xref: /openbsd-src/sys/dev/ic/gem.c (revision 25dd4fad4baac76e8b9900c032bf28158209398e)
1 /*	$OpenBSD: gem.c,v 1.10 2001/10/02 15:24:09 jason Exp $	*/
2 /*	$NetBSD: gem.c,v 1.1 2001/09/16 00:11:43 eeh Exp $ */
3 
4 /*
5  *
6  * Copyright (C) 2001 Eduardo Horvath.
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Sun GEM ethernet controllers.
35  */
36 
37 #include "bpfilter.h"
38 #include "vlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/timeout.h>
43 #include <sys/mbuf.h>
44 #include <sys/syslog.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 
52 #include <machine/endian.h>
53 
54 #include <vm/vm.h>
55 #include <uvm/uvm_extern.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #endif
65 
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69 
70 #if NVLAN > 0
71 #include <net/if_vlan_var.h>
72 #endif
73 
74 #include <machine/bus.h>
75 #include <machine/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 struct cfdriver gem_cd = {
87 	NULL, "gem", DV_IFNET
88 };
89 
90 void		gem_start __P((struct ifnet *));
91 void		gem_stop __P((struct ifnet *, int));
92 int		gem_ioctl __P((struct ifnet *, u_long, caddr_t));
93 void		gem_tick __P((void *));
94 void		gem_watchdog __P((struct ifnet *));
95 void		gem_shutdown __P((void *));
96 int		gem_init __P((struct ifnet *));
97 void		gem_init_regs(struct gem_softc *sc);
98 static int	gem_ringsize(int sz);
99 int		gem_meminit __P((struct gem_softc *));
100 void		gem_mifinit __P((struct gem_softc *));
101 void		gem_reset __P((struct gem_softc *));
102 int		gem_reset_rx(struct gem_softc *sc);
103 int		gem_reset_tx(struct gem_softc *sc);
104 int		gem_disable_rx(struct gem_softc *sc);
105 int		gem_disable_tx(struct gem_softc *sc);
106 void		gem_rxdrain(struct gem_softc *sc);
107 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
108 void		gem_setladrf __P((struct gem_softc *));
109 
110 /* MII methods & callbacks */
111 static int	gem_mii_readreg __P((struct device *, int, int));
112 static void	gem_mii_writereg __P((struct device *, int, int, int));
113 static void	gem_mii_statchg __P((struct device *));
114 
115 int		gem_mediachange __P((struct ifnet *));
116 void		gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
117 
118 struct mbuf	*gem_get __P((struct gem_softc *, int, int));
119 int		gem_put __P((struct gem_softc *, int, struct mbuf *));
120 void		gem_read __P((struct gem_softc *, int, int));
121 int		gem_eint __P((struct gem_softc *, u_int));
122 int		gem_rint __P((struct gem_softc *));
123 int		gem_tint __P((struct gem_softc *));
124 void		gem_power __P((int, void *));
125 
126 static int	ether_cmp __P((u_char *, u_char *));
127 
128 #ifdef GEM_DEBUG
129 #define	DPRINTF(sc, x)	if ((sc)->sc_arpcom.ac_if.if_flags & IFF_DEBUG) \
130 				printf x
131 #else
132 #define	DPRINTF(sc, x)	/* nothing */
133 #endif
134 
135 
136 /*
137  * gem_config:
138  *
139  *	Attach a Gem interface to the system.
140  */
141 void
142 gem_config(sc)
143 	struct gem_softc *sc;
144 {
145 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
146 	struct mii_data *mii = &sc->sc_mii;
147 	struct mii_softc *child;
148 	int i, error;
149 
150 	bcopy(sc->sc_enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
151 
152 	/* Make sure the chip is stopped. */
153 	ifp->if_softc = sc;
154 	gem_reset(sc);
155 
156 	/*
157 	 * Allocate the control data structures, and create and load the
158 	 * DMA map for it.
159 	 */
160 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
161 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
162 	    1, &sc->sc_cdnseg, 0)) != 0) {
163 		printf("%s: unable to allocate control data, error = %d\n",
164 		    sc->sc_dev.dv_xname, error);
165 		goto fail_0;
166 	}
167 
168 	/* XXX should map this in with correct endianness */
169 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
170 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
171 	    BUS_DMA_COHERENT)) != 0) {
172 		printf("%s: unable to map control data, error = %d\n",
173 		    sc->sc_dev.dv_xname, error);
174 		goto fail_1;
175 	}
176 
177 	if ((error = bus_dmamap_create(sc->sc_dmatag,
178 	    sizeof(struct gem_control_data), 1,
179 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
180 		printf("%s: unable to create control data DMA map, "
181 		    "error = %d\n", sc->sc_dev.dv_xname, error);
182 		goto fail_2;
183 	}
184 
185 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
186 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
187 	    0)) != 0) {
188 		printf("%s: unable to load control data DMA map, error = %d\n",
189 		    sc->sc_dev.dv_xname, error);
190 		goto fail_3;
191 	}
192 
193 	/*
194 	 * Initialize the transmit job descriptors.
195 	 */
196 	SIMPLEQ_INIT(&sc->sc_txfreeq);
197 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
198 
199 	/*
200 	 * Create the transmit buffer DMA maps.
201 	 */
202 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
203 		struct gem_txsoft *txs;
204 
205 		txs = &sc->sc_txsoft[i];
206 		txs->txs_mbuf = NULL;
207 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
208 		    GEM_NTXSEGS, MCLBYTES, 0, 0,
209 		    &txs->txs_dmamap)) != 0) {
210 			printf("%s: unable to create tx DMA map %d, "
211 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
212 			goto fail_4;
213 		}
214 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
215 	}
216 
217 	/*
218 	 * Create the receive buffer DMA maps.
219 	 */
220 	for (i = 0; i < GEM_NRXDESC; i++) {
221 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
222 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
223 			printf("%s: unable to create rx DMA map %d, "
224 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
225 			goto fail_5;
226 		}
227 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
228 	}
229 
230 	/*
231 	 * From this point forward, the attachment cannot fail.  A failure
232 	 * before this point releases all resources that may have been
233 	 * allocated.
234 	 */
235 
236 	/* Announce ourselves. */
237 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
238 	    ether_sprintf(sc->sc_enaddr));
239 
240 	/* Initialize ifnet structure. */
241 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
242 	ifp->if_softc = sc;
243 	ifp->if_flags =
244 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
245 	ifp->if_start = gem_start;
246 	ifp->if_ioctl = gem_ioctl;
247 	ifp->if_watchdog = gem_watchdog;
248 	IFQ_SET_READY(&ifp->if_snd);
249 
250 	/* Initialize ifmedia structures and MII info */
251 	mii->mii_ifp = ifp;
252 	mii->mii_readreg = gem_mii_readreg;
253 	mii->mii_writereg = gem_mii_writereg;
254 	mii->mii_statchg = gem_mii_statchg;
255 
256 	ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
257 
258 	gem_mifinit(sc);
259 
260 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
261 			MII_PHY_ANY, MII_OFFSET_ANY, 0);
262 
263 	child = LIST_FIRST(&mii->mii_phys);
264 	if (child == NULL) {
265 		/* No PHY attached */
266 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
267 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
268 	} else {
269 		/*
270 		 * Walk along the list of attached MII devices and
271 		 * establish an `MII instance' to `phy number'
272 		 * mapping. We'll use this mapping in media change
273 		 * requests to determine which phy to use to program
274 		 * the MIF configuration register.
275 		 */
276 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
277 			/*
278 			 * Note: we support just two PHYs: the built-in
279 			 * internal device and an external on the MII
280 			 * connector.
281 			 */
282 			if (child->mii_phy > 1 || child->mii_inst > 1) {
283 				printf("%s: cannot accomodate MII device %s"
284 				       " at phy %d, instance %d\n",
285 				       sc->sc_dev.dv_xname,
286 				       child->mii_dev.dv_xname,
287 				       child->mii_phy, child->mii_inst);
288 				continue;
289 			}
290 
291 			sc->sc_phys[child->mii_inst] = child->mii_phy;
292 		}
293 
294 		/*
295 		 * Now select and activate the PHY we will use.
296 		 *
297 		 * The order of preference is External (MDI1),
298 		 * Internal (MDI0), Serial Link (no MII).
299 		 */
300 		if (sc->sc_phys[1]) {
301 #ifdef DEBUG
302 			printf("using external phy\n");
303 #endif
304 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
305 		} else {
306 #ifdef DEBUG
307 			printf("using internal phy\n");
308 #endif
309 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
310 		}
311 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
312 			sc->sc_mif_config);
313 
314 		/*
315 		 * XXX - we can really do the following ONLY if the
316 		 * phy indeed has the auto negotiation capability!!
317 		 */
318 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
319 	}
320 
321 	/* Attach the interface. */
322 	if_attach(ifp);
323 	ether_ifattach(ifp);
324 
325 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
326 	if (sc->sc_sh == NULL)
327 		panic("gem_config: can't establish shutdownhook");
328 
329 	timeout_set(&sc->sc_tick_ch, gem_tick, sc);
330 	return;
331 
332 	/*
333 	 * Free any resources we've allocated during the failed attach
334 	 * attempt.  Do this in reverse order and fall through.
335 	 */
336  fail_5:
337 	for (i = 0; i < GEM_NRXDESC; i++) {
338 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
339 			bus_dmamap_destroy(sc->sc_dmatag,
340 			    sc->sc_rxsoft[i].rxs_dmamap);
341 	}
342  fail_4:
343 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
344 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
345 			bus_dmamap_destroy(sc->sc_dmatag,
346 			    sc->sc_txsoft[i].txs_dmamap);
347 	}
348 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
349  fail_3:
350 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
351  fail_2:
352 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
353 	    sizeof(struct gem_control_data));
354  fail_1:
355 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
356  fail_0:
357 	return;
358 }
359 
360 
361 void
362 gem_tick(arg)
363 	void *arg;
364 {
365 	struct gem_softc *sc = arg;
366 	int s;
367 
368 	s = splimp();
369 	mii_tick(&sc->sc_mii);
370 	splx(s);
371 
372 	timeout_add(&sc->sc_tick_ch, hz);
373 }
374 
375 void
376 gem_reset(sc)
377 	struct gem_softc *sc;
378 {
379 	bus_space_tag_t t = sc->sc_bustag;
380 	bus_space_handle_t h = sc->sc_h;
381 	int i;
382 	int s;
383 
384 	s = splimp();
385 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
386 	gem_reset_rx(sc);
387 	gem_reset_tx(sc);
388 
389 	/* Do a full reset */
390 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
391 	for (i=TRIES; i--; delay(100))
392 		if ((bus_space_read_4(t, h, GEM_RESET) &
393 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
394 			break;
395 	if ((bus_space_read_4(t, h, GEM_RESET) &
396 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
397 		printf("%s: cannot reset device\n",
398 			sc->sc_dev.dv_xname);
399 	}
400 	splx(s);
401 }
402 
403 
404 /*
405  * gem_rxdrain:
406  *
407  *	Drain the receive queue.
408  */
409 void
410 gem_rxdrain(struct gem_softc *sc)
411 {
412 	struct gem_rxsoft *rxs;
413 	int i;
414 
415 	for (i = 0; i < GEM_NRXDESC; i++) {
416 		rxs = &sc->sc_rxsoft[i];
417 		if (rxs->rxs_mbuf != NULL) {
418 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
419 			m_freem(rxs->rxs_mbuf);
420 			rxs->rxs_mbuf = NULL;
421 		}
422 	}
423 }
424 
425 /*
426  * Reset the whole thing.
427  */
428 void
429 gem_stop(struct ifnet *ifp, int disable)
430 {
431 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
432 	struct gem_txsoft *txs;
433 
434 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
435 
436 	timeout_del(&sc->sc_tick_ch);
437 	mii_down(&sc->sc_mii);
438 
439 	/* XXX - Should we reset these instead? */
440 	gem_disable_rx(sc);
441 	gem_disable_rx(sc);
442 
443 	/*
444 	 * Release any queued transmit buffers.
445 	 */
446 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
447 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
448 		if (txs->txs_mbuf != NULL) {
449 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
450 			m_freem(txs->txs_mbuf);
451 			txs->txs_mbuf = NULL;
452 		}
453 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
454 	}
455 
456 	if (disable) {
457 		gem_rxdrain(sc);
458 	}
459 
460 	/*
461 	 * Mark the interface down and cancel the watchdog timer.
462 	 */
463 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
464 	ifp->if_timer = 0;
465 }
466 
467 
468 /*
469  * Reset the receiver
470  */
471 int
472 gem_reset_rx(struct gem_softc *sc)
473 {
474 	bus_space_tag_t t = sc->sc_bustag;
475 	bus_space_handle_t h = sc->sc_h;
476 	int i;
477 
478 
479 	/*
480 	 * Resetting while DMA is in progress can cause a bus hang, so we
481 	 * disable DMA first.
482 	 */
483 	gem_disable_rx(sc);
484 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
485 	/* Wait till it finishes */
486 	for (i = TRIES; i--; delay(100))
487 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
488 			break;
489 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
490 		printf("%s: cannot disable read dma\n",
491 			sc->sc_dev.dv_xname);
492 
493 	/* Wait 5ms extra. */
494 	delay(5000);
495 
496 	/* Finally, reset the ERX */
497 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
498 	/* Wait till it finishes */
499 	for (i = TRIES; i--; delay(100))
500 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
501 			break;
502 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
503 		printf("%s: cannot reset receiver\n",
504 			sc->sc_dev.dv_xname);
505 		return (1);
506 	}
507 	return (0);
508 }
509 
510 
511 /*
512  * Reset the transmitter
513  */
514 int
515 gem_reset_tx(struct gem_softc *sc)
516 {
517 	bus_space_tag_t t = sc->sc_bustag;
518 	bus_space_handle_t h = sc->sc_h;
519 	int i;
520 
521 	/*
522 	 * Resetting while DMA is in progress can cause a bus hang, so we
523 	 * disable DMA first.
524 	 */
525 	gem_disable_tx(sc);
526 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
527 	/* Wait till it finishes */
528 	for (i = TRIES; i--; delay(100))
529 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
530 			break;
531 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
532 		printf("%s: cannot disable read dma\n",
533 			sc->sc_dev.dv_xname);
534 
535 	/* Wait 5ms extra. */
536 	delay(5000);
537 
538 	/* Finally, reset the ETX */
539 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
540 	/* Wait till it finishes */
541 	for (i = TRIES; i--; delay(100))
542 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
543 			break;
544 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
545 		printf("%s: cannot reset receiver\n",
546 			sc->sc_dev.dv_xname);
547 		return (1);
548 	}
549 	return (0);
550 }
551 
552 /*
553  * disable receiver.
554  */
555 int
556 gem_disable_rx(struct gem_softc *sc)
557 {
558 	bus_space_tag_t t = sc->sc_bustag;
559 	bus_space_handle_t h = sc->sc_h;
560 	int i;
561 	u_int32_t cfg;
562 
563 	/* Flip the enable bit */
564 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
565 	cfg &= ~GEM_MAC_RX_ENABLE;
566 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
567 
568 	/* Wait for it to finish */
569 	for (i = TRIES; i--; delay(100))
570 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
571 			GEM_MAC_RX_ENABLE) == 0)
572 			return (0);
573 	return (1);
574 }
575 
576 /*
577  * disable transmitter.
578  */
579 int
580 gem_disable_tx(struct gem_softc *sc)
581 {
582 	bus_space_tag_t t = sc->sc_bustag;
583 	bus_space_handle_t h = sc->sc_h;
584 	int i;
585 	u_int32_t cfg;
586 
587 	/* Flip the enable bit */
588 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
589 	cfg &= ~GEM_MAC_TX_ENABLE;
590 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
591 
592 	/* Wait for it to finish */
593 	for (i = TRIES; i--; delay(100))
594 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
595 			GEM_MAC_TX_ENABLE) == 0)
596 			return (0);
597 	return (1);
598 }
599 
600 /*
601  * Initialize interface.
602  */
603 int
604 gem_meminit(struct gem_softc *sc)
605 {
606 	struct gem_rxsoft *rxs;
607 	int i, error;
608 
609 	/*
610 	 * Initialize the transmit descriptor ring.
611 	 */
612 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
613 	for (i = 0; i < GEM_NTXDESC; i++) {
614 		sc->sc_txdescs[i].gd_flags = 0;
615 		sc->sc_txdescs[i].gd_addr = 0;
616 	}
617 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
618 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
619 	sc->sc_txfree = GEM_NTXDESC;
620 	sc->sc_txnext = 0;
621 
622 	/*
623 	 * Initialize the receive descriptor and receive job
624 	 * descriptor rings.
625 	 */
626 	for (i = 0; i < GEM_NRXDESC; i++) {
627 		rxs = &sc->sc_rxsoft[i];
628 		if (rxs->rxs_mbuf == NULL) {
629 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
630 				printf("%s: unable to allocate or map rx "
631 				    "buffer %d, error = %d\n",
632 				    sc->sc_dev.dv_xname, i, error);
633 				/*
634 				 * XXX Should attempt to run with fewer receive
635 				 * XXX buffers instead of just failing.
636 				 */
637 				gem_rxdrain(sc);
638 				return (1);
639 			}
640 		} else
641 			GEM_INIT_RXDESC(sc, i);
642 	}
643 	sc->sc_rxptr = 0;
644 
645 	return (0);
646 }
647 
648 static int
649 gem_ringsize(int sz)
650 {
651 	int v;
652 
653 	switch (sz) {
654 	case 32:
655 		v = GEM_RING_SZ_32;
656 		break;
657 	case 64:
658 		v = GEM_RING_SZ_64;
659 		break;
660 	case 128:
661 		v = GEM_RING_SZ_128;
662 		break;
663 	case 256:
664 		v = GEM_RING_SZ_256;
665 		break;
666 	case 512:
667 		v = GEM_RING_SZ_512;
668 		break;
669 	case 1024:
670 		v = GEM_RING_SZ_1024;
671 		break;
672 	case 2048:
673 		v = GEM_RING_SZ_2048;
674 		break;
675 	case 4096:
676 		v = GEM_RING_SZ_4096;
677 		break;
678 	case 8192:
679 		v = GEM_RING_SZ_8192;
680 		break;
681 	default:
682 		printf("gem: invalid Receive Descriptor ring size\n");
683 		break;
684 	}
685 	return (v);
686 }
687 
688 /*
689  * Initialization of interface; set up initialization block
690  * and transmit/receive descriptor rings.
691  */
692 int
693 gem_init(struct ifnet *ifp)
694 {
695 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
696 	bus_space_tag_t t = sc->sc_bustag;
697 	bus_space_handle_t h = sc->sc_h;
698 	int s;
699 	u_int32_t v;
700 
701 	s = splimp();
702 
703 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
704 	/*
705 	 * Initialization sequence. The numbered steps below correspond
706 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
707 	 * Channel Engine manual (part of the PCIO manual).
708 	 * See also the STP2002-STQ document from Sun Microsystems.
709 	 */
710 
711 	/* step 1 & 2. Reset the Ethernet Channel */
712 	gem_stop(ifp, 0);
713 	gem_reset(sc);
714 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
715 
716 	/* Re-initialize the MIF */
717 	gem_mifinit(sc);
718 
719 	/* Call MI reset function if any */
720 	if (sc->sc_hwreset)
721 		(*sc->sc_hwreset)(sc);
722 
723 	/* step 3. Setup data structures in host memory */
724 	gem_meminit(sc);
725 
726 	/* step 4. TX MAC registers & counters */
727 	gem_init_regs(sc);
728 	v = (GEM_MTU) | (0x2000 << 16) /* Burst size */;
729 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, v);
730 
731 	/* step 5. RX MAC registers & counters */
732 	gem_setladrf(sc);
733 
734 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
735 	bus_space_write_8(t, h, GEM_TX_RING_PTR,
736 		GEM_CDTXADDR(sc, 0));
737 	/* Yeeech.  The following has endianness issues. */
738 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
739 		(((uint64_t)GEM_CDRXADDR(sc, 0))>>32));
740 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO,
741 		GEM_CDRXADDR(sc, 0));
742 
743 	/* step 8. Global Configuration & Interrupt Mask */
744 	bus_space_write_4(t, h, GEM_INTMASK,
745 		      ~(GEM_INTR_TX_INTME|
746 			GEM_INTR_TX_EMPTY|
747 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
748 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
749 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
750 			GEM_INTR_BERR));
751 	bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
752 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
753 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
754 
755 	/* step 9. ETX Configuration: use mostly default values */
756 
757 	/* Enable DMA */
758 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
759 	bus_space_write_4(t, h, GEM_TX_CONFIG,
760 		v|GEM_TX_CONFIG_TXDMA_EN|
761 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
762 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
763 
764 	/* step 10. ERX Configuration */
765 
766 	/* Encode Receive Descriptor ring size: four possible values */
767 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
768 
769 	/* Enable DMA */
770 	bus_space_write_4(t, h, GEM_RX_CONFIG,
771 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
772 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
773 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
774 	/*
775 	 * The following value is for an OFF Threshold of about 15.5 Kbytes
776 	 * and an ON Threshold of 4K bytes.
777 	 */
778 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
779 	bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
780 
781 	/* step 11. Configure Media */
782 	gem_mii_statchg(&sc->sc_dev);
783 
784 	/* step 12. RX_MAC Configuration Register */
785 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
786 	v |= GEM_MAC_RX_ENABLE;
787 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
788 
789 	/* step 14. Issue Transmit Pending command */
790 
791 	/* Call MI initialization function if any */
792 	if (sc->sc_hwinit)
793 		(*sc->sc_hwinit)(sc);
794 
795 
796 	/* step 15.  Give the reciever a swift kick */
797 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
798 
799 	/* Start the one second timer. */
800 	timeout_add(&sc->sc_tick_ch, hz);
801 
802 	ifp->if_flags |= IFF_RUNNING;
803 	ifp->if_flags &= ~IFF_OACTIVE;
804 	ifp->if_timer = 0;
805 	splx(s);
806 
807 	return (0);
808 }
809 
810 /*
811  * Compare two Ether/802 addresses for equality, inlined and unrolled for
812  * speed.
813  */
814 static __inline__ int
815 ether_cmp(a, b)
816 	u_char *a, *b;
817 {
818 
819 	if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
820 	    a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
821 		return (0);
822 	return (1);
823 }
824 
825 
826 void
827 gem_init_regs(struct gem_softc *sc)
828 {
829 	bus_space_tag_t t = sc->sc_bustag;
830 	bus_space_handle_t h = sc->sc_h;
831 	u_int32_t v;
832 
833 	/* These regs are not cleared on reset */
834 	sc->sc_inited = 0;
835 	if (!sc->sc_inited) {
836 
837 		/* Wooo.  Magic values. */
838 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
839 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
840 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
841 
842 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
843 		/* Max frame and max burst size */
844 		v = (GEM_MTU) | (0x2000 << 16) /* Burst size */;
845 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, v);
846 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
847 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
848 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
849 		/* Dunno.... */
850 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
851 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
852 			((sc->sc_enaddr[5]<<8)|sc->sc_enaddr[4])&0x3ff);
853 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
854 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
855 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
856 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
857 		/* MAC control addr set to 0:1:c2:0:1:80 */
858 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
859 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
860 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
861 
862 		/* MAC filter addr set to 0:0:0:0:0:0 */
863 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
864 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
865 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
866 
867 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
868 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
869 
870 		sc->sc_inited = 1;
871 	}
872 
873 	/* Counters need to be zeroed */
874 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
875 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
876 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
877 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
878 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
879 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
880 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
881 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
882 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
883 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
884 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
885 
886 	/* Un-pause stuff */
887 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
888 
889 	/*
890 	 * Set the station address.
891 	 */
892 	bus_space_write_4(t, h, GEM_MAC_ADDR0,
893 		(sc->sc_enaddr[4]<<8) | sc->sc_enaddr[5]);
894 	bus_space_write_4(t, h, GEM_MAC_ADDR1,
895 		(sc->sc_enaddr[2]<<8) | sc->sc_enaddr[3]);
896 	bus_space_write_4(t, h, GEM_MAC_ADDR2,
897 		(sc->sc_enaddr[0]<<8) | sc->sc_enaddr[1]);
898 
899 }
900 
901 
902 
903 void
904 gem_start(ifp)
905 	struct ifnet *ifp;
906 {
907 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
908 	struct mbuf *m0, *m;
909 	struct gem_txsoft *txs, *last_txs;
910 	bus_dmamap_t dmamap;
911 	int error, firsttx, nexttx, lasttx, ofree, seg;
912 
913 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
914 		return;
915 
916 	/*
917 	 * Remember the previous number of free descriptors and
918 	 * the first descriptor we'll use.
919 	 */
920 	ofree = sc->sc_txfree;
921 	firsttx = sc->sc_txnext;
922 
923 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
924 	    sc->sc_dev.dv_xname, ofree, firsttx));
925 
926 	/*
927 	 * Loop through the send queue, setting up transmit descriptors
928 	 * until we drain the queue, or use up all available transmit
929 	 * descriptors.
930 	 */
931 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
932 	       sc->sc_txfree != 0) {
933 		/*
934 		 * Grab a packet off the queue.
935 		 */
936 		IFQ_POLL(&ifp->if_snd, m0);
937 		if (m0 == NULL)
938 			break;
939 		m = NULL;
940 
941 		dmamap = txs->txs_dmamap;
942 
943 		/*
944 		 * Load the DMA map.  If this fails, the packet either
945 		 * didn't fit in the alloted number of segments, or we were
946 		 * short on resources.  In this case, we'll copy and try
947 		 * again.
948 		 */
949 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
950 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
951 			MGETHDR(m, M_DONTWAIT, MT_DATA);
952 			if (m == NULL) {
953 				printf("%s: unable to allocate Tx mbuf\n",
954 				    sc->sc_dev.dv_xname);
955 				break;
956 			}
957 			if (m0->m_pkthdr.len > MHLEN) {
958 				MCLGET(m, M_DONTWAIT);
959 				if ((m->m_flags & M_EXT) == 0) {
960 					printf("%s: unable to allocate Tx "
961 					    "cluster\n", sc->sc_dev.dv_xname);
962 					m_freem(m);
963 					break;
964 				}
965 			}
966 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
967 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
968 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
969 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
970 			if (error) {
971 				printf("%s: unable to load Tx buffer, "
972 				    "error = %d\n", sc->sc_dev.dv_xname, error);
973 				break;
974 			}
975 		}
976 
977 		/*
978 		 * Ensure we have enough descriptors free to describe
979 		 * the packet.
980 		 */
981 		if (dmamap->dm_nsegs > sc->sc_txfree) {
982 			/*
983 			 * Not enough free descriptors to transmit this
984 			 * packet.  We haven't committed to anything yet,
985 			 * so just unload the DMA map, put the packet
986 			 * back on the queue, and punt.  Notify the upper
987 			 * layer that there are no more slots left.
988 			 *
989 			 * XXX We could allocate an mbuf and copy, but
990 			 * XXX it is worth it?
991 			 */
992 			ifp->if_flags |= IFF_OACTIVE;
993 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
994 			if (m != NULL)
995 				m_freem(m);
996 			break;
997 		}
998 
999 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1000 		if (m != NULL) {
1001 			m_freem(m0);
1002 			m0 = m;
1003 		}
1004 
1005 		/*
1006 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1007 		 */
1008 
1009 		/* Sync the DMA map. */
1010 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1011 		    BUS_DMASYNC_PREWRITE);
1012 
1013 		/*
1014 		 * Initialize the transmit descriptors.
1015 		 */
1016 		for (nexttx = sc->sc_txnext, seg = 0;
1017 		     seg < dmamap->dm_nsegs;
1018 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1019 			uint64_t flags;
1020 
1021 			/*
1022 			 * If this is the first descriptor we're
1023 			 * enqueueing, set the start of packet flag,
1024 			 * and the checksum stuff if we want the hardware
1025 			 * to do it.
1026 			 */
1027 			sc->sc_txdescs[nexttx].gd_addr =
1028 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1029 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1030 			if (nexttx == firsttx)
1031 				flags |= GEM_TD_START_OF_PACKET;
1032 			if (seg == dmamap->dm_nsegs - 1)
1033 				flags |= GEM_TD_END_OF_PACKET;
1034 			sc->sc_txdescs[nexttx].gd_flags =
1035 				GEM_DMA_WRITE(sc, flags);
1036 			lasttx = nexttx;
1037 		}
1038 
1039 #ifdef GEM_DEBUG
1040 		if (ifp->if_flags & IFF_DEBUG) {
1041 			printf("     gem_start %p transmit chain:\n", txs);
1042 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1043 				printf("descriptor %d:\t", seg);
1044 				printf("gd_flags:   0x%016llx\t", (long long)
1045 				    GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1046 				printf("gd_addr: 0x%016llx\n", (long long)
1047 				    GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1048 				if (seg == lasttx)
1049 					break;
1050 			}
1051 		}
1052 #endif
1053 
1054 		/* Sync the descriptors we're using. */
1055 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1056 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1057 
1058 		/*
1059 		 * Store a pointer to the packet so we can free it later,
1060 		 * and remember what txdirty will be once the packet is
1061 		 * done.
1062 		 */
1063 		txs->txs_mbuf = m0;
1064 		txs->txs_firstdesc = sc->sc_txnext;
1065 		txs->txs_lastdesc = lasttx;
1066 		txs->txs_ndescs = dmamap->dm_nsegs;
1067 
1068 		/* Advance the tx pointer. */
1069 		sc->sc_txfree -= dmamap->dm_nsegs;
1070 		sc->sc_txnext = nexttx;
1071 
1072 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1073 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1074 
1075 		last_txs = txs;
1076 
1077 #if NBPFILTER > 0
1078 		/*
1079 		 * Pass the packet to any BPF listeners.
1080 		 */
1081 		if (ifp->if_bpf)
1082 			bpf_mtap(ifp->if_bpf, m0);
1083 #endif /* NBPFILTER > 0 */
1084 	}
1085 
1086 	if (txs == NULL || sc->sc_txfree == 0) {
1087 		/* No more slots left; notify upper layer. */
1088 		ifp->if_flags |= IFF_OACTIVE;
1089 	}
1090 
1091 	if (sc->sc_txfree != ofree) {
1092 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1093 		    sc->sc_dev.dv_xname, lasttx, firsttx));
1094 		/*
1095 		 * The entire packet chain is set up.
1096 		 * Kick the transmitter.
1097 		 */
1098 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1099 			sc->sc_dev.dv_xname, nexttx));
1100 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1101 			sc->sc_txnext);
1102 
1103 		/* Set a watchdog timer in case the chip flakes out. */
1104 		ifp->if_timer = 5;
1105 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1106 			sc->sc_dev.dv_xname, ifp->if_timer));
1107 	}
1108 }
1109 
1110 /*
1111  * Transmit interrupt.
1112  */
1113 int
1114 gem_tint(sc)
1115 	struct gem_softc *sc;
1116 {
1117 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1118 	bus_space_tag_t t = sc->sc_bustag;
1119 	bus_space_handle_t mac = sc->sc_h;
1120 	struct gem_txsoft *txs;
1121 	int txlast;
1122 
1123 
1124 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1125 
1126 	/*
1127 	 * Unload collision counters
1128 	 */
1129 	ifp->if_collisions +=
1130 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1131 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1132 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1133 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1134 
1135 	/*
1136 	 * then clear the hardware counters.
1137 	 */
1138 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1139 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1140 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1141 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1142 
1143 	/*
1144 	 * Go through our Tx list and free mbufs for those
1145 	 * frames that have been transmitted.
1146 	 */
1147 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1148 		GEM_CDTXSYNC(sc, txs->txs_firstdesc,
1149 		    txs->txs_ndescs,
1150 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1151 
1152 #ifdef GEM_DEBUG
1153 		if (ifp->if_flags & IFF_DEBUG) {
1154 			int i;
1155 			printf("    txsoft %p transmit chain:\n", txs);
1156 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1157 				printf("descriptor %d: ", i);
1158 				printf("gd_flags: 0x%016llx\t", (long long)
1159 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1160 				printf("gd_addr: 0x%016llx\n", (long long)
1161 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1162 				if (i == txs->txs_lastdesc)
1163 					break;
1164 			}
1165 		}
1166 #endif
1167 
1168 		/*
1169 		 * In theory, we could harveast some descriptors before
1170 		 * the ring is empty, but that's a bit complicated.
1171 		 *
1172 		 * GEM_TX_COMPLETION points to the last descriptor
1173 		 * processed +1.
1174 		 */
1175 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1176 		DPRINTF(sc,
1177 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1178 				txs->txs_lastdesc, txlast));
1179 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1180 			if ((txlast >= txs->txs_firstdesc) &&
1181 				(txlast <= txs->txs_lastdesc))
1182 				break;
1183 		} else {
1184 			/* Ick -- this command wraps */
1185 			if ((txlast >= txs->txs_firstdesc) ||
1186 				(txlast <= txs->txs_lastdesc))
1187 				break;
1188 		}
1189 
1190 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1191 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1192 
1193 		sc->sc_txfree += txs->txs_ndescs;
1194 
1195 #ifdef DIAGNOSTIC
1196 		if (txs->txs_mbuf == NULL) {
1197 			panic("gem_txintr: null mbuf");
1198 		}
1199 #endif
1200 
1201 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1202 		    0, txs->txs_dmamap->dm_mapsize,
1203 		    BUS_DMASYNC_POSTWRITE);
1204 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1205 		m_freem(txs->txs_mbuf);
1206 		txs->txs_mbuf = NULL;
1207 
1208 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1209 
1210 		ifp->if_opackets++;
1211 	}
1212 
1213 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1214 		"GEM_TX_DATA_PTR %llx "
1215 		"GEM_TX_COMPLETION %x\n",
1216 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1217 		(long long)bus_space_read_8(sc->sc_bustag, sc->sc_h,
1218 			GEM_TX_DATA_PTR),
1219 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1220 
1221 	gem_start(ifp);
1222 
1223 	if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1224 		ifp->if_timer = 0;
1225 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1226 		sc->sc_dev.dv_xname, ifp->if_timer));
1227 
1228 	return (1);
1229 }
1230 
1231 /*
1232  * Receive interrupt.
1233  */
1234 int
1235 gem_rint(sc)
1236 	struct gem_softc *sc;
1237 {
1238 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1239 	bus_space_tag_t t = sc->sc_bustag;
1240 	bus_space_handle_t h = sc->sc_h;
1241 	struct ether_header *eh;
1242 	struct gem_rxsoft *rxs;
1243 	struct mbuf *m;
1244 	u_int64_t rxstat;
1245 	int i, len;
1246 
1247 	DPRINTF(sc, ("%s: gem_rint: sc_flags 0x%08x\n",
1248 		sc->sc_dev.dv_xname, sc->sc_flags));
1249 	/*
1250 	 * XXXX Read the lastrx only once at the top for speed.
1251 	 */
1252 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1253 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1254 	for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1255 	     i = GEM_NEXTRX(i)) {
1256 		rxs = &sc->sc_rxsoft[i];
1257 
1258 		GEM_CDRXSYNC(sc, i,
1259 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1260 
1261 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1262 
1263 		if (rxstat & GEM_RD_OWN) {
1264 			printf("gem_rint: completed descriptor "
1265 				"still owned %d\n", i);
1266 			/*
1267 			 * We have processed all of the receive buffers.
1268 			 */
1269 			break;
1270 		}
1271 
1272 		if (rxstat & GEM_RD_BAD_CRC) {
1273 			printf("%s: receive error: CRC error\n",
1274 				sc->sc_dev.dv_xname);
1275 			GEM_INIT_RXDESC(sc, i);
1276 			continue;
1277 		}
1278 
1279 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1280 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1281 #ifdef GEM_DEBUG
1282 		if (ifp->if_flags & IFF_DEBUG) {
1283 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1284 			printf("gd_flags: 0x%016llx\t", (long long)
1285 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1286 			printf("gd_addr: 0x%016llx\n", (long long)
1287 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1288 		}
1289 #endif
1290 
1291 		/*
1292 		 * No errors; receive the packet.  Note the Gem
1293 		 * includes the CRC with every packet.
1294 		 */
1295 		len = GEM_RD_BUFLEN(rxstat);
1296 
1297 		/*
1298 		 * Allocate a new mbuf cluster.  If that fails, we are
1299 		 * out of memory, and must drop the packet and recycle
1300 		 * the buffer that's already attached to this descriptor.
1301 		 */
1302 		m = rxs->rxs_mbuf;
1303 		if (gem_add_rxbuf(sc, i) != 0) {
1304 			ifp->if_ierrors++;
1305 			GEM_INIT_RXDESC(sc, i);
1306 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1307 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1308 			continue;
1309 		}
1310 		m->m_data += 2; /* We're already off by two */
1311 
1312 		ifp->if_ipackets++;
1313 		eh = mtod(m, struct ether_header *);
1314 		m->m_pkthdr.rcvif = ifp;
1315 		m->m_pkthdr.len = m->m_len = len;
1316 
1317 #if NBPFILTER > 0
1318 		/*
1319 		 * Pass this up to any BPF listeners, but only
1320 		 * pass it up the stack if its for us.
1321 		 */
1322 		if (ifp->if_bpf)
1323 			bpf_mtap(ifp->if_bpf, m);
1324 #endif /* NPBFILTER > 0 */
1325 
1326 		/* Pass it on. */
1327 		ether_input_mbuf(ifp, m);
1328 	}
1329 
1330 	/* Update the receive pointer. */
1331 	sc->sc_rxptr = i;
1332 	bus_space_write_4(t, h, GEM_RX_KICK, i);
1333 
1334 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1335 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1336 
1337 	return (1);
1338 }
1339 
1340 
1341 /*
1342  * gem_add_rxbuf:
1343  *
1344  *	Add a receive buffer to the indicated descriptor.
1345  */
1346 int
1347 gem_add_rxbuf(struct gem_softc *sc, int idx)
1348 {
1349 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1350 	struct mbuf *m;
1351 	int error;
1352 
1353 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1354 	if (m == NULL)
1355 		return (ENOBUFS);
1356 
1357 	MCLGET(m, M_DONTWAIT);
1358 	if ((m->m_flags & M_EXT) == 0) {
1359 		m_freem(m);
1360 		return (ENOBUFS);
1361 	}
1362 
1363 #ifdef GEM_DEBUG
1364 /* bzero the packet to check dma */
1365 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1366 #endif
1367 
1368 	if (rxs->rxs_mbuf != NULL)
1369 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1370 
1371 	rxs->rxs_mbuf = m;
1372 
1373 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1374 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1375 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1376 	if (error) {
1377 		printf("%s: can't load rx DMA map %d, error = %d\n",
1378 		    sc->sc_dev.dv_xname, idx, error);
1379 		panic("gem_add_rxbuf");	/* XXX */
1380 	}
1381 
1382 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1383 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1384 
1385 	GEM_INIT_RXDESC(sc, idx);
1386 
1387 	return (0);
1388 }
1389 
1390 
1391 int
1392 gem_eint(sc, status)
1393 	struct gem_softc *sc;
1394 	u_int status;
1395 {
1396 	if ((status & GEM_INTR_MIF) != 0) {
1397 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1398 		return (1);
1399 	}
1400 
1401 	printf("%s: status=%b\n", sc->sc_dev.dv_xname, status, GEM_INTR_BITS);
1402 	return (1);
1403 }
1404 
1405 
1406 int
1407 gem_intr(v)
1408 	void *v;
1409 {
1410 	struct gem_softc *sc = (struct gem_softc *)v;
1411 	bus_space_tag_t t = sc->sc_bustag;
1412 	bus_space_handle_t seb = sc->sc_h;
1413 	u_int32_t status;
1414 	int r = 0;
1415 
1416 	status = bus_space_read_4(t, seb, GEM_STATUS);
1417 	DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %b\n",
1418 		sc->sc_dev.dv_xname, (status>>19), status, GEM_INTR_BITS));
1419 
1420 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1421 		r |= gem_eint(sc, status);
1422 
1423 	if ((status &
1424 		(GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1425 		!= 0)
1426 		r |= gem_tint(sc);
1427 
1428 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1429 		r |= gem_rint(sc);
1430 
1431 	/* We should eventually do more than just print out error stats. */
1432 	if (status & GEM_INTR_TX_MAC) {
1433 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1434 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1435 			printf("MAC tx fault, status %x\n", txstat);
1436 	}
1437 	if (status & GEM_INTR_RX_MAC) {
1438 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1439 		if (rxstat & ~GEM_MAC_RX_DONE)
1440 			printf("MAC rx fault, status %x\n", rxstat);
1441 	}
1442 	return (r);
1443 }
1444 
1445 
1446 void
1447 gem_watchdog(ifp)
1448 	struct ifnet *ifp;
1449 {
1450 	struct gem_softc *sc = ifp->if_softc;
1451 
1452 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1453 		"GEM_MAC_RX_CONFIG %x\n",
1454 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1455 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1456 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1457 
1458 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1459 	++ifp->if_oerrors;
1460 
1461 	/* Try to get more packets going. */
1462 	gem_start(ifp);
1463 }
1464 
1465 /*
1466  * Initialize the MII Management Interface
1467  */
1468 void
1469 gem_mifinit(sc)
1470 	struct gem_softc *sc;
1471 {
1472 	bus_space_tag_t t = sc->sc_bustag;
1473 	bus_space_handle_t mif = sc->sc_h;
1474 
1475 	/* Configure the MIF in frame mode */
1476 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1477 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1478 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1479 }
1480 
1481 /*
1482  * MII interface
1483  *
1484  * The GEM MII interface supports at least three different operating modes:
1485  *
1486  * Bitbang mode is implemented using data, clock and output enable registers.
1487  *
1488  * Frame mode is implemented by loading a complete frame into the frame
1489  * register and polling the valid bit for completion.
1490  *
1491  * Polling mode uses the frame register but completion is indicated by
1492  * an interrupt.
1493  *
1494  */
1495 static int
1496 gem_mii_readreg(self, phy, reg)
1497 	struct device *self;
1498 	int phy, reg;
1499 {
1500 	struct gem_softc *sc = (void *)self;
1501 	bus_space_tag_t t = sc->sc_bustag;
1502 	bus_space_handle_t mif = sc->sc_h;
1503 	int n;
1504 	u_int32_t v;
1505 
1506 #ifdef GEM_DEBUG1
1507 	if (sc->sc_debug)
1508 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1509 #endif
1510 
1511 	/* Construct the frame command */
1512 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1513 		GEM_MIF_FRAME_READ;
1514 
1515 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1516 	for (n = 0; n < 100; n++) {
1517 		DELAY(1);
1518 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1519 		if (v & GEM_MIF_FRAME_TA0)
1520 			return (v & GEM_MIF_FRAME_DATA);
1521 	}
1522 
1523 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1524 	return (0);
1525 }
1526 
1527 static void
1528 gem_mii_writereg(self, phy, reg, val)
1529 	struct device *self;
1530 	int phy, reg, val;
1531 {
1532 	struct gem_softc *sc = (void *)self;
1533 	bus_space_tag_t t = sc->sc_bustag;
1534 	bus_space_handle_t mif = sc->sc_h;
1535 	int n;
1536 	u_int32_t v;
1537 
1538 #ifdef GEM_DEBUG1
1539 	if (sc->sc_debug)
1540 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
1541 			phy, reg, val);
1542 #endif
1543 
1544 #if 0
1545 	/* Select the desired PHY in the MIF configuration register */
1546 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1547 	/* Clear PHY select bit */
1548 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1549 	if (phy == GEM_PHYAD_EXTERNAL)
1550 		/* Set PHY select bit to get at external device */
1551 		v |= GEM_MIF_CONFIG_PHY_SEL;
1552 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1553 #endif
1554 	/* Construct the frame command */
1555 	v = GEM_MIF_FRAME_WRITE			|
1556 	    (phy << GEM_MIF_PHY_SHIFT)		|
1557 	    (reg << GEM_MIF_REG_SHIFT)		|
1558 	    (val & GEM_MIF_FRAME_DATA);
1559 
1560 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1561 	for (n = 0; n < 100; n++) {
1562 		DELAY(1);
1563 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1564 		if (v & GEM_MIF_FRAME_TA0)
1565 			return;
1566 	}
1567 
1568 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1569 }
1570 
1571 static void
1572 gem_mii_statchg(dev)
1573 	struct device *dev;
1574 {
1575 	struct gem_softc *sc = (void *)dev;
1576 #ifdef GEM_DEBUG
1577 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1578 #endif
1579 	bus_space_tag_t t = sc->sc_bustag;
1580 	bus_space_handle_t mac = sc->sc_h;
1581 	u_int32_t v;
1582 
1583 #ifdef GEM_DEBUG
1584 	if (sc->sc_debug)
1585 		printf("gem_mii_statchg: status change: phy = %d\n",
1586 		    sc->sc_phys[instance]);
1587 #endif
1588 
1589 
1590 	/* Set tx full duplex options */
1591 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1592 	delay(10000); /* reg must be cleared and delay before changing. */
1593 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1594 		GEM_MAC_TX_ENABLE;
1595 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1596 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1597 	}
1598 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1599 
1600 	/* XIF Configuration */
1601  /* We should really calculate all this rather than rely on defaults */
1602 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1603 	v = GEM_MAC_XIF_LINK_LED;
1604 	v |= GEM_MAC_XIF_TX_MII_ENA;
1605 	/* If an external transceiver is connected, enable its MII drivers */
1606 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1607 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1608 		/* External MII needs echo disable if half duplex. */
1609 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1610 			/* turn on full duplex LED */
1611 			v |= GEM_MAC_XIF_FDPLX_LED;
1612  			else
1613 	 			/* half duplex -- disable echo */
1614 		 		v |= GEM_MAC_XIF_ECHO_DISABL;
1615 	} else
1616 		/* Internal MII needs buf enable */
1617 		v |= GEM_MAC_XIF_MII_BUF_ENA;
1618 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1619 }
1620 
1621 int
1622 gem_mediachange(ifp)
1623 	struct ifnet *ifp;
1624 {
1625 	struct gem_softc *sc = ifp->if_softc;
1626 
1627 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1628 		return (EINVAL);
1629 
1630 	return (mii_mediachg(&sc->sc_mii));
1631 }
1632 
1633 void
1634 gem_mediastatus(ifp, ifmr)
1635 	struct ifnet *ifp;
1636 	struct ifmediareq *ifmr;
1637 {
1638 	struct gem_softc *sc = ifp->if_softc;
1639 
1640 	if ((ifp->if_flags & IFF_UP) == 0)
1641 		return;
1642 
1643 	mii_pollstat(&sc->sc_mii);
1644 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1645 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1646 }
1647 
1648 int gem_ioctldebug = 0;
1649 /*
1650  * Process an ioctl request.
1651  */
1652 int
1653 gem_ioctl(ifp, cmd, data)
1654 	struct ifnet *ifp;
1655 	u_long cmd;
1656 	caddr_t data;
1657 {
1658 	struct gem_softc *sc = ifp->if_softc;
1659 	struct ifaddr *ifa = (struct ifaddr *)data;
1660 	struct ifreq *ifr = (struct ifreq *)data;
1661 	int s, error = 0;
1662 
1663 	s = splimp();
1664 
1665 	switch (cmd) {
1666 
1667 	case SIOCSIFADDR:
1668 		ifp->if_flags |= IFF_UP;
1669 
1670 		switch (ifa->ifa_addr->sa_family) {
1671 #ifdef INET
1672 		case AF_INET:
1673 			gem_init(ifp);
1674 			arp_ifinit(&sc->sc_arpcom, ifa);
1675 			break;
1676 #endif
1677 #ifdef NS
1678 		case AF_NS:
1679 		    {
1680 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1681 
1682 			if (ns_nullhost(*ina))
1683 				ina->x_host =
1684 				    *(union ns_host *)LLADDR(ifp->if_sadl);
1685 			else {
1686 				memcpy(LLADDR(ifp->if_sadl),
1687 				    ina->x_host.c_host, sizeof(sc->sc_enaddr));
1688 			}
1689 			/* Set new address. */
1690 			gem_init(ifp);
1691 			break;
1692 		    }
1693 #endif
1694 		default:
1695 			gem_init(ifp);
1696 			break;
1697 		}
1698 		break;
1699 
1700 	case SIOCSIFFLAGS:
1701 		if ((ifp->if_flags & IFF_UP) == 0 &&
1702 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1703 			/*
1704 			 * If interface is marked down and it is running, then
1705 			 * stop it.
1706 			 */
1707 			gem_stop(ifp, 1);
1708 			ifp->if_flags &= ~IFF_RUNNING;
1709 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1710 		    	   (ifp->if_flags & IFF_RUNNING) == 0) {
1711 			/*
1712 			 * If interface is marked up and it is stopped, then
1713 			 * start it.
1714 			 */
1715 			gem_init(ifp);
1716 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1717 			/*
1718 			 * Reset the interface to pick up changes in any other
1719 			 * flags that affect hardware registers.
1720 			 */
1721 			/*gem_stop(sc);*/
1722 			gem_init(ifp);
1723 		}
1724 #ifdef HMEDEBUG
1725 		sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0;
1726 #endif
1727 		break;
1728 
1729 	case SIOCADDMULTI:
1730 	case SIOCDELMULTI:
1731 		error = (cmd == SIOCADDMULTI) ?
1732 		    ether_addmulti(ifr, &sc->sc_arpcom) :
1733 		    ether_delmulti(ifr, &sc->sc_arpcom);
1734 
1735 		if (error == ENETRESET) {
1736 			/*
1737 			 * Multicast list has changed; set the hardware filter
1738 			 * accordingly.
1739 			 */
1740 			gem_setladrf(sc);
1741 			error = 0;
1742 		}
1743 		break;
1744 
1745 	case SIOCGIFMEDIA:
1746 	case SIOCSIFMEDIA:
1747 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1748 		break;
1749 
1750 	default:
1751 		error = EINVAL;
1752 		break;
1753 	}
1754 
1755 	splx(s);
1756 	return (error);
1757 }
1758 
1759 
1760 void
1761 gem_shutdown(arg)
1762 	void *arg;
1763 {
1764 	struct gem_softc *sc = (struct gem_softc *)arg;
1765 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1766 
1767 	gem_stop(ifp, 1);
1768 }
1769 
1770 /*
1771  * Set up the logical address filter.
1772  */
1773 void
1774 gem_setladrf(sc)
1775 	struct gem_softc *sc;
1776 {
1777 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1778 	struct ether_multi *enm;
1779 	struct ether_multistep step;
1780 	struct arpcom *ac = &sc->sc_arpcom;
1781 	bus_space_tag_t t = sc->sc_bustag;
1782 	bus_space_handle_t h = sc->sc_h;
1783 	u_char *cp;
1784 	u_int32_t crc;
1785 	u_int32_t hash[16];
1786 	u_int32_t v;
1787 	int len;
1788 
1789 	/* Clear hash table */
1790 	memset(hash, 0, sizeof(hash));
1791 
1792 	/* Get current RX configuration */
1793 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1794 
1795 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1796 		/* Turn on promiscuous mode; turn off the hash filter */
1797 		v |= GEM_MAC_RX_PROMISCUOUS;
1798 		v &= ~GEM_MAC_RX_HASH_FILTER;
1799 		ifp->if_flags |= IFF_ALLMULTI;
1800 		goto chipit;
1801 	}
1802 
1803 	/* Turn off promiscuous mode; turn on the hash filter */
1804 	v &= ~GEM_MAC_RX_PROMISCUOUS;
1805 	v |= GEM_MAC_RX_HASH_FILTER;
1806 
1807 	/*
1808 	 * Set up multicast address filter by passing all multicast addresses
1809 	 * through a crc generator, and then using the high order 6 bits as an
1810 	 * index into the 256 bit logical address filter.  The high order bit
1811 	 * selects the word, while the rest of the bits select the bit within
1812 	 * the word.
1813 	 */
1814 
1815 	ETHER_FIRST_MULTI(step, ac, enm);
1816 	while (enm != NULL) {
1817 		if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1818 			/*
1819 			 * We must listen to a range of multicast addresses.
1820 			 * For now, just accept all multicasts, rather than
1821 			 * trying to set only those filter bits needed to match
1822 			 * the range.  (At this time, the only use of address
1823 			 * ranges is for IP multicast routing, for which the
1824 			 * range is big enough to require all bits set.)
1825 			 */
1826 			hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1827 			ifp->if_flags |= IFF_ALLMULTI;
1828 			goto chipit;
1829 		}
1830 
1831 		cp = enm->enm_addrlo;
1832 		crc = 0xffffffff;
1833 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1834 			int octet = *cp++;
1835 			int i;
1836 
1837 #define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
1838 			for (i = 0; i < 8; i++) {
1839 				if ((crc & 1) ^ (octet & 1)) {
1840 					crc >>= 1;
1841 					crc ^= MC_POLY_LE;
1842 				} else {
1843 					crc >>= 1;
1844 				}
1845 				octet >>= 1;
1846 			}
1847 		}
1848 		/* Just want the 8 most significant bits. */
1849 		crc >>= 24;
1850 
1851 		/* Set the corresponding bit in the filter. */
1852 		hash[crc >> 4] |= 1 << (crc & 0xf);
1853 
1854 		ETHER_NEXT_MULTI(step, enm);
1855 	}
1856 
1857 	ifp->if_flags &= ~IFF_ALLMULTI;
1858 
1859 chipit:
1860 	/* Now load the hash table into the chip */
1861 	bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1862 	bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1863 	bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1864 	bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1865 	bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1866 	bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1867 	bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1868 	bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1869 	bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1870 	bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1871 	bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1872 	bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1873 	bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1874 	bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1875 	bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1876 	bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1877 
1878 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1879 }
1880