10);
3113 	}
3114 	if (ntries == 5000) {
3115 		printf("%s: timeout selecting power source\n",
3116 		    sc->sc_dev.dv_xname);
3117 		return ETIMEDOUT;
3118 	}
3119 
3120 	/* Perform adapter initialization. */
3121 	(void)wpi_nic_config(sc);
3122 
3123 	/* Initialize RX ring. */
3124 	if ((error = wpi_nic_lock(sc)) != 0)
3125 		return error;
3126 	/* Set physical address of RX ring. */
3127 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
3128 	/* Set physical address of RX read pointer. */
3129 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
3130 	    offsetof(struct wpi_shared, next));
3131 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
3132 	/* Enable RX. */
3133 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
3134 	    WPI_FH_RX_CONFIG_DMA_ENA |
3135 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
3136 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
3137 	    WPI_FH_RX_CONFIG_MAXFRAG |
3138 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
3139 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
3140 	    WPI_FH_RX_CONFIG_IRQ_RBTH(1));
3141 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
3142 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
3143 	wpi_nic_unlock(sc);
3144 
3145 	/* Initialize TX rings. */
3146 	if ((error = wpi_nic_lock(sc)) != 0)
3147 		return error;
3148 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
3149 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
3150 	/* Enable all 6 TX rings. */
3151 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
3152 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
3153 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
3154 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
3155 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
3156 	/* Set physical address of TX rings. */
3157 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
3158 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
3159 
3160 	/* Enable all DMA channels. */
3161 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3162 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
3163 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
3164 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
3165 	}
3166 	wpi_nic_unlock(sc);
3167 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
3168 
3169 	/* Clear "radio off" and "commands blocked" bits. */
3170 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3171 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
3172 
3173 	/* Clear pending interrupts. */
3174 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3175 	/* Enable interrupts. */
3176 	WPI_WRITE(sc, WPI_MASK, WPI_INT_MASK);
3177 
3178 	/* _Really_ make sure "radio off" bit is cleared! */
3179 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3180 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
3181 
3182 	if ((error = wpi_load_firmware(sc)) != 0) {
3183 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
3184 		return error;
3185 	}
3186 	/* Wait at most one second for firmware alive notification. */
3187 	if ((error = tsleep_nsec(sc, PCATCH, "wpiinit", SEC_TO_NSEC(1))) != 0) {
3188 		printf("%s: timeout waiting for adapter to initialize\n",
3189 		    sc->sc_dev.dv_xname);
3190 		return error;
3191 	}
3192 	/* Do post-firmware initialization. */
3193 	return wpi_post_alive(sc);
3194 }
3195 
3196 void
3197 wpi_hw_stop(struct wpi_softc *sc)
3198 {
3199 	int chnl, qid, ntries;
3200 	uint32_t tmp;
3201 
3202 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
3203 
3204 	/* Disable interrupts. */
3205 	WPI_WRITE(sc, WPI_MASK, 0);
3206 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
3207 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
3208 
3209 	/* Make sure we no longer hold the NIC lock. */
3210 	wpi_nic_unlock(sc);
3211 
3212 	if (wpi_nic_lock(sc) == 0) {
3213 		/* Stop TX scheduler. */
3214 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
3215 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
3216 
3217 		/* Stop all DMA channels. */
3218 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
3219 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
3220 			for (ntries = 0; ntries < 100; ntries++) {
3221 				tmp = WPI_READ(sc, WPI_FH_TX_STATUS);
3222 				if ((tmp & WPI_FH_TX_STATUS_IDLE(chnl)) ==
3223 				    WPI_FH_TX_STATUS_IDLE(chnl))
3224 					break;
3225 				DELAY(10);
3226 			}
3227 		}
3228 		wpi_nic_unlock(sc);
3229 	}
3230 
3231 	/* Stop RX ring. */
3232 	wpi_reset_rx_ring(sc, &sc->rxq);
3233 
3234 	/* Reset all TX rings. */
3235 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
3236 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
3237 
3238 	if (wpi_nic_lock(sc) == 0) {
3239 		wpi_prph_write(sc, WPI_APMG_CLK_DIS, WPI_APMG_CLK_DMA_CLK_RQT);
3240 		wpi_nic_unlock(sc);
3241 	}
3242 	DELAY(5);
3243 	/* Power OFF adapter. */
3244 	wpi_apm_stop(sc);
3245 }
3246 
3247 int
3248 wpi_init(struct ifnet *ifp)
3249 {
3250 	struct wpi_softc *sc = ifp->if_softc;
3251 	struct ieee80211com *ic = &sc->sc_ic;
3252 	int error;
3253 
3254 #ifdef notyet
3255 	/* Check that the radio is not disabled by hardware switch. */
3256 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
3257 		printf("%s: radio is disabled by hardware switch\n",
3258 		    sc->sc_dev.dv_xname);
3259 		error = EPERM;	/* :-) */
3260 		goto fail;
3261 	}
3262 #endif
3263 	/* Read firmware images from the filesystem. */
3264 	if ((error = wpi_read_firmware(sc)) != 0) {
3265 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
3266 		goto fail;
3267 	}
3268 
3269 	/* Initialize hardware and upload firmware. */
3270 	error = wpi_hw_init(sc);
3271 	free(sc->fw.data, M_DEVBUF, sc->fw.datalen);
3272 	if (error != 0) {
3273 		printf("%s: could not initialize hardware\n",
3274 		    sc->sc_dev.dv_xname);
3275 		goto fail;
3276 	}
3277 
3278 	/* Configure adapter now that it is ready. */
3279 	if ((error = wpi_config(sc)) != 0) {
3280 		printf("%s: could not configure device\n",
3281 		    sc->sc_dev.dv_xname);
3282 		goto fail;
3283 	}
3284 
3285 	ifq_clr_oactive(&ifp->if_snd);
3286 	ifp->if_flags |= IFF_RUNNING;
3287 
3288 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
3289 		ieee80211_begin_scan(ifp);
3290 	else
3291 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3292 
3293 	return 0;
3294 
3295 fail:	wpi_stop(ifp, 1);
3296 	return error;
3297 }
3298 
3299 void
3300 wpi_stop(struct ifnet *ifp, int disable)
3301 {
3302 	struct wpi_softc *sc = ifp->if_softc;
3303 	struct ieee80211com *ic = &sc->sc_ic;
3304 
3305 	ifp->if_timer = sc->sc_tx_timer = 0;
3306 	ifp->if_flags &= ~IFF_RUNNING;
3307 	ifq_clr_oactive(&ifp->if_snd);
3308 
3309 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3310 
3311 	/* Power OFF hardware. */
3312 	wpi_hw_stop(sc);
3313 }
3314