1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_deps.h" 47 #include "i915_driver.h" 48 #include "i915_drv.h" 49 #include "i915_trace.h" 50 #include "intel_pm.h" 51 52 struct execute_cb { 53 struct irq_work work; 54 struct i915_sw_fence *fence; 55 struct i915_request *signal; 56 }; 57 58 static struct pool slab_requests; 59 static struct pool slab_execute_cbs; 60 61 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 62 { 63 return dev_name(to_request(fence)->i915->drm.dev); 64 } 65 66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 67 { 68 const struct i915_gem_context *ctx; 69 70 /* 71 * The timeline struct (as part of the ppgtt underneath a context) 72 * may be freed when the request is no longer in use by the GPU. 73 * We could extend the life of a context to beyond that of all 74 * fences, possibly keeping the hw resource around indefinitely, 75 * or we just give them a false name. Since 76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 77 * lie seems justifiable. 78 */ 79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 80 return "signaled"; 81 82 ctx = i915_request_gem_context(to_request(fence)); 83 if (!ctx) 84 return "[" DRIVER_NAME "]"; 85 86 return ctx->name; 87 } 88 89 static bool i915_fence_signaled(struct dma_fence *fence) 90 { 91 return i915_request_completed(to_request(fence)); 92 } 93 94 static bool i915_fence_enable_signaling(struct dma_fence *fence) 95 { 96 return i915_request_enable_breadcrumb(to_request(fence)); 97 } 98 99 static signed long i915_fence_wait(struct dma_fence *fence, 100 bool interruptible, 101 signed long timeout) 102 { 103 return i915_request_wait_timeout(to_request(fence), 104 interruptible | I915_WAIT_PRIORITY, 105 timeout); 106 } 107 108 #ifdef __linux__ 109 struct kmem_cache *i915_request_slab_cache(void) 110 { 111 return slab_requests; 112 } 113 #else 114 struct pool *i915_request_slab_cache(void) 115 { 116 return &slab_requests; 117 } 118 #endif 119 120 static void i915_fence_release(struct dma_fence *fence) 121 { 122 struct i915_request *rq = to_request(fence); 123 124 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 125 rq->guc_prio != GUC_PRIO_FINI); 126 127 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 128 if (rq->batch_res) { 129 i915_vma_resource_put(rq->batch_res); 130 rq->batch_res = NULL; 131 } 132 133 /* 134 * The request is put onto a RCU freelist (i.e. the address 135 * is immediately reused), mark the fences as being freed now. 136 * Otherwise the debugobjects for the fences are only marked as 137 * freed when the slab cache itself is freed, and so we would get 138 * caught trying to reuse dead objects. 139 */ 140 i915_sw_fence_fini(&rq->submit); 141 i915_sw_fence_fini(&rq->semaphore); 142 143 /* 144 * Keep one request on each engine for reserved use under mempressure 145 * do not use with virtual engines as this really is only needed for 146 * kernel contexts. 147 * 148 * We do not hold a reference to the engine here and so have to be 149 * very careful in what rq->engine we poke. The virtual engine is 150 * referenced via the rq->context and we released that ref during 151 * i915_request_retire(), ergo we must not dereference a virtual 152 * engine here. Not that we would want to, as the only consumer of 153 * the reserved engine->request_pool is the power management parking, 154 * which must-not-fail, and that is only run on the physical engines. 155 * 156 * Since the request must have been executed to be have completed, 157 * we know that it will have been processed by the HW and will 158 * not be unsubmitted again, so rq->engine and rq->execution_mask 159 * at this point is stable. rq->execution_mask will be a single 160 * bit if the last and _only_ engine it could execution on was a 161 * physical engine, if it's multiple bits then it started on and 162 * could still be on a virtual engine. Thus if the mask is not a 163 * power-of-two we assume that rq->engine may still be a virtual 164 * engine and so a dangling invalid pointer that we cannot dereference 165 * 166 * For example, consider the flow of a bonded request through a virtual 167 * engine. The request is created with a wide engine mask (all engines 168 * that we might execute on). On processing the bond, the request mask 169 * is reduced to one or more engines. If the request is subsequently 170 * bound to a single engine, it will then be constrained to only 171 * execute on that engine and never returned to the virtual engine 172 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 173 * know that if the rq->execution_mask is a single bit, rq->engine 174 * can be a physical engine with the exact corresponding mask. 175 */ 176 if (!intel_engine_is_virtual(rq->engine) && 177 is_power_of_2(rq->execution_mask) && 178 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 179 return; 180 181 #ifdef __linux__ 182 kmem_cache_free(slab_requests, rq); 183 #else 184 pool_put(&slab_requests, rq); 185 #endif 186 } 187 188 const struct dma_fence_ops i915_fence_ops = { 189 .get_driver_name = i915_fence_get_driver_name, 190 .get_timeline_name = i915_fence_get_timeline_name, 191 .enable_signaling = i915_fence_enable_signaling, 192 .signaled = i915_fence_signaled, 193 .wait = i915_fence_wait, 194 .release = i915_fence_release, 195 }; 196 197 static void irq_execute_cb(struct irq_work *wrk) 198 { 199 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 200 201 i915_sw_fence_complete(cb->fence); 202 #ifdef __linux__ 203 kmem_cache_free(slab_execute_cbs, cb); 204 #else 205 pool_put(&slab_execute_cbs, cb); 206 #endif 207 } 208 209 static __always_inline void 210 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 211 { 212 struct execute_cb *cb, *cn; 213 214 if (llist_empty(&rq->execute_cb)) 215 return; 216 217 llist_for_each_entry_safe(cb, cn, 218 llist_del_all(&rq->execute_cb), 219 work.node.llist) 220 fn(&cb->work); 221 } 222 223 static void __notify_execute_cb_irq(struct i915_request *rq) 224 { 225 __notify_execute_cb(rq, irq_work_queue); 226 } 227 228 static bool irq_work_imm(struct irq_work *wrk) 229 { 230 #ifdef __linux__ 231 wrk->func(wrk); 232 #else 233 wrk->task.t_func(wrk); 234 #endif 235 return false; 236 } 237 238 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 239 { 240 __notify_execute_cb(rq, irq_work_imm); 241 } 242 243 static void __i915_request_fill(struct i915_request *rq, u8 val) 244 { 245 void *vaddr = rq->ring->vaddr; 246 u32 head; 247 248 head = rq->infix; 249 if (rq->postfix < head) { 250 memset(vaddr + head, val, rq->ring->size - head); 251 head = 0; 252 } 253 memset(vaddr + head, val, rq->postfix - head); 254 } 255 256 /** 257 * i915_request_active_engine 258 * @rq: request to inspect 259 * @active: pointer in which to return the active engine 260 * 261 * Fills the currently active engine to the @active pointer if the request 262 * is active and still not completed. 263 * 264 * Returns true if request was active or false otherwise. 265 */ 266 bool 267 i915_request_active_engine(struct i915_request *rq, 268 struct intel_engine_cs **active) 269 { 270 struct intel_engine_cs *engine, *locked; 271 bool ret = false; 272 273 /* 274 * Serialise with __i915_request_submit() so that it sees 275 * is-banned?, or we know the request is already inflight. 276 * 277 * Note that rq->engine is unstable, and so we double 278 * check that we have acquired the lock on the final engine. 279 */ 280 locked = READ_ONCE(rq->engine); 281 spin_lock_irq(&locked->sched_engine->lock); 282 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 283 spin_unlock(&locked->sched_engine->lock); 284 locked = engine; 285 spin_lock(&locked->sched_engine->lock); 286 } 287 288 if (i915_request_is_active(rq)) { 289 if (!__i915_request_is_complete(rq)) 290 *active = locked; 291 ret = true; 292 } 293 294 spin_unlock_irq(&locked->sched_engine->lock); 295 296 return ret; 297 } 298 299 static void __rq_init_watchdog(struct i915_request *rq) 300 { 301 rq->watchdog.timer.to_func = NULL; 302 } 303 304 #ifdef __linux__ 305 306 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 307 { 308 struct i915_request *rq = 309 container_of(hrtimer, struct i915_request, watchdog.timer); 310 struct intel_gt *gt = rq->engine->gt; 311 312 if (!i915_request_completed(rq)) { 313 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 314 schedule_work(>->watchdog.work); 315 } else { 316 i915_request_put(rq); 317 } 318 319 return HRTIMER_NORESTART; 320 } 321 322 #else 323 324 static void 325 __rq_watchdog_expired(void *arg) 326 { 327 struct i915_request *rq = (struct i915_request *)arg; 328 struct intel_gt *gt = rq->engine->gt; 329 330 if (!i915_request_completed(rq)) { 331 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 332 schedule_work(>->watchdog.work); 333 } else { 334 i915_request_put(rq); 335 } 336 } 337 338 #endif 339 340 static void __rq_arm_watchdog(struct i915_request *rq) 341 { 342 struct i915_request_watchdog *wdg = &rq->watchdog; 343 struct intel_context *ce = rq->context; 344 345 if (!ce->watchdog.timeout_us) 346 return; 347 348 i915_request_get(rq); 349 350 #ifdef __linux__ 351 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 352 wdg->timer.function = __rq_watchdog_expired; 353 hrtimer_start_range_ns(&wdg->timer, 354 ns_to_ktime(ce->watchdog.timeout_us * 355 NSEC_PER_USEC), 356 NSEC_PER_MSEC, 357 HRTIMER_MODE_REL); 358 #else 359 timeout_set(&wdg->timer, __rq_watchdog_expired, rq); 360 timeout_add_msec(&wdg->timer, 1); 361 #endif 362 } 363 364 static void __rq_cancel_watchdog(struct i915_request *rq) 365 { 366 struct i915_request_watchdog *wdg = &rq->watchdog; 367 368 if (wdg->timer.to_func && hrtimer_try_to_cancel(&wdg->timer) > 0) 369 i915_request_put(rq); 370 } 371 372 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 373 374 /** 375 * i915_request_free_capture_list - Free a capture list 376 * @capture: Pointer to the first list item or NULL 377 * 378 */ 379 void i915_request_free_capture_list(struct i915_capture_list *capture) 380 { 381 while (capture) { 382 struct i915_capture_list *next = capture->next; 383 384 i915_vma_resource_put(capture->vma_res); 385 kfree(capture); 386 capture = next; 387 } 388 } 389 390 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 391 392 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 393 394 #else 395 396 #define i915_request_free_capture_list(_a) do {} while (0) 397 398 #define assert_capture_list_is_null(_a) do {} while (0) 399 400 #define clear_capture_list(_rq) do {} while (0) 401 402 #endif 403 404 bool i915_request_retire(struct i915_request *rq) 405 { 406 if (!__i915_request_is_complete(rq)) 407 return false; 408 409 RQ_TRACE(rq, "\n"); 410 411 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 412 trace_i915_request_retire(rq); 413 i915_request_mark_complete(rq); 414 415 __rq_cancel_watchdog(rq); 416 417 /* 418 * We know the GPU must have read the request to have 419 * sent us the seqno + interrupt, so use the position 420 * of tail of the request to update the last known position 421 * of the GPU head. 422 * 423 * Note this requires that we are always called in request 424 * completion order. 425 */ 426 GEM_BUG_ON(!list_is_first(&rq->link, 427 &i915_request_timeline(rq)->requests)); 428 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 429 /* Poison before we release our space in the ring */ 430 __i915_request_fill(rq, POISON_FREE); 431 rq->ring->head = rq->postfix; 432 433 if (!i915_request_signaled(rq)) { 434 spin_lock_irq(&rq->lock); 435 dma_fence_signal_locked(&rq->fence); 436 spin_unlock_irq(&rq->lock); 437 } 438 439 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 440 intel_rps_dec_waiters(&rq->engine->gt->rps); 441 442 /* 443 * We only loosely track inflight requests across preemption, 444 * and so we may find ourselves attempting to retire a _completed_ 445 * request that we have removed from the HW and put back on a run 446 * queue. 447 * 448 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 449 * after removing the breadcrumb and signaling it, so that we do not 450 * inadvertently attach the breadcrumb to a completed request. 451 */ 452 rq->engine->remove_active_request(rq); 453 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 454 455 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 456 457 intel_context_exit(rq->context); 458 intel_context_unpin(rq->context); 459 460 i915_sched_node_fini(&rq->sched); 461 i915_request_put(rq); 462 463 return true; 464 } 465 466 void i915_request_retire_upto(struct i915_request *rq) 467 { 468 struct intel_timeline * const tl = i915_request_timeline(rq); 469 struct i915_request *tmp; 470 471 RQ_TRACE(rq, "\n"); 472 GEM_BUG_ON(!__i915_request_is_complete(rq)); 473 474 do { 475 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 476 GEM_BUG_ON(!i915_request_completed(tmp)); 477 } while (i915_request_retire(tmp) && tmp != rq); 478 } 479 480 static struct i915_request * const * 481 __engine_active(struct intel_engine_cs *engine) 482 { 483 return READ_ONCE(engine->execlists.active); 484 } 485 486 static bool __request_in_flight(const struct i915_request *signal) 487 { 488 struct i915_request * const *port, *rq; 489 bool inflight = false; 490 491 if (!i915_request_is_ready(signal)) 492 return false; 493 494 /* 495 * Even if we have unwound the request, it may still be on 496 * the GPU (preempt-to-busy). If that request is inside an 497 * unpreemptible critical section, it will not be removed. Some 498 * GPU functions may even be stuck waiting for the paired request 499 * (__await_execution) to be submitted and cannot be preempted 500 * until the bond is executing. 501 * 502 * As we know that there are always preemption points between 503 * requests, we know that only the currently executing request 504 * may be still active even though we have cleared the flag. 505 * However, we can't rely on our tracking of ELSP[0] to know 506 * which request is currently active and so maybe stuck, as 507 * the tracking maybe an event behind. Instead assume that 508 * if the context is still inflight, then it is still active 509 * even if the active flag has been cleared. 510 * 511 * To further complicate matters, if there a pending promotion, the HW 512 * may either perform a context switch to the second inflight execlists, 513 * or it may switch to the pending set of execlists. In the case of the 514 * latter, it may send the ACK and we process the event copying the 515 * pending[] over top of inflight[], _overwriting_ our *active. Since 516 * this implies the HW is arbitrating and not struck in *active, we do 517 * not worry about complete accuracy, but we do require no read/write 518 * tearing of the pointer [the read of the pointer must be valid, even 519 * as the array is being overwritten, for which we require the writes 520 * to avoid tearing.] 521 * 522 * Note that the read of *execlists->active may race with the promotion 523 * of execlists->pending[] to execlists->inflight[], overwritting 524 * the value at *execlists->active. This is fine. The promotion implies 525 * that we received an ACK from the HW, and so the context is not 526 * stuck -- if we do not see ourselves in *active, the inflight status 527 * is valid. If instead we see ourselves being copied into *active, 528 * we are inflight and may signal the callback. 529 */ 530 if (!intel_context_inflight(signal->context)) 531 return false; 532 533 rcu_read_lock(); 534 for (port = __engine_active(signal->engine); 535 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 536 port++) { 537 if (rq->context == signal->context) { 538 inflight = i915_seqno_passed(rq->fence.seqno, 539 signal->fence.seqno); 540 break; 541 } 542 } 543 rcu_read_unlock(); 544 545 return inflight; 546 } 547 548 static int 549 __await_execution(struct i915_request *rq, 550 struct i915_request *signal, 551 gfp_t gfp) 552 { 553 struct execute_cb *cb; 554 555 if (i915_request_is_active(signal)) 556 return 0; 557 558 #ifdef __linux__ 559 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 560 #else 561 cb = pool_get(&slab_execute_cbs, 562 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 563 #endif 564 if (!cb) 565 return -ENOMEM; 566 567 cb->fence = &rq->submit; 568 i915_sw_fence_await(cb->fence); 569 init_irq_work(&cb->work, irq_execute_cb); 570 571 /* 572 * Register the callback first, then see if the signaler is already 573 * active. This ensures that if we race with the 574 * __notify_execute_cb from i915_request_submit() and we are not 575 * included in that list, we get a second bite of the cherry and 576 * execute it ourselves. After this point, a future 577 * i915_request_submit() will notify us. 578 * 579 * In i915_request_retire() we set the ACTIVE bit on a completed 580 * request (then flush the execute_cb). So by registering the 581 * callback first, then checking the ACTIVE bit, we serialise with 582 * the completed/retired request. 583 */ 584 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 585 if (i915_request_is_active(signal) || 586 __request_in_flight(signal)) 587 i915_request_notify_execute_cb_imm(signal); 588 } 589 590 return 0; 591 } 592 593 static bool fatal_error(int error) 594 { 595 switch (error) { 596 case 0: /* not an error! */ 597 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 598 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 599 return false; 600 default: 601 return true; 602 } 603 } 604 605 void __i915_request_skip(struct i915_request *rq) 606 { 607 GEM_BUG_ON(!fatal_error(rq->fence.error)); 608 609 if (rq->infix == rq->postfix) 610 return; 611 612 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 613 614 /* 615 * As this request likely depends on state from the lost 616 * context, clear out all the user operations leaving the 617 * breadcrumb at the end (so we get the fence notifications). 618 */ 619 __i915_request_fill(rq, 0); 620 rq->infix = rq->postfix; 621 } 622 623 bool i915_request_set_error_once(struct i915_request *rq, int error) 624 { 625 int old; 626 627 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 628 629 if (i915_request_signaled(rq)) 630 return false; 631 632 old = READ_ONCE(rq->fence.error); 633 do { 634 if (fatal_error(old)) 635 return false; 636 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 637 638 return true; 639 } 640 641 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 642 { 643 if (__i915_request_is_complete(rq)) 644 return NULL; 645 646 GEM_BUG_ON(i915_request_signaled(rq)); 647 648 /* As soon as the request is completed, it may be retired */ 649 rq = i915_request_get(rq); 650 651 i915_request_set_error_once(rq, -EIO); 652 i915_request_mark_complete(rq); 653 654 return rq; 655 } 656 657 bool __i915_request_submit(struct i915_request *request) 658 { 659 struct intel_engine_cs *engine = request->engine; 660 bool result = false; 661 662 RQ_TRACE(request, "\n"); 663 664 GEM_BUG_ON(!irqs_disabled()); 665 lockdep_assert_held(&engine->sched_engine->lock); 666 667 /* 668 * With the advent of preempt-to-busy, we frequently encounter 669 * requests that we have unsubmitted from HW, but left running 670 * until the next ack and so have completed in the meantime. On 671 * resubmission of that completed request, we can skip 672 * updating the payload, and execlists can even skip submitting 673 * the request. 674 * 675 * We must remove the request from the caller's priority queue, 676 * and the caller must only call us when the request is in their 677 * priority queue, under the sched_engine->lock. This ensures that the 678 * request has *not* yet been retired and we can safely move 679 * the request into the engine->active.list where it will be 680 * dropped upon retiring. (Otherwise if resubmit a *retired* 681 * request, this would be a horrible use-after-free.) 682 */ 683 if (__i915_request_is_complete(request)) { 684 list_del_init(&request->sched.link); 685 goto active; 686 } 687 688 if (unlikely(!intel_context_is_schedulable(request->context))) 689 i915_request_set_error_once(request, -EIO); 690 691 if (unlikely(fatal_error(request->fence.error))) 692 __i915_request_skip(request); 693 694 /* 695 * Are we using semaphores when the gpu is already saturated? 696 * 697 * Using semaphores incurs a cost in having the GPU poll a 698 * memory location, busywaiting for it to change. The continual 699 * memory reads can have a noticeable impact on the rest of the 700 * system with the extra bus traffic, stalling the cpu as it too 701 * tries to access memory across the bus (perf stat -e bus-cycles). 702 * 703 * If we installed a semaphore on this request and we only submit 704 * the request after the signaler completed, that indicates the 705 * system is overloaded and using semaphores at this time only 706 * increases the amount of work we are doing. If so, we disable 707 * further use of semaphores until we are idle again, whence we 708 * optimistically try again. 709 */ 710 if (request->sched.semaphores && 711 i915_sw_fence_signaled(&request->semaphore)) 712 engine->saturated |= request->sched.semaphores; 713 714 engine->emit_fini_breadcrumb(request, 715 request->ring->vaddr + request->postfix); 716 717 trace_i915_request_execute(request); 718 if (engine->bump_serial) 719 engine->bump_serial(engine); 720 else 721 engine->serial++; 722 723 result = true; 724 725 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 726 engine->add_active_request(request); 727 active: 728 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 729 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 730 731 /* 732 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 733 * 734 * In the future, perhaps when we have an active time-slicing scheduler, 735 * it will be interesting to unsubmit parallel execution and remove 736 * busywaits from the GPU until their master is restarted. This is 737 * quite hairy, we have to carefully rollback the fence and do a 738 * preempt-to-idle cycle on the target engine, all the while the 739 * master execute_cb may refire. 740 */ 741 __notify_execute_cb_irq(request); 742 743 /* We may be recursing from the signal callback of another i915 fence */ 744 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 745 i915_request_enable_breadcrumb(request); 746 747 return result; 748 } 749 750 void i915_request_submit(struct i915_request *request) 751 { 752 struct intel_engine_cs *engine = request->engine; 753 unsigned long flags; 754 755 /* Will be called from irq-context when using foreign fences. */ 756 spin_lock_irqsave(&engine->sched_engine->lock, flags); 757 758 __i915_request_submit(request); 759 760 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 761 } 762 763 void __i915_request_unsubmit(struct i915_request *request) 764 { 765 struct intel_engine_cs *engine = request->engine; 766 767 /* 768 * Only unwind in reverse order, required so that the per-context list 769 * is kept in seqno/ring order. 770 */ 771 RQ_TRACE(request, "\n"); 772 773 GEM_BUG_ON(!irqs_disabled()); 774 lockdep_assert_held(&engine->sched_engine->lock); 775 776 /* 777 * Before we remove this breadcrumb from the signal list, we have 778 * to ensure that a concurrent dma_fence_enable_signaling() does not 779 * attach itself. We first mark the request as no longer active and 780 * make sure that is visible to other cores, and then remove the 781 * breadcrumb if attached. 782 */ 783 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 784 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 785 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 786 i915_request_cancel_breadcrumb(request); 787 788 /* We've already spun, don't charge on resubmitting. */ 789 if (request->sched.semaphores && __i915_request_has_started(request)) 790 request->sched.semaphores = 0; 791 792 /* 793 * We don't need to wake_up any waiters on request->execute, they 794 * will get woken by any other event or us re-adding this request 795 * to the engine timeline (__i915_request_submit()). The waiters 796 * should be quite adapt at finding that the request now has a new 797 * global_seqno to the one they went to sleep on. 798 */ 799 } 800 801 void i915_request_unsubmit(struct i915_request *request) 802 { 803 struct intel_engine_cs *engine = request->engine; 804 unsigned long flags; 805 806 /* Will be called from irq-context when using foreign fences. */ 807 spin_lock_irqsave(&engine->sched_engine->lock, flags); 808 809 __i915_request_unsubmit(request); 810 811 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 812 } 813 814 void i915_request_cancel(struct i915_request *rq, int error) 815 { 816 if (!i915_request_set_error_once(rq, error)) 817 return; 818 819 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 820 821 intel_context_cancel_request(rq->context, rq); 822 } 823 824 static int 825 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 826 { 827 struct i915_request *request = 828 container_of(fence, typeof(*request), submit); 829 830 switch (state) { 831 case FENCE_COMPLETE: 832 trace_i915_request_submit(request); 833 834 if (unlikely(fence->error)) 835 i915_request_set_error_once(request, fence->error); 836 else 837 __rq_arm_watchdog(request); 838 839 /* 840 * We need to serialize use of the submit_request() callback 841 * with its hotplugging performed during an emergency 842 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 843 * critical section in order to force i915_gem_set_wedged() to 844 * wait until the submit_request() is completed before 845 * proceeding. 846 */ 847 rcu_read_lock(); 848 request->engine->submit_request(request); 849 rcu_read_unlock(); 850 break; 851 852 case FENCE_FREE: 853 i915_request_put(request); 854 break; 855 } 856 857 return NOTIFY_DONE; 858 } 859 860 static int 861 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 862 { 863 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 864 865 switch (state) { 866 case FENCE_COMPLETE: 867 break; 868 869 case FENCE_FREE: 870 i915_request_put(rq); 871 break; 872 } 873 874 return NOTIFY_DONE; 875 } 876 877 static void retire_requests(struct intel_timeline *tl) 878 { 879 struct i915_request *rq, *rn; 880 881 list_for_each_entry_safe(rq, rn, &tl->requests, link) 882 if (!i915_request_retire(rq)) 883 break; 884 } 885 886 static void __i915_request_ctor(void *); 887 888 static noinline struct i915_request * 889 request_alloc_slow(struct intel_timeline *tl, 890 struct i915_request **rsvd, 891 gfp_t gfp) 892 { 893 struct i915_request *rq; 894 895 /* If we cannot wait, dip into our reserves */ 896 if (!gfpflags_allow_blocking(gfp)) { 897 rq = xchg(rsvd, NULL); 898 if (!rq) /* Use the normal failure path for one final WARN */ 899 goto out; 900 901 return rq; 902 } 903 904 if (list_empty(&tl->requests)) 905 goto out; 906 907 /* Move our oldest request to the slab-cache (if not in use!) */ 908 rq = list_first_entry(&tl->requests, typeof(*rq), link); 909 i915_request_retire(rq); 910 911 #ifdef __linux__ 912 rq = kmem_cache_alloc(slab_requests, 913 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 914 #else 915 rq = pool_get(&slab_requests, 916 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 917 if (rq) 918 __i915_request_ctor(rq); 919 #endif 920 if (rq) 921 return rq; 922 923 /* Ratelimit ourselves to prevent oom from malicious clients */ 924 rq = list_last_entry(&tl->requests, typeof(*rq), link); 925 cond_synchronize_rcu(rq->rcustate); 926 927 /* Retire our old requests in the hope that we free some */ 928 retire_requests(tl); 929 930 out: 931 #ifdef __linux__ 932 return kmem_cache_alloc(slab_requests, gfp); 933 #else 934 rq = pool_get(&slab_requests, 935 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 936 if (rq) 937 __i915_request_ctor(rq); 938 return rq; 939 #endif 940 } 941 942 static void __i915_request_ctor(void *arg) 943 { 944 struct i915_request *rq = arg; 945 946 /* 947 * witness does not understand spin_lock_nested() 948 * order reversal in i915 with this lock 949 */ 950 mtx_init_flags(&rq->lock, IPL_TTY, NULL, MTX_NOWITNESS); 951 i915_sched_node_init(&rq->sched); 952 i915_sw_fence_init(&rq->submit, submit_notify); 953 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 954 955 clear_capture_list(rq); 956 rq->batch_res = NULL; 957 958 init_llist_head(&rq->execute_cb); 959 } 960 961 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 962 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 963 #else 964 #define clear_batch_ptr(_a) do {} while (0) 965 #endif 966 967 struct i915_request * 968 __i915_request_create(struct intel_context *ce, gfp_t gfp) 969 { 970 struct intel_timeline *tl = ce->timeline; 971 struct i915_request *rq; 972 u32 seqno; 973 int ret; 974 975 might_alloc(gfp); 976 977 /* Check that the caller provided an already pinned context */ 978 __intel_context_pin(ce); 979 980 /* 981 * Beware: Dragons be flying overhead. 982 * 983 * We use RCU to look up requests in flight. The lookups may 984 * race with the request being allocated from the slab freelist. 985 * That is the request we are writing to here, may be in the process 986 * of being read by __i915_active_request_get_rcu(). As such, 987 * we have to be very careful when overwriting the contents. During 988 * the RCU lookup, we change chase the request->engine pointer, 989 * read the request->global_seqno and increment the reference count. 990 * 991 * The reference count is incremented atomically. If it is zero, 992 * the lookup knows the request is unallocated and complete. Otherwise, 993 * it is either still in use, or has been reallocated and reset 994 * with dma_fence_init(). This increment is safe for release as we 995 * check that the request we have a reference to and matches the active 996 * request. 997 * 998 * Before we increment the refcount, we chase the request->engine 999 * pointer. We must not call kmem_cache_zalloc() or else we set 1000 * that pointer to NULL and cause a crash during the lookup. If 1001 * we see the request is completed (based on the value of the 1002 * old engine and seqno), the lookup is complete and reports NULL. 1003 * If we decide the request is not completed (new engine or seqno), 1004 * then we grab a reference and double check that it is still the 1005 * active request - which it won't be and restart the lookup. 1006 * 1007 * Do not use kmem_cache_zalloc() here! 1008 */ 1009 #ifdef __linux__ 1010 rq = kmem_cache_alloc(slab_requests, 1011 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 1012 #else 1013 rq = pool_get(&slab_requests, 1014 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK); 1015 if (rq) 1016 __i915_request_ctor(rq); 1017 #endif 1018 if (unlikely(!rq)) { 1019 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 1020 if (!rq) { 1021 ret = -ENOMEM; 1022 goto err_unreserve; 1023 } 1024 } 1025 1026 rq->context = ce; 1027 rq->engine = ce->engine; 1028 rq->ring = ce->ring; 1029 rq->execution_mask = ce->engine->mask; 1030 rq->i915 = ce->engine->i915; 1031 1032 ret = intel_timeline_get_seqno(tl, rq, &seqno); 1033 if (ret) 1034 goto err_free; 1035 1036 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 1037 tl->fence_context, seqno); 1038 1039 RCU_INIT_POINTER(rq->timeline, tl); 1040 rq->hwsp_seqno = tl->hwsp_seqno; 1041 GEM_BUG_ON(__i915_request_is_complete(rq)); 1042 1043 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 1044 1045 rq->guc_prio = GUC_PRIO_INIT; 1046 1047 /* We bump the ref for the fence chain */ 1048 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 1049 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 1050 1051 i915_sched_node_reinit(&rq->sched); 1052 1053 /* No zalloc, everything must be cleared after use */ 1054 clear_batch_ptr(rq); 1055 __rq_init_watchdog(rq); 1056 assert_capture_list_is_null(rq); 1057 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 1058 GEM_BUG_ON(rq->batch_res); 1059 1060 /* 1061 * Reserve space in the ring buffer for all the commands required to 1062 * eventually emit this request. This is to guarantee that the 1063 * i915_request_add() call can't fail. Note that the reserve may need 1064 * to be redone if the request is not actually submitted straight 1065 * away, e.g. because a GPU scheduler has deferred it. 1066 * 1067 * Note that due to how we add reserved_space to intel_ring_begin() 1068 * we need to double our request to ensure that if we need to wrap 1069 * around inside i915_request_add() there is sufficient space at 1070 * the beginning of the ring as well. 1071 */ 1072 rq->reserved_space = 1073 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 1074 1075 /* 1076 * Record the position of the start of the request so that 1077 * should we detect the updated seqno part-way through the 1078 * GPU processing the request, we never over-estimate the 1079 * position of the head. 1080 */ 1081 rq->head = rq->ring->emit; 1082 1083 ret = rq->engine->request_alloc(rq); 1084 if (ret) 1085 goto err_unwind; 1086 1087 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1088 1089 intel_context_mark_active(ce); 1090 list_add_tail_rcu(&rq->link, &tl->requests); 1091 1092 return rq; 1093 1094 err_unwind: 1095 ce->ring->emit = rq->head; 1096 1097 /* Make sure we didn't add ourselves to external state before freeing */ 1098 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1099 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1100 1101 err_free: 1102 #ifdef __linux__ 1103 kmem_cache_free(slab_requests, rq); 1104 #else 1105 pool_put(&slab_requests, rq); 1106 #endif 1107 err_unreserve: 1108 intel_context_unpin(ce); 1109 return ERR_PTR(ret); 1110 } 1111 1112 struct i915_request * 1113 i915_request_create(struct intel_context *ce) 1114 { 1115 struct i915_request *rq; 1116 struct intel_timeline *tl; 1117 1118 tl = intel_context_timeline_lock(ce); 1119 if (IS_ERR(tl)) 1120 return ERR_CAST(tl); 1121 1122 /* Move our oldest request to the slab-cache (if not in use!) */ 1123 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1124 if (!list_is_last(&rq->link, &tl->requests)) 1125 i915_request_retire(rq); 1126 1127 intel_context_enter(ce); 1128 rq = __i915_request_create(ce, GFP_KERNEL); 1129 intel_context_exit(ce); /* active reference transferred to request */ 1130 if (IS_ERR(rq)) 1131 goto err_unlock; 1132 1133 /* Check that we do not interrupt ourselves with a new request */ 1134 rq->cookie = lockdep_pin_lock(&tl->mutex); 1135 1136 return rq; 1137 1138 err_unlock: 1139 intel_context_timeline_unlock(tl); 1140 return rq; 1141 } 1142 1143 static int 1144 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1145 { 1146 struct dma_fence *fence; 1147 int err; 1148 1149 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1150 return 0; 1151 1152 if (i915_request_started(signal)) 1153 return 0; 1154 1155 /* 1156 * The caller holds a reference on @signal, but we do not serialise 1157 * against it being retired and removed from the lists. 1158 * 1159 * We do not hold a reference to the request before @signal, and 1160 * so must be very careful to ensure that it is not _recycled_ as 1161 * we follow the link backwards. 1162 */ 1163 fence = NULL; 1164 rcu_read_lock(); 1165 do { 1166 struct list_head *pos = READ_ONCE(signal->link.prev); 1167 struct i915_request *prev; 1168 1169 /* Confirm signal has not been retired, the link is valid */ 1170 if (unlikely(__i915_request_has_started(signal))) 1171 break; 1172 1173 /* Is signal the earliest request on its timeline? */ 1174 if (pos == &rcu_dereference(signal->timeline)->requests) 1175 break; 1176 1177 /* 1178 * Peek at the request before us in the timeline. That 1179 * request will only be valid before it is retired, so 1180 * after acquiring a reference to it, confirm that it is 1181 * still part of the signaler's timeline. 1182 */ 1183 prev = list_entry(pos, typeof(*prev), link); 1184 if (!i915_request_get_rcu(prev)) 1185 break; 1186 1187 /* After the strong barrier, confirm prev is still attached */ 1188 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1189 i915_request_put(prev); 1190 break; 1191 } 1192 1193 fence = &prev->fence; 1194 } while (0); 1195 rcu_read_unlock(); 1196 if (!fence) 1197 return 0; 1198 1199 err = 0; 1200 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1201 err = i915_sw_fence_await_dma_fence(&rq->submit, 1202 fence, 0, 1203 I915_FENCE_GFP); 1204 dma_fence_put(fence); 1205 1206 return err; 1207 } 1208 1209 static intel_engine_mask_t 1210 already_busywaiting(struct i915_request *rq) 1211 { 1212 /* 1213 * Polling a semaphore causes bus traffic, delaying other users of 1214 * both the GPU and CPU. We want to limit the impact on others, 1215 * while taking advantage of early submission to reduce GPU 1216 * latency. Therefore we restrict ourselves to not using more 1217 * than one semaphore from each source, and not using a semaphore 1218 * if we have detected the engine is saturated (i.e. would not be 1219 * submitted early and cause bus traffic reading an already passed 1220 * semaphore). 1221 * 1222 * See the are-we-too-late? check in __i915_request_submit(). 1223 */ 1224 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1225 } 1226 1227 static int 1228 __emit_semaphore_wait(struct i915_request *to, 1229 struct i915_request *from, 1230 u32 seqno) 1231 { 1232 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1233 u32 hwsp_offset; 1234 int len, err; 1235 u32 *cs; 1236 1237 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1238 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1239 1240 /* We need to pin the signaler's HWSP until we are finished reading. */ 1241 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1242 if (err) 1243 return err; 1244 1245 len = 4; 1246 if (has_token) 1247 len += 2; 1248 1249 cs = intel_ring_begin(to, len); 1250 if (IS_ERR(cs)) 1251 return PTR_ERR(cs); 1252 1253 /* 1254 * Using greater-than-or-equal here means we have to worry 1255 * about seqno wraparound. To side step that issue, we swap 1256 * the timeline HWSP upon wrapping, so that everyone listening 1257 * for the old (pre-wrap) values do not see the much smaller 1258 * (post-wrap) values than they were expecting (and so wait 1259 * forever). 1260 */ 1261 *cs++ = (MI_SEMAPHORE_WAIT | 1262 MI_SEMAPHORE_GLOBAL_GTT | 1263 MI_SEMAPHORE_POLL | 1264 MI_SEMAPHORE_SAD_GTE_SDD) + 1265 has_token; 1266 *cs++ = seqno; 1267 *cs++ = hwsp_offset; 1268 *cs++ = 0; 1269 if (has_token) { 1270 *cs++ = 0; 1271 *cs++ = MI_NOOP; 1272 } 1273 1274 intel_ring_advance(to, cs); 1275 return 0; 1276 } 1277 1278 static bool 1279 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1280 { 1281 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1282 } 1283 1284 static int 1285 emit_semaphore_wait(struct i915_request *to, 1286 struct i915_request *from, 1287 gfp_t gfp) 1288 { 1289 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1290 struct i915_sw_fence *wait = &to->submit; 1291 1292 if (!can_use_semaphore_wait(to, from)) 1293 goto await_fence; 1294 1295 if (!intel_context_use_semaphores(to->context)) 1296 goto await_fence; 1297 1298 if (i915_request_has_initial_breadcrumb(to)) 1299 goto await_fence; 1300 1301 /* 1302 * If this or its dependents are waiting on an external fence 1303 * that may fail catastrophically, then we want to avoid using 1304 * sempahores as they bypass the fence signaling metadata, and we 1305 * lose the fence->error propagation. 1306 */ 1307 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1308 goto await_fence; 1309 1310 /* Just emit the first semaphore we see as request space is limited. */ 1311 if (already_busywaiting(to) & mask) 1312 goto await_fence; 1313 1314 if (i915_request_await_start(to, from) < 0) 1315 goto await_fence; 1316 1317 /* Only submit our spinner after the signaler is running! */ 1318 if (__await_execution(to, from, gfp)) 1319 goto await_fence; 1320 1321 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1322 goto await_fence; 1323 1324 to->sched.semaphores |= mask; 1325 wait = &to->semaphore; 1326 1327 await_fence: 1328 return i915_sw_fence_await_dma_fence(wait, 1329 &from->fence, 0, 1330 I915_FENCE_GFP); 1331 } 1332 1333 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1334 struct dma_fence *fence) 1335 { 1336 return __intel_timeline_sync_is_later(tl, 1337 fence->context, 1338 fence->seqno - 1); 1339 } 1340 1341 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1342 const struct dma_fence *fence) 1343 { 1344 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1345 } 1346 1347 static int 1348 __i915_request_await_execution(struct i915_request *to, 1349 struct i915_request *from) 1350 { 1351 int err; 1352 1353 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1354 1355 /* Submit both requests at the same time */ 1356 err = __await_execution(to, from, I915_FENCE_GFP); 1357 if (err) 1358 return err; 1359 1360 /* Squash repeated depenendices to the same timelines */ 1361 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1362 &from->fence)) 1363 return 0; 1364 1365 /* 1366 * Wait until the start of this request. 1367 * 1368 * The execution cb fires when we submit the request to HW. But in 1369 * many cases this may be long before the request itself is ready to 1370 * run (consider that we submit 2 requests for the same context, where 1371 * the request of interest is behind an indefinite spinner). So we hook 1372 * up to both to reduce our queues and keep the execution lag minimised 1373 * in the worst case, though we hope that the await_start is elided. 1374 */ 1375 err = i915_request_await_start(to, from); 1376 if (err < 0) 1377 return err; 1378 1379 /* 1380 * Ensure both start together [after all semaphores in signal] 1381 * 1382 * Now that we are queued to the HW at roughly the same time (thanks 1383 * to the execute cb) and are ready to run at roughly the same time 1384 * (thanks to the await start), our signaler may still be indefinitely 1385 * delayed by waiting on a semaphore from a remote engine. If our 1386 * signaler depends on a semaphore, so indirectly do we, and we do not 1387 * want to start our payload until our signaler also starts theirs. 1388 * So we wait. 1389 * 1390 * However, there is also a second condition for which we need to wait 1391 * for the precise start of the signaler. Consider that the signaler 1392 * was submitted in a chain of requests following another context 1393 * (with just an ordinary intra-engine fence dependency between the 1394 * two). In this case the signaler is queued to HW, but not for 1395 * immediate execution, and so we must wait until it reaches the 1396 * active slot. 1397 */ 1398 if (can_use_semaphore_wait(to, from) && 1399 intel_engine_has_semaphores(to->engine) && 1400 !i915_request_has_initial_breadcrumb(to)) { 1401 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1402 if (err < 0) 1403 return err; 1404 } 1405 1406 /* Couple the dependency tree for PI on this exposed to->fence */ 1407 if (to->engine->sched_engine->schedule) { 1408 err = i915_sched_node_add_dependency(&to->sched, 1409 &from->sched, 1410 I915_DEPENDENCY_WEAK); 1411 if (err < 0) 1412 return err; 1413 } 1414 1415 return intel_timeline_sync_set_start(i915_request_timeline(to), 1416 &from->fence); 1417 } 1418 1419 static void mark_external(struct i915_request *rq) 1420 { 1421 /* 1422 * The downside of using semaphores is that we lose metadata passing 1423 * along the signaling chain. This is particularly nasty when we 1424 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1425 * fatal errors we want to scrub the request before it is executed, 1426 * which means that we cannot preload the request onto HW and have 1427 * it wait upon a semaphore. 1428 */ 1429 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1430 } 1431 1432 static int 1433 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1434 { 1435 mark_external(rq); 1436 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1437 i915_fence_context_timeout(rq->engine->i915, 1438 fence->context), 1439 I915_FENCE_GFP); 1440 } 1441 1442 static int 1443 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1444 { 1445 struct dma_fence *iter; 1446 int err = 0; 1447 1448 if (!to_dma_fence_chain(fence)) 1449 return __i915_request_await_external(rq, fence); 1450 1451 dma_fence_chain_for_each(iter, fence) { 1452 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1453 1454 if (!dma_fence_is_i915(chain->fence)) { 1455 err = __i915_request_await_external(rq, iter); 1456 break; 1457 } 1458 1459 err = i915_request_await_dma_fence(rq, chain->fence); 1460 if (err < 0) 1461 break; 1462 } 1463 1464 dma_fence_put(iter); 1465 return err; 1466 } 1467 1468 static inline bool is_parallel_rq(struct i915_request *rq) 1469 { 1470 return intel_context_is_parallel(rq->context); 1471 } 1472 1473 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1474 { 1475 return intel_context_to_parent(rq->context); 1476 } 1477 1478 static bool is_same_parallel_context(struct i915_request *to, 1479 struct i915_request *from) 1480 { 1481 if (is_parallel_rq(to)) 1482 return request_to_parent(to) == request_to_parent(from); 1483 1484 return false; 1485 } 1486 1487 int 1488 i915_request_await_execution(struct i915_request *rq, 1489 struct dma_fence *fence) 1490 { 1491 struct dma_fence **child = &fence; 1492 unsigned int nchild = 1; 1493 int ret; 1494 1495 if (dma_fence_is_array(fence)) { 1496 struct dma_fence_array *array = to_dma_fence_array(fence); 1497 1498 /* XXX Error for signal-on-any fence arrays */ 1499 1500 child = array->fences; 1501 nchild = array->num_fences; 1502 GEM_BUG_ON(!nchild); 1503 } 1504 1505 do { 1506 fence = *child++; 1507 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1508 continue; 1509 1510 if (fence->context == rq->fence.context) 1511 continue; 1512 1513 /* 1514 * We don't squash repeated fence dependencies here as we 1515 * want to run our callback in all cases. 1516 */ 1517 1518 if (dma_fence_is_i915(fence)) { 1519 if (is_same_parallel_context(rq, to_request(fence))) 1520 continue; 1521 ret = __i915_request_await_execution(rq, 1522 to_request(fence)); 1523 } else { 1524 ret = i915_request_await_external(rq, fence); 1525 } 1526 if (ret < 0) 1527 return ret; 1528 } while (--nchild); 1529 1530 return 0; 1531 } 1532 1533 static int 1534 await_request_submit(struct i915_request *to, struct i915_request *from) 1535 { 1536 /* 1537 * If we are waiting on a virtual engine, then it may be 1538 * constrained to execute on a single engine *prior* to submission. 1539 * When it is submitted, it will be first submitted to the virtual 1540 * engine and then passed to the physical engine. We cannot allow 1541 * the waiter to be submitted immediately to the physical engine 1542 * as it may then bypass the virtual request. 1543 */ 1544 if (to->engine == READ_ONCE(from->engine)) 1545 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1546 &from->submit, 1547 I915_FENCE_GFP); 1548 else 1549 return __i915_request_await_execution(to, from); 1550 } 1551 1552 static int 1553 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1554 { 1555 int ret; 1556 1557 GEM_BUG_ON(to == from); 1558 GEM_BUG_ON(to->timeline == from->timeline); 1559 1560 if (i915_request_completed(from)) { 1561 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1562 return 0; 1563 } 1564 1565 if (to->engine->sched_engine->schedule) { 1566 ret = i915_sched_node_add_dependency(&to->sched, 1567 &from->sched, 1568 I915_DEPENDENCY_EXTERNAL); 1569 if (ret < 0) 1570 return ret; 1571 } 1572 1573 if (!intel_engine_uses_guc(to->engine) && 1574 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1575 ret = await_request_submit(to, from); 1576 else 1577 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1578 if (ret < 0) 1579 return ret; 1580 1581 return 0; 1582 } 1583 1584 int 1585 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1586 { 1587 struct dma_fence **child = &fence; 1588 unsigned int nchild = 1; 1589 int ret; 1590 1591 /* 1592 * Note that if the fence-array was created in signal-on-any mode, 1593 * we should *not* decompose it into its individual fences. However, 1594 * we don't currently store which mode the fence-array is operating 1595 * in. Fortunately, the only user of signal-on-any is private to 1596 * amdgpu and we should not see any incoming fence-array from 1597 * sync-file being in signal-on-any mode. 1598 */ 1599 if (dma_fence_is_array(fence)) { 1600 struct dma_fence_array *array = to_dma_fence_array(fence); 1601 1602 child = array->fences; 1603 nchild = array->num_fences; 1604 GEM_BUG_ON(!nchild); 1605 } 1606 1607 do { 1608 fence = *child++; 1609 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1610 continue; 1611 1612 /* 1613 * Requests on the same timeline are explicitly ordered, along 1614 * with their dependencies, by i915_request_add() which ensures 1615 * that requests are submitted in-order through each ring. 1616 */ 1617 if (fence->context == rq->fence.context) 1618 continue; 1619 1620 /* Squash repeated waits to the same timelines */ 1621 if (fence->context && 1622 intel_timeline_sync_is_later(i915_request_timeline(rq), 1623 fence)) 1624 continue; 1625 1626 if (dma_fence_is_i915(fence)) { 1627 if (is_same_parallel_context(rq, to_request(fence))) 1628 continue; 1629 ret = i915_request_await_request(rq, to_request(fence)); 1630 } else { 1631 ret = i915_request_await_external(rq, fence); 1632 } 1633 if (ret < 0) 1634 return ret; 1635 1636 /* Record the latest fence used against each timeline */ 1637 if (fence->context) 1638 intel_timeline_sync_set(i915_request_timeline(rq), 1639 fence); 1640 } while (--nchild); 1641 1642 return 0; 1643 } 1644 1645 /** 1646 * i915_request_await_deps - set this request to (async) wait upon a struct 1647 * i915_deps dma_fence collection 1648 * @rq: request we are wishing to use 1649 * @deps: The struct i915_deps containing the dependencies. 1650 * 1651 * Returns 0 if successful, negative error code on error. 1652 */ 1653 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1654 { 1655 int i, err; 1656 1657 for (i = 0; i < deps->num_deps; ++i) { 1658 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1659 if (err) 1660 return err; 1661 } 1662 1663 return 0; 1664 } 1665 1666 /** 1667 * i915_request_await_object - set this request to (async) wait upon a bo 1668 * @to: request we are wishing to use 1669 * @obj: object which may be in use on another ring. 1670 * @write: whether the wait is on behalf of a writer 1671 * 1672 * This code is meant to abstract object synchronization with the GPU. 1673 * Conceptually we serialise writes between engines inside the GPU. 1674 * We only allow one engine to write into a buffer at any time, but 1675 * multiple readers. To ensure each has a coherent view of memory, we must: 1676 * 1677 * - If there is an outstanding write request to the object, the new 1678 * request must wait for it to complete (either CPU or in hw, requests 1679 * on the same ring will be naturally ordered). 1680 * 1681 * - If we are a write request (pending_write_domain is set), the new 1682 * request must wait for outstanding read requests to complete. 1683 * 1684 * Returns 0 if successful, else propagates up the lower layer error. 1685 */ 1686 int 1687 i915_request_await_object(struct i915_request *to, 1688 struct drm_i915_gem_object *obj, 1689 bool write) 1690 { 1691 struct dma_resv_iter cursor; 1692 struct dma_fence *fence; 1693 int ret = 0; 1694 1695 dma_resv_for_each_fence(&cursor, obj->base.resv, 1696 dma_resv_usage_rw(write), fence) { 1697 ret = i915_request_await_dma_fence(to, fence); 1698 if (ret) 1699 break; 1700 } 1701 1702 return ret; 1703 } 1704 1705 static struct i915_request * 1706 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1707 struct intel_timeline *timeline) 1708 { 1709 struct i915_request *prev; 1710 1711 GEM_BUG_ON(!is_parallel_rq(rq)); 1712 1713 prev = request_to_parent(rq)->parallel.last_rq; 1714 if (prev) { 1715 if (!__i915_request_is_complete(prev)) { 1716 i915_sw_fence_await_sw_fence(&rq->submit, 1717 &prev->submit, 1718 &rq->submitq); 1719 1720 if (rq->engine->sched_engine->schedule) 1721 __i915_sched_node_add_dependency(&rq->sched, 1722 &prev->sched, 1723 &rq->dep, 1724 0); 1725 } 1726 i915_request_put(prev); 1727 } 1728 1729 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1730 1731 return to_request(__i915_active_fence_set(&timeline->last_request, 1732 &rq->fence)); 1733 } 1734 1735 static struct i915_request * 1736 __i915_request_ensure_ordering(struct i915_request *rq, 1737 struct intel_timeline *timeline) 1738 { 1739 struct i915_request *prev; 1740 1741 GEM_BUG_ON(is_parallel_rq(rq)); 1742 1743 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1744 &rq->fence)); 1745 1746 if (prev && !__i915_request_is_complete(prev)) { 1747 bool uses_guc = intel_engine_uses_guc(rq->engine); 1748 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1749 rq->engine->mask); 1750 bool same_context = prev->context == rq->context; 1751 1752 /* 1753 * The requests are supposed to be kept in order. However, 1754 * we need to be wary in case the timeline->last_request 1755 * is used as a barrier for external modification to this 1756 * context. 1757 */ 1758 GEM_BUG_ON(same_context && 1759 i915_seqno_passed(prev->fence.seqno, 1760 rq->fence.seqno)); 1761 1762 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1763 i915_sw_fence_await_sw_fence(&rq->submit, 1764 &prev->submit, 1765 &rq->submitq); 1766 else 1767 __i915_sw_fence_await_dma_fence(&rq->submit, 1768 &prev->fence, 1769 &rq->dmaq); 1770 if (rq->engine->sched_engine->schedule) 1771 __i915_sched_node_add_dependency(&rq->sched, 1772 &prev->sched, 1773 &rq->dep, 1774 0); 1775 } 1776 1777 return prev; 1778 } 1779 1780 static struct i915_request * 1781 __i915_request_add_to_timeline(struct i915_request *rq) 1782 { 1783 struct intel_timeline *timeline = i915_request_timeline(rq); 1784 struct i915_request *prev; 1785 1786 /* 1787 * Dependency tracking and request ordering along the timeline 1788 * is special cased so that we can eliminate redundant ordering 1789 * operations while building the request (we know that the timeline 1790 * itself is ordered, and here we guarantee it). 1791 * 1792 * As we know we will need to emit tracking along the timeline, 1793 * we embed the hooks into our request struct -- at the cost of 1794 * having to have specialised no-allocation interfaces (which will 1795 * be beneficial elsewhere). 1796 * 1797 * A second benefit to open-coding i915_request_await_request is 1798 * that we can apply a slight variant of the rules specialised 1799 * for timelines that jump between engines (such as virtual engines). 1800 * If we consider the case of virtual engine, we must emit a dma-fence 1801 * to prevent scheduling of the second request until the first is 1802 * complete (to maximise our greedy late load balancing) and this 1803 * precludes optimising to use semaphores serialisation of a single 1804 * timeline across engines. 1805 * 1806 * We do not order parallel submission requests on the timeline as each 1807 * parallel submission context has its own timeline and the ordering 1808 * rules for parallel requests are that they must be submitted in the 1809 * order received from the execbuf IOCTL. So rather than using the 1810 * timeline we store a pointer to last request submitted in the 1811 * relationship in the gem context and insert a submission fence 1812 * between that request and request passed into this function or 1813 * alternatively we use completion fence if gem context has a single 1814 * timeline and this is the first submission of an execbuf IOCTL. 1815 */ 1816 if (likely(!is_parallel_rq(rq))) 1817 prev = __i915_request_ensure_ordering(rq, timeline); 1818 else 1819 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1820 1821 /* 1822 * Make sure that no request gazumped us - if it was allocated after 1823 * our i915_request_alloc() and called __i915_request_add() before 1824 * us, the timeline will hold its seqno which is later than ours. 1825 */ 1826 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1827 1828 return prev; 1829 } 1830 1831 /* 1832 * NB: This function is not allowed to fail. Doing so would mean the the 1833 * request is not being tracked for completion but the work itself is 1834 * going to happen on the hardware. This would be a Bad Thing(tm). 1835 */ 1836 struct i915_request *__i915_request_commit(struct i915_request *rq) 1837 { 1838 struct intel_engine_cs *engine = rq->engine; 1839 struct intel_ring *ring = rq->ring; 1840 u32 *cs; 1841 1842 RQ_TRACE(rq, "\n"); 1843 1844 /* 1845 * To ensure that this call will not fail, space for its emissions 1846 * should already have been reserved in the ring buffer. Let the ring 1847 * know that it is time to use that space up. 1848 */ 1849 GEM_BUG_ON(rq->reserved_space > ring->space); 1850 rq->reserved_space = 0; 1851 rq->emitted_jiffies = jiffies; 1852 1853 /* 1854 * Record the position of the start of the breadcrumb so that 1855 * should we detect the updated seqno part-way through the 1856 * GPU processing the request, we never over-estimate the 1857 * position of the ring's HEAD. 1858 */ 1859 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1860 GEM_BUG_ON(IS_ERR(cs)); 1861 rq->postfix = intel_ring_offset(rq, cs); 1862 1863 return __i915_request_add_to_timeline(rq); 1864 } 1865 1866 void __i915_request_queue_bh(struct i915_request *rq) 1867 { 1868 i915_sw_fence_commit(&rq->semaphore); 1869 i915_sw_fence_commit(&rq->submit); 1870 } 1871 1872 void __i915_request_queue(struct i915_request *rq, 1873 const struct i915_sched_attr *attr) 1874 { 1875 /* 1876 * Let the backend know a new request has arrived that may need 1877 * to adjust the existing execution schedule due to a high priority 1878 * request - i.e. we may want to preempt the current request in order 1879 * to run a high priority dependency chain *before* we can execute this 1880 * request. 1881 * 1882 * This is called before the request is ready to run so that we can 1883 * decide whether to preempt the entire chain so that it is ready to 1884 * run at the earliest possible convenience. 1885 */ 1886 if (attr && rq->engine->sched_engine->schedule) 1887 rq->engine->sched_engine->schedule(rq, attr); 1888 1889 local_bh_disable(); 1890 __i915_request_queue_bh(rq); 1891 local_bh_enable(); /* kick tasklets */ 1892 } 1893 1894 void i915_request_add(struct i915_request *rq) 1895 { 1896 struct intel_timeline * const tl = i915_request_timeline(rq); 1897 struct i915_sched_attr attr = {}; 1898 struct i915_gem_context *ctx; 1899 1900 lockdep_assert_held(&tl->mutex); 1901 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1902 1903 trace_i915_request_add(rq); 1904 __i915_request_commit(rq); 1905 1906 /* XXX placeholder for selftests */ 1907 rcu_read_lock(); 1908 ctx = rcu_dereference(rq->context->gem_context); 1909 if (ctx) 1910 attr = ctx->sched; 1911 rcu_read_unlock(); 1912 1913 __i915_request_queue(rq, &attr); 1914 1915 mutex_unlock(&tl->mutex); 1916 } 1917 1918 static unsigned long local_clock_ns(unsigned int *cpu) 1919 { 1920 unsigned long t; 1921 1922 /* 1923 * Cheaply and approximately convert from nanoseconds to microseconds. 1924 * The result and subsequent calculations are also defined in the same 1925 * approximate microseconds units. The principal source of timing 1926 * error here is from the simple truncation. 1927 * 1928 * Note that local_clock() is only defined wrt to the current CPU; 1929 * the comparisons are no longer valid if we switch CPUs. Instead of 1930 * blocking preemption for the entire busywait, we can detect the CPU 1931 * switch and use that as indicator of system load and a reason to 1932 * stop busywaiting, see busywait_stop(). 1933 */ 1934 *cpu = get_cpu(); 1935 t = local_clock(); 1936 put_cpu(); 1937 1938 return t; 1939 } 1940 1941 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1942 { 1943 unsigned int this_cpu; 1944 1945 if (time_after(local_clock_ns(&this_cpu), timeout)) 1946 return true; 1947 1948 return this_cpu != cpu; 1949 } 1950 1951 static bool __i915_spin_request(struct i915_request * const rq, int state) 1952 { 1953 unsigned long timeout_ns; 1954 unsigned int cpu; 1955 1956 /* 1957 * Only wait for the request if we know it is likely to complete. 1958 * 1959 * We don't track the timestamps around requests, nor the average 1960 * request length, so we do not have a good indicator that this 1961 * request will complete within the timeout. What we do know is the 1962 * order in which requests are executed by the context and so we can 1963 * tell if the request has been started. If the request is not even 1964 * running yet, it is a fair assumption that it will not complete 1965 * within our relatively short timeout. 1966 */ 1967 if (!i915_request_is_running(rq)) 1968 return false; 1969 1970 /* 1971 * When waiting for high frequency requests, e.g. during synchronous 1972 * rendering split between the CPU and GPU, the finite amount of time 1973 * required to set up the irq and wait upon it limits the response 1974 * rate. By busywaiting on the request completion for a short while we 1975 * can service the high frequency waits as quick as possible. However, 1976 * if it is a slow request, we want to sleep as quickly as possible. 1977 * The tradeoff between waiting and sleeping is roughly the time it 1978 * takes to sleep on a request, on the order of a microsecond. 1979 */ 1980 1981 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1982 timeout_ns += local_clock_ns(&cpu); 1983 do { 1984 if (dma_fence_is_signaled(&rq->fence)) 1985 return true; 1986 1987 if (signal_pending_state(state, current)) 1988 break; 1989 1990 if (busywait_stop(timeout_ns, cpu)) 1991 break; 1992 1993 cpu_relax(); 1994 } while (!drm_need_resched()); 1995 1996 return false; 1997 } 1998 1999 struct request_wait { 2000 struct dma_fence_cb cb; 2001 #ifdef __linux__ 2002 struct task_struct *tsk; 2003 #else 2004 struct proc *tsk; 2005 #endif 2006 }; 2007 2008 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 2009 { 2010 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 2011 2012 wake_up_process(fetch_and_zero(&wait->tsk)); 2013 } 2014 2015 /** 2016 * i915_request_wait_timeout - wait until execution of request has finished 2017 * @rq: the request to wait upon 2018 * @flags: how to wait 2019 * @timeout: how long to wait in jiffies 2020 * 2021 * i915_request_wait_timeout() waits for the request to be completed, for a 2022 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2023 * unbounded wait). 2024 * 2025 * Returns the remaining time (in jiffies) if the request completed, which may 2026 * be zero if the request is unfinished after the timeout expires. 2027 * If the timeout is 0, it will return 1 if the fence is signaled. 2028 * 2029 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2030 * pending before the request completes. 2031 * 2032 * NOTE: This function has the same wait semantics as dma-fence. 2033 */ 2034 long i915_request_wait_timeout(struct i915_request *rq, 2035 unsigned int flags, 2036 long timeout) 2037 { 2038 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 2039 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 2040 struct request_wait wait; 2041 2042 might_sleep(); 2043 GEM_BUG_ON(timeout < 0); 2044 2045 if (dma_fence_is_signaled(&rq->fence)) 2046 return timeout ?: 1; 2047 2048 if (!timeout) 2049 return -ETIME; 2050 2051 trace_i915_request_wait_begin(rq, flags); 2052 2053 /* 2054 * We must never wait on the GPU while holding a lock as we 2055 * may need to perform a GPU reset. So while we don't need to 2056 * serialise wait/reset with an explicit lock, we do want 2057 * lockdep to detect potential dependency cycles. 2058 */ 2059 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 2060 2061 /* 2062 * Optimistic spin before touching IRQs. 2063 * 2064 * We may use a rather large value here to offset the penalty of 2065 * switching away from the active task. Frequently, the client will 2066 * wait upon an old swapbuffer to throttle itself to remain within a 2067 * frame of the gpu. If the client is running in lockstep with the gpu, 2068 * then it should not be waiting long at all, and a sleep now will incur 2069 * extra scheduler latency in producing the next frame. To try to 2070 * avoid adding the cost of enabling/disabling the interrupt to the 2071 * short wait, we first spin to see if the request would have completed 2072 * in the time taken to setup the interrupt. 2073 * 2074 * We need upto 5us to enable the irq, and upto 20us to hide the 2075 * scheduler latency of a context switch, ignoring the secondary 2076 * impacts from a context switch such as cache eviction. 2077 * 2078 * The scheme used for low-latency IO is called "hybrid interrupt 2079 * polling". The suggestion there is to sleep until just before you 2080 * expect to be woken by the device interrupt and then poll for its 2081 * completion. That requires having a good predictor for the request 2082 * duration, which we currently lack. 2083 */ 2084 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 2085 __i915_spin_request(rq, state)) 2086 goto out; 2087 2088 /* 2089 * This client is about to stall waiting for the GPU. In many cases 2090 * this is undesirable and limits the throughput of the system, as 2091 * many clients cannot continue processing user input/output whilst 2092 * blocked. RPS autotuning may take tens of milliseconds to respond 2093 * to the GPU load and thus incurs additional latency for the client. 2094 * We can circumvent that by promoting the GPU frequency to maximum 2095 * before we sleep. This makes the GPU throttle up much more quickly 2096 * (good for benchmarks and user experience, e.g. window animations), 2097 * but at a cost of spending more power processing the workload 2098 * (bad for battery). 2099 */ 2100 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2101 intel_rps_boost(rq); 2102 2103 #ifdef __linux__ 2104 wait.tsk = current; 2105 #else 2106 wait.tsk = curproc; 2107 #endif 2108 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2109 goto out; 2110 2111 /* 2112 * Flush the submission tasklet, but only if it may help this request. 2113 * 2114 * We sometimes experience some latency between the HW interrupts and 2115 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2116 * be due to lazy CS events), so lets run the tasklet manually if there 2117 * is a chance it may submit this request. If the request is not ready 2118 * to run, as it is waiting for other fences to be signaled, flushing 2119 * the tasklet is busy work without any advantage for this client. 2120 * 2121 * If the HW is being lazy, this is the last chance before we go to 2122 * sleep to catch any pending events. We will check periodically in 2123 * the heartbeat to flush the submission tasklets as a last resort 2124 * for unhappy HW. 2125 */ 2126 if (i915_request_is_ready(rq)) 2127 __intel_engine_flush_submission(rq->engine, false); 2128 2129 for (;;) { 2130 set_current_state(state); 2131 2132 if (dma_fence_is_signaled(&rq->fence)) 2133 break; 2134 2135 if (signal_pending_state(state, current)) { 2136 timeout = -ERESTARTSYS; 2137 break; 2138 } 2139 2140 if (!timeout) { 2141 timeout = -ETIME; 2142 break; 2143 } 2144 2145 timeout = io_schedule_timeout(timeout); 2146 } 2147 __set_current_state(TASK_RUNNING); 2148 2149 if (READ_ONCE(wait.tsk)) 2150 dma_fence_remove_callback(&rq->fence, &wait.cb); 2151 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2152 2153 out: 2154 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2155 trace_i915_request_wait_end(rq); 2156 return timeout; 2157 } 2158 2159 /** 2160 * i915_request_wait - wait until execution of request has finished 2161 * @rq: the request to wait upon 2162 * @flags: how to wait 2163 * @timeout: how long to wait in jiffies 2164 * 2165 * i915_request_wait() waits for the request to be completed, for a 2166 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2167 * unbounded wait). 2168 * 2169 * Returns the remaining time (in jiffies) if the request completed, which may 2170 * be zero or -ETIME if the request is unfinished after the timeout expires. 2171 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2172 * pending before the request completes. 2173 * 2174 * NOTE: This function behaves differently from dma-fence wait semantics for 2175 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2176 */ 2177 long i915_request_wait(struct i915_request *rq, 2178 unsigned int flags, 2179 long timeout) 2180 { 2181 long ret = i915_request_wait_timeout(rq, flags, timeout); 2182 2183 if (!ret) 2184 return -ETIME; 2185 2186 if (ret > 0 && !timeout) 2187 return 0; 2188 2189 return ret; 2190 } 2191 2192 static int print_sched_attr(const struct i915_sched_attr *attr, 2193 char *buf, int x, int len) 2194 { 2195 if (attr->priority == I915_PRIORITY_INVALID) 2196 return x; 2197 2198 x += snprintf(buf + x, len - x, 2199 " prio=%d", attr->priority); 2200 2201 return x; 2202 } 2203 2204 static char queue_status(const struct i915_request *rq) 2205 { 2206 if (i915_request_is_active(rq)) 2207 return 'E'; 2208 2209 if (i915_request_is_ready(rq)) 2210 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2211 2212 return 'U'; 2213 } 2214 2215 static const char *run_status(const struct i915_request *rq) 2216 { 2217 if (__i915_request_is_complete(rq)) 2218 return "!"; 2219 2220 if (__i915_request_has_started(rq)) 2221 return "*"; 2222 2223 if (!i915_sw_fence_signaled(&rq->semaphore)) 2224 return "&"; 2225 2226 return ""; 2227 } 2228 2229 static const char *fence_status(const struct i915_request *rq) 2230 { 2231 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2232 return "+"; 2233 2234 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2235 return "-"; 2236 2237 return ""; 2238 } 2239 2240 void i915_request_show(struct drm_printer *m, 2241 const struct i915_request *rq, 2242 const char *prefix, 2243 int indent) 2244 { 2245 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2246 char buf[80] = ""; 2247 int x = 0; 2248 2249 /* 2250 * The prefix is used to show the queue status, for which we use 2251 * the following flags: 2252 * 2253 * U [Unready] 2254 * - initial status upon being submitted by the user 2255 * 2256 * - the request is not ready for execution as it is waiting 2257 * for external fences 2258 * 2259 * R [Ready] 2260 * - all fences the request was waiting on have been signaled, 2261 * and the request is now ready for execution and will be 2262 * in a backend queue 2263 * 2264 * - a ready request may still need to wait on semaphores 2265 * [internal fences] 2266 * 2267 * V [Ready/virtual] 2268 * - same as ready, but queued over multiple backends 2269 * 2270 * E [Executing] 2271 * - the request has been transferred from the backend queue and 2272 * submitted for execution on HW 2273 * 2274 * - a completed request may still be regarded as executing, its 2275 * status may not be updated until it is retired and removed 2276 * from the lists 2277 */ 2278 2279 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2280 2281 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2282 prefix, indent, " ", 2283 queue_status(rq), 2284 rq->fence.context, rq->fence.seqno, 2285 run_status(rq), 2286 fence_status(rq), 2287 buf, 2288 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2289 name); 2290 } 2291 2292 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2293 { 2294 u32 ring = ENGINE_READ(engine, RING_START); 2295 2296 return ring == i915_ggtt_offset(rq->ring->vma); 2297 } 2298 2299 static bool match_ring(struct i915_request *rq) 2300 { 2301 struct intel_engine_cs *engine; 2302 bool found; 2303 int i; 2304 2305 if (!intel_engine_is_virtual(rq->engine)) 2306 return engine_match_ring(rq->engine, rq); 2307 2308 found = false; 2309 i = 0; 2310 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2311 found = engine_match_ring(engine, rq); 2312 if (found) 2313 break; 2314 } 2315 2316 return found; 2317 } 2318 2319 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2320 { 2321 if (i915_request_completed(rq)) 2322 return I915_REQUEST_COMPLETE; 2323 2324 if (!i915_request_started(rq)) 2325 return I915_REQUEST_PENDING; 2326 2327 if (match_ring(rq)) 2328 return I915_REQUEST_ACTIVE; 2329 2330 return I915_REQUEST_QUEUED; 2331 } 2332 2333 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2334 #include "selftests/mock_request.c" 2335 #include "selftests/i915_request.c" 2336 #endif 2337 2338 void i915_request_module_exit(void) 2339 { 2340 #ifdef __linux__ 2341 kmem_cache_destroy(slab_execute_cbs); 2342 kmem_cache_destroy(slab_requests); 2343 #else 2344 pool_destroy(&slab_execute_cbs); 2345 pool_destroy(&slab_requests); 2346 #endif 2347 } 2348 2349 int __init i915_request_module_init(void) 2350 { 2351 #ifdef __linux__ 2352 slab_requests = 2353 kmem_cache_create("i915_request", 2354 sizeof(struct i915_request), 2355 __alignof__(struct i915_request), 2356 SLAB_HWCACHE_ALIGN | 2357 SLAB_RECLAIM_ACCOUNT | 2358 SLAB_TYPESAFE_BY_RCU, 2359 __i915_request_ctor); 2360 if (!slab_requests) 2361 return -ENOMEM; 2362 2363 slab_execute_cbs = KMEM_CACHE(execute_cb, 2364 SLAB_HWCACHE_ALIGN | 2365 SLAB_RECLAIM_ACCOUNT | 2366 SLAB_TYPESAFE_BY_RCU); 2367 if (!slab_execute_cbs) 2368 goto err_requests; 2369 #else 2370 pool_init(&slab_requests, sizeof(struct i915_request), 2371 CACHELINESIZE, IPL_TTY, 0, "i915_request", NULL); 2372 pool_init(&slab_execute_cbs, sizeof(struct execute_cb), 2373 CACHELINESIZE, IPL_TTY, 0, "i915_exec", NULL); 2374 #endif 2375 2376 return 0; 2377 2378 #ifdef __linux__ 2379 err_requests: 2380 kmem_cache_destroy(slab_requests); 2381 return -ENOMEM; 2382 #endif 2383 } 2384