1 /* $OpenBSD: cryptosoft.c,v 1.86 2020/05/29 01:22:53 deraadt Exp $ */ 2 3 /* 4 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 5 * 6 * This code was written by Angelos D. Keromytis in Athens, Greece, in 7 * February 2000. Network Security Technologies Inc. (NSTI) kindly 8 * supported the development of this code. 9 * 10 * Copyright (c) 2000, 2001 Angelos D. Keromytis 11 * 12 * Permission to use, copy, and modify this software with or without fee 13 * is hereby granted, provided that this entire notice is included in 14 * all source code copies of any software which is or includes a copy or 15 * modification of this software. 16 * 17 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 18 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 19 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 20 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 21 * PURPOSE. 22 */ 23 24 #include <sys/param.h> 25 #include <sys/systm.h> 26 #include <sys/malloc.h> 27 #include <sys/mbuf.h> 28 #include <sys/errno.h> 29 #include <crypto/md5.h> 30 #include <crypto/sha1.h> 31 #include <crypto/rmd160.h> 32 #include <crypto/cast.h> 33 #include <crypto/cryptodev.h> 34 #include <crypto/cryptosoft.h> 35 #include <crypto/xform.h> 36 37 const u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN] = { 38 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 39 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 40 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 41 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 42 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 43 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 44 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 45 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 46 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 47 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 48 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 49 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 50 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 51 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 52 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 53 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 54 }; 55 56 const u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN] = { 57 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 58 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 59 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 60 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 61 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 62 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 63 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 64 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 65 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 66 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 67 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 68 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 69 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 70 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 71 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 72 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C 73 }; 74 75 76 struct swcr_data **swcr_sessions = NULL; 77 u_int32_t swcr_sesnum = 0; 78 int32_t swcr_id = -1; 79 80 #define COPYBACK(x, a, b, c, d) \ 81 do { \ 82 if ((x) == CRYPTO_BUF_MBUF) \ 83 m_copyback((struct mbuf *)a,b,c,d,M_NOWAIT); \ 84 else \ 85 cuio_copyback((struct uio *)a,b,c,d); \ 86 } while (0) 87 #define COPYDATA(x, a, b, c, d) \ 88 do { \ 89 if ((x) == CRYPTO_BUF_MBUF) \ 90 m_copydata((struct mbuf *)a,b,c,d); \ 91 else \ 92 cuio_copydata((struct uio *)a,b,c,d); \ 93 } while (0) 94 95 /* 96 * Apply a symmetric encryption/decryption algorithm. 97 */ 98 int 99 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, 100 int outtype) 101 { 102 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat; 103 unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN]; 104 struct enc_xform *exf; 105 int i, k, j, blks, ind, count, ivlen; 106 struct mbuf *m = NULL; 107 struct uio *uio = NULL; 108 109 exf = sw->sw_exf; 110 blks = exf->blocksize; 111 ivlen = exf->ivsize; 112 113 /* Check for non-padded data */ 114 if (crd->crd_len % blks) 115 return EINVAL; 116 117 if (outtype == CRYPTO_BUF_MBUF) 118 m = (struct mbuf *) buf; 119 else 120 uio = (struct uio *) buf; 121 122 /* Initialize the IV */ 123 if (crd->crd_flags & CRD_F_ENCRYPT) { 124 /* IV explicitly provided ? */ 125 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 126 bcopy(crd->crd_iv, iv, ivlen); 127 else 128 arc4random_buf(iv, ivlen); 129 130 /* Do we need to write the IV */ 131 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) 132 COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv); 133 134 } else { /* Decryption */ 135 /* IV explicitly provided ? */ 136 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 137 bcopy(crd->crd_iv, iv, ivlen); 138 else { 139 /* Get IV off buf */ 140 COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv); 141 } 142 } 143 144 ivp = iv; 145 146 /* 147 * xforms that provide a reinit method perform all IV 148 * handling themselves. 149 */ 150 if (exf->reinit) 151 exf->reinit(sw->sw_kschedule, iv); 152 153 if (outtype == CRYPTO_BUF_MBUF) { 154 /* Find beginning of data */ 155 m = m_getptr(m, crd->crd_skip, &k); 156 if (m == NULL) 157 return EINVAL; 158 159 i = crd->crd_len; 160 161 while (i > 0) { 162 /* 163 * If there's insufficient data at the end of 164 * an mbuf, we have to do some copying. 165 */ 166 if (m->m_len < k + blks && m->m_len != k) { 167 m_copydata(m, k, blks, blk); 168 169 /* Actual encryption/decryption */ 170 if (exf->reinit) { 171 if (crd->crd_flags & CRD_F_ENCRYPT) { 172 exf->encrypt(sw->sw_kschedule, 173 blk); 174 } else { 175 exf->decrypt(sw->sw_kschedule, 176 blk); 177 } 178 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 179 /* XOR with previous block */ 180 for (j = 0; j < blks; j++) 181 blk[j] ^= ivp[j]; 182 183 exf->encrypt(sw->sw_kschedule, blk); 184 185 /* 186 * Keep encrypted block for XOR'ing 187 * with next block 188 */ 189 bcopy(blk, iv, blks); 190 ivp = iv; 191 } else { /* decrypt */ 192 /* 193 * Keep encrypted block for XOR'ing 194 * with next block 195 */ 196 nivp = (ivp == iv) ? iv2 : iv; 197 bcopy(blk, nivp, blks); 198 199 exf->decrypt(sw->sw_kschedule, blk); 200 201 /* XOR with previous block */ 202 for (j = 0; j < blks; j++) 203 blk[j] ^= ivp[j]; 204 ivp = nivp; 205 } 206 207 /* Copy back decrypted block */ 208 m_copyback(m, k, blks, blk, M_NOWAIT); 209 210 /* Advance pointer */ 211 m = m_getptr(m, k + blks, &k); 212 if (m == NULL) 213 return EINVAL; 214 215 i -= blks; 216 217 /* Could be done... */ 218 if (i == 0) 219 break; 220 } 221 222 /* Skip possibly empty mbufs */ 223 if (k == m->m_len) { 224 for (m = m->m_next; m && m->m_len == 0; 225 m = m->m_next) 226 ; 227 k = 0; 228 } 229 230 /* Sanity check */ 231 if (m == NULL) 232 return EINVAL; 233 234 /* 235 * Warning: idat may point to garbage here, but 236 * we only use it in the while() loop, only if 237 * there are indeed enough data. 238 */ 239 idat = mtod(m, unsigned char *) + k; 240 241 while (m->m_len >= k + blks && i > 0) { 242 if (exf->reinit) { 243 if (crd->crd_flags & CRD_F_ENCRYPT) { 244 exf->encrypt(sw->sw_kschedule, 245 idat); 246 } else { 247 exf->decrypt(sw->sw_kschedule, 248 idat); 249 } 250 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 251 /* XOR with previous block/IV */ 252 for (j = 0; j < blks; j++) 253 idat[j] ^= ivp[j]; 254 255 exf->encrypt(sw->sw_kschedule, idat); 256 ivp = idat; 257 } else { /* decrypt */ 258 /* 259 * Keep encrypted block to be used 260 * in next block's processing. 261 */ 262 nivp = (ivp == iv) ? iv2 : iv; 263 bcopy(idat, nivp, blks); 264 265 exf->decrypt(sw->sw_kschedule, idat); 266 267 /* XOR with previous block/IV */ 268 for (j = 0; j < blks; j++) 269 idat[j] ^= ivp[j]; 270 ivp = nivp; 271 } 272 273 idat += blks; 274 k += blks; 275 i -= blks; 276 } 277 } 278 } else { 279 /* Find beginning of data */ 280 count = crd->crd_skip; 281 ind = cuio_getptr(uio, count, &k); 282 if (ind == -1) 283 return EINVAL; 284 285 i = crd->crd_len; 286 287 while (i > 0) { 288 /* 289 * If there's insufficient data at the end, 290 * we have to do some copying. 291 */ 292 if (uio->uio_iov[ind].iov_len < k + blks && 293 uio->uio_iov[ind].iov_len != k) { 294 cuio_copydata(uio, count, blks, blk); 295 296 /* Actual encryption/decryption */ 297 if (exf->reinit) { 298 if (crd->crd_flags & CRD_F_ENCRYPT) { 299 exf->encrypt(sw->sw_kschedule, 300 blk); 301 } else { 302 exf->decrypt(sw->sw_kschedule, 303 blk); 304 } 305 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 306 /* XOR with previous block */ 307 for (j = 0; j < blks; j++) 308 blk[j] ^= ivp[j]; 309 310 exf->encrypt(sw->sw_kschedule, blk); 311 312 /* 313 * Keep encrypted block for XOR'ing 314 * with next block 315 */ 316 bcopy(blk, iv, blks); 317 ivp = iv; 318 } else { /* decrypt */ 319 /* 320 * Keep encrypted block for XOR'ing 321 * with next block 322 */ 323 nivp = (ivp == iv) ? iv2 : iv; 324 bcopy(blk, nivp, blks); 325 326 exf->decrypt(sw->sw_kschedule, blk); 327 328 /* XOR with previous block */ 329 for (j = 0; j < blks; j++) 330 blk[j] ^= ivp[j]; 331 ivp = nivp; 332 } 333 334 /* Copy back decrypted block */ 335 cuio_copyback(uio, count, blks, blk); 336 337 count += blks; 338 339 /* Advance pointer */ 340 ind = cuio_getptr(uio, count, &k); 341 if (ind == -1) 342 return (EINVAL); 343 344 i -= blks; 345 346 /* Could be done... */ 347 if (i == 0) 348 break; 349 } 350 351 /* 352 * Warning: idat may point to garbage here, but 353 * we only use it in the while() loop, only if 354 * there are indeed enough data. 355 */ 356 idat = (char *)uio->uio_iov[ind].iov_base + k; 357 358 while (uio->uio_iov[ind].iov_len >= k + blks && 359 i > 0) { 360 if (exf->reinit) { 361 if (crd->crd_flags & CRD_F_ENCRYPT) { 362 exf->encrypt(sw->sw_kschedule, 363 idat); 364 } else { 365 exf->decrypt(sw->sw_kschedule, 366 idat); 367 } 368 } else if (crd->crd_flags & CRD_F_ENCRYPT) { 369 /* XOR with previous block/IV */ 370 for (j = 0; j < blks; j++) 371 idat[j] ^= ivp[j]; 372 373 exf->encrypt(sw->sw_kschedule, idat); 374 ivp = idat; 375 } else { /* decrypt */ 376 /* 377 * Keep encrypted block to be used 378 * in next block's processing. 379 */ 380 nivp = (ivp == iv) ? iv2 : iv; 381 bcopy(idat, nivp, blks); 382 383 exf->decrypt(sw->sw_kschedule, idat); 384 385 /* XOR with previous block/IV */ 386 for (j = 0; j < blks; j++) 387 idat[j] ^= ivp[j]; 388 ivp = nivp; 389 } 390 391 idat += blks; 392 count += blks; 393 k += blks; 394 i -= blks; 395 } 396 397 /* 398 * Advance to the next iov if the end of the current iov 399 * is aligned with the end of a cipher block. 400 * Note that the code is equivalent to calling: 401 * ind = cuio_getptr(uio, count, &k); 402 */ 403 if (i > 0 && k == uio->uio_iov[ind].iov_len) { 404 k = 0; 405 ind++; 406 if (ind >= uio->uio_iovcnt) 407 return (EINVAL); 408 } 409 } 410 } 411 412 return 0; /* Done with encryption/decryption */ 413 } 414 415 /* 416 * Compute keyed-hash authenticator. 417 */ 418 int 419 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd, 420 struct swcr_data *sw, caddr_t buf, int outtype) 421 { 422 unsigned char aalg[AALG_MAX_RESULT_LEN]; 423 struct auth_hash *axf; 424 union authctx ctx; 425 int err; 426 427 if (sw->sw_ictx == 0) 428 return EINVAL; 429 430 axf = sw->sw_axf; 431 432 bcopy(sw->sw_ictx, &ctx, axf->ctxsize); 433 434 if (outtype == CRYPTO_BUF_MBUF) 435 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len, 436 (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, 437 (caddr_t) &ctx); 438 else 439 err = cuio_apply((struct uio *) buf, crd->crd_skip, 440 crd->crd_len, 441 (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, 442 (caddr_t) &ctx); 443 444 if (err) 445 return err; 446 447 if (crd->crd_flags & CRD_F_ESN) 448 axf->Update(&ctx, crd->crd_esn, 4); 449 450 switch (sw->sw_alg) { 451 case CRYPTO_MD5_HMAC: 452 case CRYPTO_SHA1_HMAC: 453 case CRYPTO_RIPEMD160_HMAC: 454 case CRYPTO_SHA2_256_HMAC: 455 case CRYPTO_SHA2_384_HMAC: 456 case CRYPTO_SHA2_512_HMAC: 457 if (sw->sw_octx == NULL) 458 return EINVAL; 459 460 axf->Final(aalg, &ctx); 461 bcopy(sw->sw_octx, &ctx, axf->ctxsize); 462 axf->Update(&ctx, aalg, axf->hashsize); 463 axf->Final(aalg, &ctx); 464 break; 465 } 466 467 /* Inject the authentication data */ 468 if (outtype == CRYPTO_BUF_MBUF) 469 COPYBACK(outtype, buf, crd->crd_inject, axf->authsize, aalg); 470 else 471 bcopy(aalg, crp->crp_mac, axf->authsize); 472 473 return 0; 474 } 475 476 /* 477 * Apply a combined encryption-authentication transformation 478 */ 479 int 480 swcr_authenc(struct cryptop *crp) 481 { 482 uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))]; 483 u_char *blk = (u_char *)blkbuf; 484 u_char aalg[AALG_MAX_RESULT_LEN]; 485 u_char iv[EALG_MAX_BLOCK_LEN]; 486 union authctx ctx; 487 struct cryptodesc *crd, *crda = NULL, *crde = NULL; 488 struct swcr_data *sw, *swa, *swe = NULL; 489 struct auth_hash *axf = NULL; 490 struct enc_xform *exf = NULL; 491 caddr_t buf = (caddr_t)crp->crp_buf; 492 uint32_t *blkp; 493 int aadlen, blksz, i, ivlen, outtype, len, iskip, oskip; 494 495 ivlen = blksz = iskip = oskip = 0; 496 497 for (i = 0; i < crp->crp_ndesc; i++) { 498 crd = &crp->crp_desc[i]; 499 for (sw = swcr_sessions[crp->crp_sid & 0xffffffff]; 500 sw && sw->sw_alg != crd->crd_alg; 501 sw = sw->sw_next) 502 ; 503 if (sw == NULL) 504 return (EINVAL); 505 506 switch (sw->sw_alg) { 507 case CRYPTO_AES_GCM_16: 508 case CRYPTO_AES_GMAC: 509 case CRYPTO_CHACHA20_POLY1305: 510 swe = sw; 511 crde = crd; 512 exf = swe->sw_exf; 513 ivlen = exf->ivsize; 514 break; 515 case CRYPTO_AES_128_GMAC: 516 case CRYPTO_AES_192_GMAC: 517 case CRYPTO_AES_256_GMAC: 518 case CRYPTO_CHACHA20_POLY1305_MAC: 519 swa = sw; 520 crda = crd; 521 axf = swa->sw_axf; 522 if (swa->sw_ictx == 0) 523 return (EINVAL); 524 bcopy(swa->sw_ictx, &ctx, axf->ctxsize); 525 blksz = axf->blocksize; 526 break; 527 default: 528 return (EINVAL); 529 } 530 } 531 if (crde == NULL || crda == NULL) 532 return (EINVAL); 533 534 if (crp->crp_flags & CRYPTO_F_IMBUF) { 535 outtype = CRYPTO_BUF_MBUF; 536 } else { 537 outtype = CRYPTO_BUF_IOV; 538 } 539 540 /* Initialize the IV */ 541 if (crde->crd_flags & CRD_F_ENCRYPT) { 542 /* IV explicitly provided ? */ 543 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 544 bcopy(crde->crd_iv, iv, ivlen); 545 else 546 arc4random_buf(iv, ivlen); 547 548 /* Do we need to write the IV */ 549 if (!(crde->crd_flags & CRD_F_IV_PRESENT)) 550 COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv); 551 552 } else { /* Decryption */ 553 /* IV explicitly provided ? */ 554 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 555 bcopy(crde->crd_iv, iv, ivlen); 556 else { 557 /* Get IV off buf */ 558 COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv); 559 } 560 } 561 562 /* Supply MAC with IV */ 563 if (axf->Reinit) 564 axf->Reinit(&ctx, iv, ivlen); 565 566 /* Supply MAC with AAD */ 567 aadlen = crda->crd_len; 568 /* 569 * Section 5 of RFC 4106 specifies that AAD construction consists of 570 * {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}. 571 * Unfortunately it doesn't follow a good example set in the Section 572 * 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the 573 * external (to the packet) memory buffer, is processed by the hash 574 * function in the end thus allowing to retain simple programming 575 * interfaces and avoid kludges like the one below. 576 */ 577 if (crda->crd_flags & CRD_F_ESN) { 578 aadlen += 4; 579 /* SPI */ 580 COPYDATA(outtype, buf, crda->crd_skip, 4, blk); 581 iskip = 4; /* loop below will start with an offset of 4 */ 582 /* ESN */ 583 bcopy(crda->crd_esn, blk + 4, 4); 584 oskip = iskip + 4; /* offset output buffer blk by 8 */ 585 } 586 for (i = iskip; i < crda->crd_len; i += axf->hashsize) { 587 len = MIN(crda->crd_len - i, axf->hashsize - oskip); 588 COPYDATA(outtype, buf, crda->crd_skip + i, len, blk + oskip); 589 bzero(blk + len + oskip, axf->hashsize - len - oskip); 590 axf->Update(&ctx, blk, axf->hashsize); 591 oskip = 0; /* reset initial output offset */ 592 } 593 594 if (exf->reinit) 595 exf->reinit(swe->sw_kschedule, iv); 596 597 /* Do encryption/decryption with MAC */ 598 for (i = 0; i < crde->crd_len; i += blksz) { 599 len = MIN(crde->crd_len - i, blksz); 600 if (len < blksz) 601 bzero(blk, blksz); 602 COPYDATA(outtype, buf, crde->crd_skip + i, len, blk); 603 if (crde->crd_flags & CRD_F_ENCRYPT) { 604 exf->encrypt(swe->sw_kschedule, blk); 605 axf->Update(&ctx, blk, len); 606 } else { 607 axf->Update(&ctx, blk, len); 608 exf->decrypt(swe->sw_kschedule, blk); 609 } 610 COPYBACK(outtype, buf, crde->crd_skip + i, len, blk); 611 } 612 613 /* Do any required special finalization */ 614 switch (crda->crd_alg) { 615 case CRYPTO_AES_128_GMAC: 616 case CRYPTO_AES_192_GMAC: 617 case CRYPTO_AES_256_GMAC: 618 /* length block */ 619 bzero(blk, axf->hashsize); 620 blkp = (uint32_t *)blk + 1; 621 *blkp = htobe32(aadlen * 8); 622 blkp = (uint32_t *)blk + 3; 623 *blkp = htobe32(crde->crd_len * 8); 624 axf->Update(&ctx, blk, axf->hashsize); 625 break; 626 case CRYPTO_CHACHA20_POLY1305_MAC: 627 /* length block */ 628 bzero(blk, axf->hashsize); 629 blkp = (uint32_t *)blk; 630 *blkp = htole32(aadlen); 631 blkp = (uint32_t *)blk + 2; 632 *blkp = htole32(crde->crd_len); 633 axf->Update(&ctx, blk, axf->hashsize); 634 break; 635 } 636 637 /* Finalize MAC */ 638 axf->Final(aalg, &ctx); 639 640 /* Inject the authentication data */ 641 if (outtype == CRYPTO_BUF_MBUF) 642 COPYBACK(outtype, buf, crda->crd_inject, axf->authsize, aalg); 643 else 644 bcopy(aalg, crp->crp_mac, axf->authsize); 645 646 return (0); 647 } 648 649 /* 650 * Apply a compression/decompression algorithm 651 */ 652 int 653 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw, 654 caddr_t buf, int outtype) 655 { 656 u_int8_t *data, *out; 657 struct comp_algo *cxf; 658 int adj; 659 u_int32_t result; 660 661 cxf = sw->sw_cxf; 662 663 /* We must handle the whole buffer of data in one time 664 * then if there is not all the data in the mbuf, we must 665 * copy in a buffer. 666 */ 667 668 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT); 669 if (data == NULL) 670 return (EINVAL); 671 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data); 672 673 if (crd->crd_flags & CRD_F_COMP) 674 result = cxf->compress(data, crd->crd_len, &out); 675 else 676 result = cxf->decompress(data, crd->crd_len, &out); 677 678 free(data, M_CRYPTO_DATA, crd->crd_len); 679 if (result == 0) 680 return EINVAL; 681 682 /* Copy back the (de)compressed data. m_copyback is 683 * extending the mbuf as necessary. 684 */ 685 sw->sw_size = result; 686 /* Check the compressed size when doing compression */ 687 if (crd->crd_flags & CRD_F_COMP) { 688 if (result > crd->crd_len) { 689 /* Compression was useless, we lost time */ 690 free(out, M_CRYPTO_DATA, result); 691 return 0; 692 } 693 } 694 695 COPYBACK(outtype, buf, crd->crd_skip, result, out); 696 if (result < crd->crd_len) { 697 adj = result - crd->crd_len; 698 if (outtype == CRYPTO_BUF_MBUF) { 699 adj = result - crd->crd_len; 700 m_adj((struct mbuf *)buf, adj); 701 } else { 702 struct uio *uio = (struct uio *)buf; 703 int ind; 704 705 adj = crd->crd_len - result; 706 ind = uio->uio_iovcnt - 1; 707 708 while (adj > 0 && ind >= 0) { 709 if (adj < uio->uio_iov[ind].iov_len) { 710 uio->uio_iov[ind].iov_len -= adj; 711 break; 712 } 713 714 adj -= uio->uio_iov[ind].iov_len; 715 uio->uio_iov[ind].iov_len = 0; 716 ind--; 717 uio->uio_iovcnt--; 718 } 719 } 720 } 721 free(out, M_CRYPTO_DATA, result); 722 return 0; 723 } 724 725 /* 726 * Generate a new software session. 727 */ 728 int 729 swcr_newsession(u_int32_t *sid, struct cryptoini *cri) 730 { 731 struct swcr_data **swd; 732 struct auth_hash *axf; 733 struct enc_xform *txf; 734 struct comp_algo *cxf; 735 u_int32_t i; 736 int k; 737 738 if (sid == NULL || cri == NULL) 739 return EINVAL; 740 741 if (swcr_sessions) { 742 for (i = 1; i < swcr_sesnum; i++) 743 if (swcr_sessions[i] == NULL) 744 break; 745 } 746 747 if (swcr_sessions == NULL || i == swcr_sesnum) { 748 if (swcr_sessions == NULL) { 749 i = 1; /* We leave swcr_sessions[0] empty */ 750 swcr_sesnum = CRYPTO_SW_SESSIONS; 751 } else 752 swcr_sesnum *= 2; 753 754 swd = mallocarray(swcr_sesnum, sizeof(struct swcr_data *), 755 M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 756 if (swd == NULL) { 757 /* Reset session number */ 758 if (swcr_sesnum == CRYPTO_SW_SESSIONS) 759 swcr_sesnum = 0; 760 else 761 swcr_sesnum /= 2; 762 return ENOBUFS; 763 } 764 765 /* Copy existing sessions */ 766 if (swcr_sessions) { 767 bcopy(swcr_sessions, swd, 768 (swcr_sesnum / 2) * sizeof(struct swcr_data *)); 769 free(swcr_sessions, M_CRYPTO_DATA, 770 (swcr_sesnum / 2) * sizeof(struct swcr_data *)); 771 } 772 773 swcr_sessions = swd; 774 } 775 776 swd = &swcr_sessions[i]; 777 *sid = i; 778 779 while (cri) { 780 *swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA, 781 M_NOWAIT | M_ZERO); 782 if (*swd == NULL) { 783 swcr_freesession(i); 784 return ENOBUFS; 785 } 786 787 switch (cri->cri_alg) { 788 case CRYPTO_3DES_CBC: 789 txf = &enc_xform_3des; 790 goto enccommon; 791 case CRYPTO_BLF_CBC: 792 txf = &enc_xform_blf; 793 goto enccommon; 794 case CRYPTO_CAST_CBC: 795 txf = &enc_xform_cast5; 796 goto enccommon; 797 case CRYPTO_AES_CBC: 798 txf = &enc_xform_aes; 799 goto enccommon; 800 case CRYPTO_AES_CTR: 801 txf = &enc_xform_aes_ctr; 802 goto enccommon; 803 case CRYPTO_AES_XTS: 804 txf = &enc_xform_aes_xts; 805 goto enccommon; 806 case CRYPTO_AES_GCM_16: 807 txf = &enc_xform_aes_gcm; 808 goto enccommon; 809 case CRYPTO_AES_GMAC: 810 txf = &enc_xform_aes_gmac; 811 (*swd)->sw_exf = txf; 812 break; 813 case CRYPTO_CHACHA20_POLY1305: 814 txf = &enc_xform_chacha20_poly1305; 815 goto enccommon; 816 case CRYPTO_NULL: 817 txf = &enc_xform_null; 818 goto enccommon; 819 enccommon: 820 if (txf->ctxsize > 0) { 821 (*swd)->sw_kschedule = malloc(txf->ctxsize, 822 M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 823 if ((*swd)->sw_kschedule == NULL) { 824 swcr_freesession(i); 825 return EINVAL; 826 } 827 } 828 if (txf->setkey((*swd)->sw_kschedule, cri->cri_key, 829 cri->cri_klen / 8) < 0) { 830 swcr_freesession(i); 831 return EINVAL; 832 } 833 (*swd)->sw_exf = txf; 834 break; 835 836 case CRYPTO_MD5_HMAC: 837 axf = &auth_hash_hmac_md5_96; 838 goto authcommon; 839 case CRYPTO_SHA1_HMAC: 840 axf = &auth_hash_hmac_sha1_96; 841 goto authcommon; 842 case CRYPTO_RIPEMD160_HMAC: 843 axf = &auth_hash_hmac_ripemd_160_96; 844 goto authcommon; 845 case CRYPTO_SHA2_256_HMAC: 846 axf = &auth_hash_hmac_sha2_256_128; 847 goto authcommon; 848 case CRYPTO_SHA2_384_HMAC: 849 axf = &auth_hash_hmac_sha2_384_192; 850 goto authcommon; 851 case CRYPTO_SHA2_512_HMAC: 852 axf = &auth_hash_hmac_sha2_512_256; 853 goto authcommon; 854 authcommon: 855 (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, 856 M_NOWAIT); 857 if ((*swd)->sw_ictx == NULL) { 858 swcr_freesession(i); 859 return ENOBUFS; 860 } 861 862 (*swd)->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA, 863 M_NOWAIT); 864 if ((*swd)->sw_octx == NULL) { 865 swcr_freesession(i); 866 return ENOBUFS; 867 } 868 869 for (k = 0; k < cri->cri_klen / 8; k++) 870 cri->cri_key[k] ^= HMAC_IPAD_VAL; 871 872 axf->Init((*swd)->sw_ictx); 873 axf->Update((*swd)->sw_ictx, cri->cri_key, 874 cri->cri_klen / 8); 875 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer, 876 axf->blocksize - (cri->cri_klen / 8)); 877 878 for (k = 0; k < cri->cri_klen / 8; k++) 879 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); 880 881 axf->Init((*swd)->sw_octx); 882 axf->Update((*swd)->sw_octx, cri->cri_key, 883 cri->cri_klen / 8); 884 axf->Update((*swd)->sw_octx, hmac_opad_buffer, 885 axf->blocksize - (cri->cri_klen / 8)); 886 887 for (k = 0; k < cri->cri_klen / 8; k++) 888 cri->cri_key[k] ^= HMAC_OPAD_VAL; 889 (*swd)->sw_axf = axf; 890 break; 891 892 case CRYPTO_AES_128_GMAC: 893 axf = &auth_hash_gmac_aes_128; 894 goto authenccommon; 895 case CRYPTO_AES_192_GMAC: 896 axf = &auth_hash_gmac_aes_192; 897 goto authenccommon; 898 case CRYPTO_AES_256_GMAC: 899 axf = &auth_hash_gmac_aes_256; 900 goto authenccommon; 901 case CRYPTO_CHACHA20_POLY1305_MAC: 902 axf = &auth_hash_chacha20_poly1305; 903 goto authenccommon; 904 authenccommon: 905 (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, 906 M_NOWAIT); 907 if ((*swd)->sw_ictx == NULL) { 908 swcr_freesession(i); 909 return ENOBUFS; 910 } 911 axf->Init((*swd)->sw_ictx); 912 axf->Setkey((*swd)->sw_ictx, cri->cri_key, 913 cri->cri_klen / 8); 914 (*swd)->sw_axf = axf; 915 break; 916 917 case CRYPTO_DEFLATE_COMP: 918 cxf = &comp_algo_deflate; 919 (*swd)->sw_cxf = cxf; 920 break; 921 case CRYPTO_ESN: 922 /* nothing to do */ 923 break; 924 default: 925 swcr_freesession(i); 926 return EINVAL; 927 } 928 929 (*swd)->sw_alg = cri->cri_alg; 930 cri = cri->cri_next; 931 swd = &((*swd)->sw_next); 932 } 933 return 0; 934 } 935 936 /* 937 * Free a session. 938 */ 939 int 940 swcr_freesession(u_int64_t tid) 941 { 942 struct swcr_data *swd; 943 struct enc_xform *txf; 944 struct auth_hash *axf; 945 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; 946 947 if (sid > swcr_sesnum || swcr_sessions == NULL || 948 swcr_sessions[sid] == NULL) 949 return EINVAL; 950 951 /* Silently accept and return */ 952 if (sid == 0) 953 return 0; 954 955 while ((swd = swcr_sessions[sid]) != NULL) { 956 swcr_sessions[sid] = swd->sw_next; 957 958 switch (swd->sw_alg) { 959 case CRYPTO_3DES_CBC: 960 case CRYPTO_BLF_CBC: 961 case CRYPTO_CAST_CBC: 962 case CRYPTO_AES_CBC: 963 case CRYPTO_AES_CTR: 964 case CRYPTO_AES_XTS: 965 case CRYPTO_AES_GCM_16: 966 case CRYPTO_AES_GMAC: 967 case CRYPTO_CHACHA20_POLY1305: 968 case CRYPTO_NULL: 969 txf = swd->sw_exf; 970 971 if (swd->sw_kschedule) { 972 explicit_bzero(swd->sw_kschedule, txf->ctxsize); 973 free(swd->sw_kschedule, M_CRYPTO_DATA, 974 txf->ctxsize); 975 } 976 break; 977 978 case CRYPTO_MD5_HMAC: 979 case CRYPTO_SHA1_HMAC: 980 case CRYPTO_RIPEMD160_HMAC: 981 case CRYPTO_SHA2_256_HMAC: 982 case CRYPTO_SHA2_384_HMAC: 983 case CRYPTO_SHA2_512_HMAC: 984 axf = swd->sw_axf; 985 986 if (swd->sw_ictx) { 987 explicit_bzero(swd->sw_ictx, axf->ctxsize); 988 free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize); 989 } 990 if (swd->sw_octx) { 991 explicit_bzero(swd->sw_octx, axf->ctxsize); 992 free(swd->sw_octx, M_CRYPTO_DATA, axf->ctxsize); 993 } 994 break; 995 996 case CRYPTO_AES_128_GMAC: 997 case CRYPTO_AES_192_GMAC: 998 case CRYPTO_AES_256_GMAC: 999 case CRYPTO_CHACHA20_POLY1305_MAC: 1000 axf = swd->sw_axf; 1001 1002 if (swd->sw_ictx) { 1003 explicit_bzero(swd->sw_ictx, axf->ctxsize); 1004 free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize); 1005 } 1006 break; 1007 } 1008 1009 free(swd, M_CRYPTO_DATA, sizeof(*swd)); 1010 } 1011 return 0; 1012 } 1013 1014 /* 1015 * Process a software request. 1016 */ 1017 int 1018 swcr_process(struct cryptop *crp) 1019 { 1020 struct cryptodesc *crd; 1021 struct swcr_data *sw; 1022 u_int32_t lid; 1023 int type; 1024 int i; 1025 1026 /* Sanity check */ 1027 if (crp == NULL) 1028 return EINVAL; 1029 1030 if (crp->crp_ndesc < 1 || crp->crp_buf == NULL) { 1031 crp->crp_etype = EINVAL; 1032 goto done; 1033 } 1034 1035 lid = crp->crp_sid & 0xffffffff; 1036 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) { 1037 crp->crp_etype = ENOENT; 1038 goto done; 1039 } 1040 1041 if (crp->crp_flags & CRYPTO_F_IMBUF) 1042 type = CRYPTO_BUF_MBUF; 1043 else 1044 type = CRYPTO_BUF_IOV; 1045 1046 /* Go through crypto descriptors, processing as we go */ 1047 for (i = 0; i < crp->crp_ndesc; i++) { 1048 crd = &crp->crp_desc[i]; 1049 /* 1050 * Find the crypto context. 1051 * 1052 * XXX Note that the logic here prevents us from having 1053 * XXX the same algorithm multiple times in a session 1054 * XXX (or rather, we can but it won't give us the right 1055 * XXX results). To do that, we'd need some way of differentiating 1056 * XXX between the various instances of an algorithm (so we can 1057 * XXX locate the correct crypto context). 1058 */ 1059 for (sw = swcr_sessions[lid]; 1060 sw && sw->sw_alg != crd->crd_alg; 1061 sw = sw->sw_next) 1062 ; 1063 1064 /* No such context ? */ 1065 if (sw == NULL) { 1066 crp->crp_etype = EINVAL; 1067 goto done; 1068 } 1069 1070 switch (sw->sw_alg) { 1071 case CRYPTO_NULL: 1072 break; 1073 case CRYPTO_3DES_CBC: 1074 case CRYPTO_BLF_CBC: 1075 case CRYPTO_CAST_CBC: 1076 case CRYPTO_RIJNDAEL128_CBC: 1077 case CRYPTO_AES_CTR: 1078 case CRYPTO_AES_XTS: 1079 if ((crp->crp_etype = swcr_encdec(crd, sw, 1080 crp->crp_buf, type)) != 0) 1081 goto done; 1082 break; 1083 case CRYPTO_MD5_HMAC: 1084 case CRYPTO_SHA1_HMAC: 1085 case CRYPTO_RIPEMD160_HMAC: 1086 case CRYPTO_SHA2_256_HMAC: 1087 case CRYPTO_SHA2_384_HMAC: 1088 case CRYPTO_SHA2_512_HMAC: 1089 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw, 1090 crp->crp_buf, type)) != 0) 1091 goto done; 1092 break; 1093 1094 case CRYPTO_AES_GCM_16: 1095 case CRYPTO_AES_GMAC: 1096 case CRYPTO_AES_128_GMAC: 1097 case CRYPTO_AES_192_GMAC: 1098 case CRYPTO_AES_256_GMAC: 1099 case CRYPTO_CHACHA20_POLY1305: 1100 case CRYPTO_CHACHA20_POLY1305_MAC: 1101 crp->crp_etype = swcr_authenc(crp); 1102 goto done; 1103 1104 case CRYPTO_DEFLATE_COMP: 1105 if ((crp->crp_etype = swcr_compdec(crd, sw, 1106 crp->crp_buf, type)) != 0) 1107 goto done; 1108 else 1109 crp->crp_olen = (int)sw->sw_size; 1110 break; 1111 1112 default: 1113 /* Unknown/unsupported algorithm */ 1114 crp->crp_etype = EINVAL; 1115 goto done; 1116 } 1117 } 1118 1119 done: 1120 crypto_done(crp); 1121 return 0; 1122 } 1123 1124 /* 1125 * Initialize the driver, called from the kernel main(). 1126 */ 1127 void 1128 swcr_init(void) 1129 { 1130 int algs[CRYPTO_ALGORITHM_MAX + 1]; 1131 int flags = CRYPTOCAP_F_SOFTWARE; 1132 1133 swcr_id = crypto_get_driverid(flags); 1134 if (swcr_id < 0) { 1135 /* This should never happen */ 1136 panic("Software crypto device cannot initialize!"); 1137 } 1138 1139 bzero(algs, sizeof(algs)); 1140 1141 algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1142 algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1143 algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1144 algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1145 algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1146 algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1147 algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; 1148 algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED; 1149 algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED; 1150 algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED; 1151 algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1152 algs[CRYPTO_DEFLATE_COMP] = CRYPTO_ALG_FLAG_SUPPORTED; 1153 algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED; 1154 algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1155 algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1156 algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1157 algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1158 algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1159 algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1160 algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED; 1161 algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED; 1162 algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED; 1163 1164 crypto_register(swcr_id, algs, swcr_newsession, 1165 swcr_freesession, swcr_process); 1166 } 1167