xref: /openbsd-src/lib/libssl/ssl_ciph.c (revision d4c5fc9dc00f5a9cadd8c2de4e52d85d3c1c6003)
1 /* $OpenBSD: ssl_ciph.c,v 1.99 2018/04/25 07:10:39 tb Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 /* ====================================================================
112  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113  * ECC cipher suite support in OpenSSL originally developed by
114  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115  */
116 /* ====================================================================
117  * Copyright 2005 Nokia. All rights reserved.
118  *
119  * The portions of the attached software ("Contribution") is developed by
120  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
121  * license.
122  *
123  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
124  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
125  * support (see RFC 4279) to OpenSSL.
126  *
127  * No patent licenses or other rights except those expressly stated in
128  * the OpenSSL open source license shall be deemed granted or received
129  * expressly, by implication, estoppel, or otherwise.
130  *
131  * No assurances are provided by Nokia that the Contribution does not
132  * infringe the patent or other intellectual property rights of any third
133  * party or that the license provides you with all the necessary rights
134  * to make use of the Contribution.
135  *
136  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
137  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
138  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
139  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
140  * OTHERWISE.
141  */
142 
143 #include <stdio.h>
144 
145 #include <openssl/objects.h>
146 
147 #ifndef OPENSSL_NO_ENGINE
148 #include <openssl/engine.h>
149 #endif
150 
151 #include "ssl_locl.h"
152 
153 #define SSL_ENC_DES_IDX		0
154 #define SSL_ENC_3DES_IDX	1
155 #define SSL_ENC_RC4_IDX		2
156 #define SSL_ENC_IDEA_IDX	3
157 #define SSL_ENC_NULL_IDX	4
158 #define SSL_ENC_AES128_IDX	5
159 #define SSL_ENC_AES256_IDX	6
160 #define SSL_ENC_CAMELLIA128_IDX	7
161 #define SSL_ENC_CAMELLIA256_IDX	8
162 #define SSL_ENC_GOST89_IDX	9
163 #define SSL_ENC_AES128GCM_IDX	10
164 #define SSL_ENC_AES256GCM_IDX	11
165 #define SSL_ENC_NUM_IDX		12
166 
167 
168 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX] = {
169 	NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
170 };
171 
172 #define SSL_MD_MD5_IDX	0
173 #define SSL_MD_SHA1_IDX	1
174 #define SSL_MD_GOST94_IDX 2
175 #define SSL_MD_GOST89MAC_IDX 3
176 #define SSL_MD_SHA256_IDX 4
177 #define SSL_MD_SHA384_IDX 5
178 #define SSL_MD_STREEBOG256_IDX 6
179 /*Constant SSL_MAX_DIGEST equal to size of digests array should be
180  * defined in the
181  * ssl_locl.h */
182 #define SSL_MD_NUM_IDX	SSL_MAX_DIGEST
183 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = {
184 	NULL, NULL, NULL, NULL, NULL, NULL, NULL,
185 };
186 
187 static int  ssl_mac_pkey_id[SSL_MD_NUM_IDX] = {
188 	EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_GOSTIMIT,
189 	EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC,
190 };
191 
192 static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = {
193 	0, 0, 0, 0, 0, 0, 0,
194 };
195 
196 #define CIPHER_ADD	1
197 #define CIPHER_KILL	2
198 #define CIPHER_DEL	3
199 #define CIPHER_ORD	4
200 #define CIPHER_SPECIAL	5
201 
202 typedef struct cipher_order_st {
203 	const SSL_CIPHER *cipher;
204 	int active;
205 	int dead;
206 	struct cipher_order_st *next, *prev;
207 } CIPHER_ORDER;
208 
209 static const SSL_CIPHER cipher_aliases[] = {
210 
211 	/* "ALL" doesn't include eNULL (must be specifically enabled) */
212 	{
213 		.name = SSL_TXT_ALL,
214 		.algorithm_enc = ~SSL_eNULL,
215 	},
216 
217 	/* "COMPLEMENTOFALL" */
218 	{
219 		.name = SSL_TXT_CMPALL,
220 		.algorithm_enc = SSL_eNULL,
221 	},
222 
223 	/*
224 	 * "COMPLEMENTOFDEFAULT"
225 	 * (does *not* include ciphersuites not found in ALL!)
226 	 */
227 	{
228 		.name = SSL_TXT_CMPDEF,
229 		.algorithm_mkey = SSL_kDHE|SSL_kECDHE,
230 		.algorithm_auth = SSL_aNULL,
231 		.algorithm_enc = ~SSL_eNULL,
232 	},
233 
234 	/*
235 	 * key exchange aliases
236 	 * (some of those using only a single bit here combine multiple key
237 	 * exchange algs according to the RFCs, e.g. kEDH combines DHE_DSS
238 	 * and DHE_RSA)
239 	 */
240 	{
241 		.name = SSL_TXT_kRSA,
242 		.algorithm_mkey = SSL_kRSA,
243 	},
244 	{
245 		.name = SSL_TXT_kEDH,
246 		.algorithm_mkey = SSL_kDHE,
247 	},
248 	{
249 		.name = SSL_TXT_DH,
250 		.algorithm_mkey = SSL_kDHE,
251 	},
252 	{
253 		.name = SSL_TXT_kEECDH,
254 		.algorithm_mkey = SSL_kECDHE,
255 	},
256 	{
257 		.name = SSL_TXT_ECDH,
258 		.algorithm_mkey = SSL_kECDHE,
259 	},
260 	{
261 		.name = SSL_TXT_kGOST,
262 		.algorithm_mkey = SSL_kGOST,
263 	},
264 
265 	/* server authentication aliases */
266 	{
267 		.name = SSL_TXT_aRSA,
268 		.algorithm_auth = SSL_aRSA,
269 	},
270 	{
271 		.name = SSL_TXT_aDSS,
272 		.algorithm_auth = SSL_aDSS,
273 	},
274 	{
275 		.name = SSL_TXT_DSS,
276 		.algorithm_auth = SSL_aDSS,
277 	},
278 	{
279 		.name = SSL_TXT_aNULL,
280 		.algorithm_auth = SSL_aNULL,
281 	},
282 	{
283 		.name = SSL_TXT_aECDSA,
284 		.algorithm_auth = SSL_aECDSA,
285 	},
286 	{
287 		.name = SSL_TXT_ECDSA,
288 		.algorithm_auth = SSL_aECDSA,
289 	},
290 	{
291 		.name = SSL_TXT_aGOST01,
292 		.algorithm_auth = SSL_aGOST01,
293 	},
294 	{
295 		.name = SSL_TXT_aGOST,
296 		.algorithm_auth = SSL_aGOST01,
297 	},
298 
299 	/* aliases combining key exchange and server authentication */
300 	{
301 		.name = SSL_TXT_DHE,
302 		.algorithm_mkey = SSL_kDHE,
303 		.algorithm_auth = ~SSL_aNULL,
304 	},
305 	{
306 		.name = SSL_TXT_EDH,
307 		.algorithm_mkey = SSL_kDHE,
308 		.algorithm_auth = ~SSL_aNULL,
309 	},
310 	{
311 		.name = SSL_TXT_ECDHE,
312 		.algorithm_mkey = SSL_kECDHE,
313 		.algorithm_auth = ~SSL_aNULL,
314 	},
315 	{
316 		.name = SSL_TXT_EECDH,
317 		.algorithm_mkey = SSL_kECDHE,
318 		.algorithm_auth = ~SSL_aNULL,
319 	},
320 	{
321 		.name = SSL_TXT_NULL,
322 		.algorithm_enc = SSL_eNULL,
323 	},
324 	{
325 		.name = SSL_TXT_RSA,
326 		.algorithm_mkey = SSL_kRSA,
327 		.algorithm_auth = SSL_aRSA,
328 	},
329 	{
330 		.name = SSL_TXT_ADH,
331 		.algorithm_mkey = SSL_kDHE,
332 		.algorithm_auth = SSL_aNULL,
333 	},
334 	{
335 		.name = SSL_TXT_AECDH,
336 		.algorithm_mkey = SSL_kECDHE,
337 		.algorithm_auth = SSL_aNULL,
338 	},
339 
340 	/* symmetric encryption aliases */
341 	{
342 		.name = SSL_TXT_DES,
343 		.algorithm_enc = SSL_DES,
344 	},
345 	{
346 		.name = SSL_TXT_3DES,
347 		.algorithm_enc = SSL_3DES,
348 	},
349 	{
350 		.name = SSL_TXT_RC4,
351 		.algorithm_enc = SSL_RC4,
352 	},
353 	{
354 		.name = SSL_TXT_IDEA,
355 		.algorithm_enc = SSL_IDEA,
356 	},
357 	{
358 		.name = SSL_TXT_eNULL,
359 		.algorithm_enc = SSL_eNULL,
360 	},
361 	{
362 		.name = SSL_TXT_AES128,
363 		.algorithm_enc = SSL_AES128|SSL_AES128GCM,
364 	},
365 	{
366 		.name = SSL_TXT_AES256,
367 		.algorithm_enc = SSL_AES256|SSL_AES256GCM,
368 	},
369 	{
370 		.name = SSL_TXT_AES,
371 		.algorithm_enc = SSL_AES,
372 	},
373 	{
374 		.name = SSL_TXT_AES_GCM,
375 		.algorithm_enc = SSL_AES128GCM|SSL_AES256GCM,
376 	},
377 	{
378 		.name = SSL_TXT_CAMELLIA128,
379 		.algorithm_enc = SSL_CAMELLIA128,
380 	},
381 	{
382 		.name = SSL_TXT_CAMELLIA256,
383 		.algorithm_enc = SSL_CAMELLIA256,
384 	},
385 	{
386 		.name = SSL_TXT_CAMELLIA,
387 		.algorithm_enc = SSL_CAMELLIA128|SSL_CAMELLIA256,
388 	},
389 	{
390 		.name = SSL_TXT_CHACHA20,
391 		.algorithm_enc = SSL_CHACHA20POLY1305,
392 	},
393 
394 	/* MAC aliases */
395 	{
396 		.name = SSL_TXT_AEAD,
397 		.algorithm_mac = SSL_AEAD,
398 	},
399 	{
400 		.name = SSL_TXT_MD5,
401 		.algorithm_mac = SSL_MD5,
402 	},
403 	{
404 		.name = SSL_TXT_SHA1,
405 		.algorithm_mac = SSL_SHA1,
406 	},
407 	{
408 		.name = SSL_TXT_SHA,
409 		.algorithm_mac = SSL_SHA1,
410 	},
411 	{
412 		.name = SSL_TXT_GOST94,
413 		.algorithm_mac = SSL_GOST94,
414 	},
415 	{
416 		.name = SSL_TXT_GOST89MAC,
417 		.algorithm_mac = SSL_GOST89MAC,
418 	},
419 	{
420 		.name = SSL_TXT_SHA256,
421 		.algorithm_mac = SSL_SHA256,
422 	},
423 	{
424 		.name = SSL_TXT_SHA384,
425 		.algorithm_mac = SSL_SHA384,
426 	},
427 	{
428 		.name = SSL_TXT_STREEBOG256,
429 		.algorithm_mac = SSL_STREEBOG256,
430 	},
431 
432 	/* protocol version aliases */
433 	{
434 		.name = SSL_TXT_SSLV3,
435 		.algorithm_ssl = SSL_SSLV3,
436 	},
437 	{
438 		.name = SSL_TXT_TLSV1,
439 		.algorithm_ssl = SSL_TLSV1,
440 	},
441 	{
442 		.name = SSL_TXT_TLSV1_2,
443 		.algorithm_ssl = SSL_TLSV1_2,
444 	},
445 
446 	/* strength classes */
447 	{
448 		.name = SSL_TXT_LOW,
449 		.algo_strength = SSL_LOW,
450 	},
451 	{
452 		.name = SSL_TXT_MEDIUM,
453 		.algo_strength = SSL_MEDIUM,
454 	},
455 	{
456 		.name = SSL_TXT_HIGH,
457 		.algo_strength = SSL_HIGH,
458 	},
459 };
460 
461 void
462 ssl_load_ciphers(void)
463 {
464 	ssl_cipher_methods[SSL_ENC_DES_IDX] =
465 	    EVP_get_cipherbyname(SN_des_cbc);
466 	ssl_cipher_methods[SSL_ENC_3DES_IDX] =
467 	    EVP_get_cipherbyname(SN_des_ede3_cbc);
468 	ssl_cipher_methods[SSL_ENC_RC4_IDX] =
469 	    EVP_get_cipherbyname(SN_rc4);
470 	ssl_cipher_methods[SSL_ENC_IDEA_IDX] = NULL;
471 	ssl_cipher_methods[SSL_ENC_AES128_IDX] =
472 	    EVP_get_cipherbyname(SN_aes_128_cbc);
473 	ssl_cipher_methods[SSL_ENC_AES256_IDX] =
474 	    EVP_get_cipherbyname(SN_aes_256_cbc);
475 	ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] =
476 	    EVP_get_cipherbyname(SN_camellia_128_cbc);
477 	ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] =
478 	    EVP_get_cipherbyname(SN_camellia_256_cbc);
479 	ssl_cipher_methods[SSL_ENC_GOST89_IDX] =
480 	    EVP_get_cipherbyname(SN_gost89_cnt);
481 
482 	ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] =
483 	    EVP_get_cipherbyname(SN_aes_128_gcm);
484 	ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] =
485 	    EVP_get_cipherbyname(SN_aes_256_gcm);
486 
487 	ssl_digest_methods[SSL_MD_MD5_IDX] =
488 	    EVP_get_digestbyname(SN_md5);
489 	ssl_mac_secret_size[SSL_MD_MD5_IDX] =
490 	    EVP_MD_size(ssl_digest_methods[SSL_MD_MD5_IDX]);
491 	OPENSSL_assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0);
492 	ssl_digest_methods[SSL_MD_SHA1_IDX] =
493 	    EVP_get_digestbyname(SN_sha1);
494 	ssl_mac_secret_size[SSL_MD_SHA1_IDX] =
495 	    EVP_MD_size(ssl_digest_methods[SSL_MD_SHA1_IDX]);
496 	OPENSSL_assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0);
497 	ssl_digest_methods[SSL_MD_GOST94_IDX] =
498 	    EVP_get_digestbyname(SN_id_GostR3411_94);
499 	if (ssl_digest_methods[SSL_MD_GOST94_IDX]) {
500 		ssl_mac_secret_size[SSL_MD_GOST94_IDX] =
501 		    EVP_MD_size(ssl_digest_methods[SSL_MD_GOST94_IDX]);
502 		OPENSSL_assert(ssl_mac_secret_size[SSL_MD_GOST94_IDX] >= 0);
503 	}
504 	ssl_digest_methods[SSL_MD_GOST89MAC_IDX] =
505 	    EVP_get_digestbyname(SN_id_Gost28147_89_MAC);
506 	if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
507 		ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
508 	}
509 
510 	ssl_digest_methods[SSL_MD_SHA256_IDX] =
511 	    EVP_get_digestbyname(SN_sha256);
512 	ssl_mac_secret_size[SSL_MD_SHA256_IDX] =
513 	    EVP_MD_size(ssl_digest_methods[SSL_MD_SHA256_IDX]);
514 	ssl_digest_methods[SSL_MD_SHA384_IDX] =
515 	    EVP_get_digestbyname(SN_sha384);
516 	ssl_mac_secret_size[SSL_MD_SHA384_IDX] =
517 	    EVP_MD_size(ssl_digest_methods[SSL_MD_SHA384_IDX]);
518 	ssl_digest_methods[SSL_MD_STREEBOG256_IDX] =
519 	    EVP_get_digestbyname(SN_id_tc26_gost3411_2012_256);
520 	ssl_mac_secret_size[SSL_MD_STREEBOG256_IDX] =
521 	    EVP_MD_size(ssl_digest_methods[SSL_MD_STREEBOG256_IDX]);
522 }
523 
524 int
525 ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
526     const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size)
527 {
528 	const SSL_CIPHER *c;
529 	int i;
530 
531 	c = s->cipher;
532 	if (c == NULL)
533 		return (0);
534 
535 	/*
536 	 * This function does not handle EVP_AEAD.
537 	 * See ssl_cipher_get_aead_evp instead.
538 	 */
539 	if (c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD)
540 		return(0);
541 
542 	if ((enc == NULL) || (md == NULL))
543 		return (0);
544 
545 	switch (c->algorithm_enc) {
546 	case SSL_DES:
547 		i = SSL_ENC_DES_IDX;
548 		break;
549 	case SSL_3DES:
550 		i = SSL_ENC_3DES_IDX;
551 		break;
552 	case SSL_RC4:
553 		i = SSL_ENC_RC4_IDX;
554 		break;
555 	case SSL_IDEA:
556 		i = SSL_ENC_IDEA_IDX;
557 		break;
558 	case SSL_eNULL:
559 		i = SSL_ENC_NULL_IDX;
560 		break;
561 	case SSL_AES128:
562 		i = SSL_ENC_AES128_IDX;
563 		break;
564 	case SSL_AES256:
565 		i = SSL_ENC_AES256_IDX;
566 		break;
567 	case SSL_CAMELLIA128:
568 		i = SSL_ENC_CAMELLIA128_IDX;
569 		break;
570 	case SSL_CAMELLIA256:
571 		i = SSL_ENC_CAMELLIA256_IDX;
572 		break;
573 	case SSL_eGOST2814789CNT:
574 		i = SSL_ENC_GOST89_IDX;
575 		break;
576 	case SSL_AES128GCM:
577 		i = SSL_ENC_AES128GCM_IDX;
578 		break;
579 	case SSL_AES256GCM:
580 		i = SSL_ENC_AES256GCM_IDX;
581 		break;
582 	default:
583 		i = -1;
584 		break;
585 	}
586 
587 	if ((i < 0) || (i >= SSL_ENC_NUM_IDX))
588 		*enc = NULL;
589 	else {
590 		if (i == SSL_ENC_NULL_IDX)
591 			*enc = EVP_enc_null();
592 		else
593 			*enc = ssl_cipher_methods[i];
594 	}
595 
596 	switch (c->algorithm_mac) {
597 	case SSL_MD5:
598 		i = SSL_MD_MD5_IDX;
599 		break;
600 	case SSL_SHA1:
601 		i = SSL_MD_SHA1_IDX;
602 		break;
603 	case SSL_SHA256:
604 		i = SSL_MD_SHA256_IDX;
605 		break;
606 	case SSL_SHA384:
607 		i = SSL_MD_SHA384_IDX;
608 		break;
609 	case SSL_GOST94:
610 		i = SSL_MD_GOST94_IDX;
611 		break;
612 	case SSL_GOST89MAC:
613 		i = SSL_MD_GOST89MAC_IDX;
614 		break;
615 	case SSL_STREEBOG256:
616 		i = SSL_MD_STREEBOG256_IDX;
617 		break;
618 	default:
619 		i = -1;
620 		break;
621 	}
622 	if ((i < 0) || (i >= SSL_MD_NUM_IDX)) {
623 		*md = NULL;
624 
625 		if (mac_pkey_type != NULL)
626 			*mac_pkey_type = NID_undef;
627 		if (mac_secret_size != NULL)
628 			*mac_secret_size = 0;
629 		if (c->algorithm_mac == SSL_AEAD)
630 			mac_pkey_type = NULL;
631 	} else {
632 		*md = ssl_digest_methods[i];
633 		if (mac_pkey_type != NULL)
634 			*mac_pkey_type = ssl_mac_pkey_id[i];
635 		if (mac_secret_size != NULL)
636 			*mac_secret_size = ssl_mac_secret_size[i];
637 	}
638 
639 	if ((*enc != NULL) &&
640 	    (*md != NULL || (EVP_CIPHER_flags(*enc)&EVP_CIPH_FLAG_AEAD_CIPHER)) &&
641 	    (!mac_pkey_type || *mac_pkey_type != NID_undef)) {
642 		const EVP_CIPHER *evp;
643 
644 		if (s->ssl_version >> 8 != TLS1_VERSION_MAJOR ||
645 		    s->ssl_version < TLS1_VERSION)
646 			return 1;
647 
648 		if (c->algorithm_enc == SSL_RC4 &&
649 		    c->algorithm_mac == SSL_MD5 &&
650 		    (evp = EVP_get_cipherbyname("RC4-HMAC-MD5")))
651 			*enc = evp, *md = NULL;
652 		else if (c->algorithm_enc == SSL_AES128 &&
653 		    c->algorithm_mac == SSL_SHA1 &&
654 		    (evp = EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
655 			*enc = evp, *md = NULL;
656 		else if (c->algorithm_enc == SSL_AES256 &&
657 		    c->algorithm_mac == SSL_SHA1 &&
658 		    (evp = EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
659 			*enc = evp, *md = NULL;
660 		return (1);
661 	} else
662 		return (0);
663 }
664 
665 /*
666  * ssl_cipher_get_evp_aead sets aead to point to the correct EVP_AEAD object
667  * for s->cipher. It returns 1 on success and 0 on error.
668  */
669 int
670 ssl_cipher_get_evp_aead(const SSL_SESSION *s, const EVP_AEAD **aead)
671 {
672 	const SSL_CIPHER *c = s->cipher;
673 
674 	*aead = NULL;
675 
676 	if (c == NULL)
677 		return 0;
678 	if ((c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) == 0)
679 		return 0;
680 
681 	switch (c->algorithm_enc) {
682 #ifndef OPENSSL_NO_AES
683 	case SSL_AES128GCM:
684 		*aead = EVP_aead_aes_128_gcm();
685 		return 1;
686 	case SSL_AES256GCM:
687 		*aead = EVP_aead_aes_256_gcm();
688 		return 1;
689 #endif
690 	case SSL_CHACHA20POLY1305:
691 		*aead = EVP_aead_chacha20_poly1305();
692 		return 1;
693 	default:
694 		break;
695 	}
696 	return 0;
697 }
698 
699 int
700 ssl_get_handshake_evp_md(SSL *s, const EVP_MD **md)
701 {
702 	*md = NULL;
703 
704 	switch (ssl_get_algorithm2(s) & SSL_HANDSHAKE_MAC_MASK) {
705 	case SSL_HANDSHAKE_MAC_DEFAULT:
706 		*md = EVP_md5_sha1();
707 		return 1;
708 	case SSL_HANDSHAKE_MAC_GOST94:
709 		*md = EVP_gostr341194();
710 		return 1;
711 	case SSL_HANDSHAKE_MAC_SHA256:
712 		*md = EVP_sha256();
713 		return 1;
714 	case SSL_HANDSHAKE_MAC_SHA384:
715 		*md = EVP_sha384();
716 		return 1;
717 	case SSL_HANDSHAKE_MAC_STREEBOG256:
718 		*md = EVP_streebog256();
719 		return 1;
720 	default:
721 		break;
722 	}
723 
724 	return 0;
725 }
726 
727 #define ITEM_SEP(a) \
728 	(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
729 
730 static void
731 ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
732     CIPHER_ORDER **tail)
733 {
734 	if (curr == *tail)
735 		return;
736 	if (curr == *head)
737 		*head = curr->next;
738 	if (curr->prev != NULL)
739 		curr->prev->next = curr->next;
740 	if (curr->next != NULL)
741 		curr->next->prev = curr->prev;
742 	(*tail)->next = curr;
743 	curr->prev= *tail;
744 	curr->next = NULL;
745 	*tail = curr;
746 }
747 
748 static void
749 ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
750     CIPHER_ORDER **tail)
751 {
752 	if (curr == *head)
753 		return;
754 	if (curr == *tail)
755 		*tail = curr->prev;
756 	if (curr->next != NULL)
757 		curr->next->prev = curr->prev;
758 	if (curr->prev != NULL)
759 		curr->prev->next = curr->next;
760 	(*head)->prev = curr;
761 	curr->next= *head;
762 	curr->prev = NULL;
763 	*head = curr;
764 }
765 
766 static void
767 ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth,
768     unsigned long *enc, unsigned long *mac, unsigned long *ssl)
769 {
770 	*mkey = 0;
771 	*auth = 0;
772 	*enc = 0;
773 	*mac = 0;
774 	*ssl = 0;
775 
776 	/*
777 	 * Check for the availability of GOST 34.10 public/private key
778 	 * algorithms. If they are not available disable the associated
779 	 * authentication and key exchange algorithms.
780 	 */
781 	if (EVP_PKEY_meth_find(NID_id_GostR3410_2001) == NULL) {
782 		*auth |= SSL_aGOST01;
783 		*mkey |= SSL_kGOST;
784 	}
785 
786 #ifdef SSL_FORBID_ENULL
787 	*enc |= SSL_eNULL;
788 #endif
789 
790 	*enc |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES : 0;
791 	*enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES : 0;
792 	*enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 : 0;
793 	*enc |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA : 0;
794 	*enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128 : 0;
795 	*enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256 : 0;
796 	*enc |= (ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] == NULL) ? SSL_AES128GCM : 0;
797 	*enc |= (ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] == NULL) ? SSL_AES256GCM : 0;
798 	*enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAMELLIA128 : 0;
799 	*enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAMELLIA256 : 0;
800 	*enc |= (ssl_cipher_methods[SSL_ENC_GOST89_IDX] == NULL) ? SSL_eGOST2814789CNT : 0;
801 
802 	*mac |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 : 0;
803 	*mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1 : 0;
804 	*mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256 : 0;
805 	*mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384 : 0;
806 	*mac |= (ssl_digest_methods[SSL_MD_GOST94_IDX] == NULL) ? SSL_GOST94 : 0;
807 	*mac |= (ssl_digest_methods[SSL_MD_GOST89MAC_IDX] == NULL) ? SSL_GOST89MAC : 0;
808 	*mac |= (ssl_digest_methods[SSL_MD_STREEBOG256_IDX] == NULL) ? SSL_STREEBOG256 : 0;
809 }
810 
811 static void
812 ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers,
813     unsigned long disabled_mkey, unsigned long disabled_auth,
814     unsigned long disabled_enc, unsigned long disabled_mac,
815     unsigned long disabled_ssl, CIPHER_ORDER *co_list,
816     CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
817 {
818 	int i, co_list_num;
819 	const SSL_CIPHER *c;
820 
821 	/*
822 	 * We have num_of_ciphers descriptions compiled in, depending on the
823 	 * method selected (SSLv3, TLSv1, etc). These will later be sorted in
824 	 * a linked list with at most num entries.
825 	 */
826 
827 	/* Get the initial list of ciphers */
828 	co_list_num = 0;	/* actual count of ciphers */
829 	for (i = 0; i < num_of_ciphers; i++) {
830 		c = ssl_method->get_cipher(i);
831 		/* drop those that use any of that is not available */
832 		if ((c != NULL) && c->valid &&
833 		    !(c->algorithm_mkey & disabled_mkey) &&
834 		    !(c->algorithm_auth & disabled_auth) &&
835 		    !(c->algorithm_enc & disabled_enc) &&
836 		    !(c->algorithm_mac & disabled_mac) &&
837 		    !(c->algorithm_ssl & disabled_ssl)) {
838 			co_list[co_list_num].cipher = c;
839 			co_list[co_list_num].next = NULL;
840 			co_list[co_list_num].prev = NULL;
841 			co_list[co_list_num].active = 0;
842 			co_list_num++;
843 			/*
844 			if (!sk_push(ca_list,(char *)c)) goto err;
845 			*/
846 		}
847 	}
848 
849 	/*
850 	 * Prepare linked list from list entries
851 	 */
852 	if (co_list_num > 0) {
853 		co_list[0].prev = NULL;
854 
855 		if (co_list_num > 1) {
856 			co_list[0].next = &co_list[1];
857 
858 			for (i = 1; i < co_list_num - 1; i++) {
859 				co_list[i].prev = &co_list[i - 1];
860 				co_list[i].next = &co_list[i + 1];
861 			}
862 
863 			co_list[co_list_num - 1].prev =
864 			    &co_list[co_list_num - 2];
865 		}
866 
867 		co_list[co_list_num - 1].next = NULL;
868 
869 		*head_p = &co_list[0];
870 		*tail_p = &co_list[co_list_num - 1];
871 	}
872 }
873 
874 static void
875 ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases,
876     unsigned long disabled_mkey, unsigned long disabled_auth,
877     unsigned long disabled_enc, unsigned long disabled_mac,
878     unsigned long disabled_ssl, CIPHER_ORDER *head)
879 {
880 	CIPHER_ORDER *ciph_curr;
881 	const SSL_CIPHER **ca_curr;
882 	int i;
883 	unsigned long mask_mkey = ~disabled_mkey;
884 	unsigned long mask_auth = ~disabled_auth;
885 	unsigned long mask_enc = ~disabled_enc;
886 	unsigned long mask_mac = ~disabled_mac;
887 	unsigned long mask_ssl = ~disabled_ssl;
888 
889 	/*
890 	 * First, add the real ciphers as already collected
891 	 */
892 	ciph_curr = head;
893 	ca_curr = ca_list;
894 	while (ciph_curr != NULL) {
895 		*ca_curr = ciph_curr->cipher;
896 		ca_curr++;
897 		ciph_curr = ciph_curr->next;
898 	}
899 
900 	/*
901 	 * Now we add the available ones from the cipher_aliases[] table.
902 	 * They represent either one or more algorithms, some of which
903 	 * in any affected category must be supported (set in enabled_mask),
904 	 * or represent a cipher strength value (will be added in any case because algorithms=0).
905 	 */
906 	for (i = 0; i < num_of_group_aliases; i++) {
907 		unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey;
908 		unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth;
909 		unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc;
910 		unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac;
911 		unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl;
912 
913 		if (algorithm_mkey)
914 			if ((algorithm_mkey & mask_mkey) == 0)
915 				continue;
916 
917 		if (algorithm_auth)
918 			if ((algorithm_auth & mask_auth) == 0)
919 				continue;
920 
921 		if (algorithm_enc)
922 			if ((algorithm_enc & mask_enc) == 0)
923 				continue;
924 
925 		if (algorithm_mac)
926 			if ((algorithm_mac & mask_mac) == 0)
927 				continue;
928 
929 		if (algorithm_ssl)
930 			if ((algorithm_ssl & mask_ssl) == 0)
931 				continue;
932 
933 		*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
934 		ca_curr++;
935 	}
936 
937 	*ca_curr = NULL;	/* end of list */
938 }
939 
940 static void
941 ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long alg_mkey,
942     unsigned long alg_auth, unsigned long alg_enc, unsigned long alg_mac,
943     unsigned long alg_ssl, unsigned long algo_strength,
944     int rule, int strength_bits, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
945 {
946 	CIPHER_ORDER *head, *tail, *curr, *next, *last;
947 	const SSL_CIPHER *cp;
948 	int reverse = 0;
949 
950 
951 	if (rule == CIPHER_DEL)
952 		reverse = 1; /* needed to maintain sorting between currently deleted ciphers */
953 
954 	head = *head_p;
955 	tail = *tail_p;
956 
957 	if (reverse) {
958 		next = tail;
959 		last = head;
960 	} else {
961 		next = head;
962 		last = tail;
963 	}
964 
965 	curr = NULL;
966 	for (;;) {
967 		if (curr == last)
968 			break;
969 		curr = next;
970 		next = reverse ? curr->prev : curr->next;
971 
972 		cp = curr->cipher;
973 
974 		/*
975 		 * Selection criteria is either the value of strength_bits
976 		 * or the algorithms used.
977 		 */
978 		if (strength_bits >= 0) {
979 			if (strength_bits != cp->strength_bits)
980 				continue;
981 		} else {
982 
983 			if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
984 				continue;
985 			if (alg_auth && !(alg_auth & cp->algorithm_auth))
986 				continue;
987 			if (alg_enc && !(alg_enc & cp->algorithm_enc))
988 				continue;
989 			if (alg_mac && !(alg_mac & cp->algorithm_mac))
990 				continue;
991 			if (alg_ssl && !(alg_ssl & cp->algorithm_ssl))
992 				continue;
993 			if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
994 				continue;
995 		}
996 
997 
998 		/* add the cipher if it has not been added yet. */
999 		if (rule == CIPHER_ADD) {
1000 			/* reverse == 0 */
1001 			if (!curr->active) {
1002 				ll_append_tail(&head, curr, &tail);
1003 				curr->active = 1;
1004 			}
1005 		}
1006 		/* Move the added cipher to this location */
1007 		else if (rule == CIPHER_ORD) {
1008 			/* reverse == 0 */
1009 			if (curr->active) {
1010 				ll_append_tail(&head, curr, &tail);
1011 			}
1012 		} else if (rule == CIPHER_DEL) {
1013 			/* reverse == 1 */
1014 			if (curr->active) {
1015 				/* most recently deleted ciphersuites get best positions
1016 				 * for any future CIPHER_ADD (note that the CIPHER_DEL loop
1017 				 * works in reverse to maintain the order) */
1018 				ll_append_head(&head, curr, &tail);
1019 				curr->active = 0;
1020 			}
1021 		} else if (rule == CIPHER_KILL) {
1022 			/* reverse == 0 */
1023 			if (head == curr)
1024 				head = curr->next;
1025 			else
1026 				curr->prev->next = curr->next;
1027 			if (tail == curr)
1028 				tail = curr->prev;
1029 			curr->active = 0;
1030 			if (curr->next != NULL)
1031 				curr->next->prev = curr->prev;
1032 			if (curr->prev != NULL)
1033 				curr->prev->next = curr->next;
1034 			curr->next = NULL;
1035 			curr->prev = NULL;
1036 		}
1037 	}
1038 
1039 	*head_p = head;
1040 	*tail_p = tail;
1041 }
1042 
1043 static int
1044 ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
1045 {
1046 	int max_strength_bits, i, *number_uses;
1047 	CIPHER_ORDER *curr;
1048 
1049 	/*
1050 	 * This routine sorts the ciphers with descending strength. The sorting
1051 	 * must keep the pre-sorted sequence, so we apply the normal sorting
1052 	 * routine as '+' movement to the end of the list.
1053 	 */
1054 	max_strength_bits = 0;
1055 	curr = *head_p;
1056 	while (curr != NULL) {
1057 		if (curr->active &&
1058 		    (curr->cipher->strength_bits > max_strength_bits))
1059 			max_strength_bits = curr->cipher->strength_bits;
1060 		curr = curr->next;
1061 	}
1062 
1063 	number_uses = calloc((max_strength_bits + 1), sizeof(int));
1064 	if (!number_uses) {
1065 		SSLerrorx(ERR_R_MALLOC_FAILURE);
1066 		return (0);
1067 	}
1068 
1069 	/*
1070 	 * Now find the strength_bits values actually used
1071 	 */
1072 	curr = *head_p;
1073 	while (curr != NULL) {
1074 		if (curr->active)
1075 			number_uses[curr->cipher->strength_bits]++;
1076 		curr = curr->next;
1077 	}
1078 	/*
1079 	 * Go through the list of used strength_bits values in descending
1080 	 * order.
1081 	 */
1082 	for (i = max_strength_bits; i >= 0; i--)
1083 		if (number_uses[i] > 0)
1084 			ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p, tail_p);
1085 
1086 	free(number_uses);
1087 	return (1);
1088 }
1089 
1090 static int
1091 ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p,
1092     CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list)
1093 {
1094 	unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl;
1095 	unsigned long algo_strength;
1096 	int j, multi, found, rule, retval, ok, buflen;
1097 	unsigned long cipher_id = 0;
1098 	const char *l, *buf;
1099 	char ch;
1100 
1101 	retval = 1;
1102 	l = rule_str;
1103 	for (;;) {
1104 		ch = *l;
1105 
1106 		if (ch == '\0')
1107 			break;
1108 
1109 		if (ch == '-') {
1110 			rule = CIPHER_DEL;
1111 			l++;
1112 		} else if (ch == '+') {
1113 			rule = CIPHER_ORD;
1114 			l++;
1115 		} else if (ch == '!') {
1116 			rule = CIPHER_KILL;
1117 			l++;
1118 		} else if (ch == '@') {
1119 			rule = CIPHER_SPECIAL;
1120 			l++;
1121 		} else {
1122 			rule = CIPHER_ADD;
1123 		}
1124 
1125 		if (ITEM_SEP(ch)) {
1126 			l++;
1127 			continue;
1128 		}
1129 
1130 		alg_mkey = 0;
1131 		alg_auth = 0;
1132 		alg_enc = 0;
1133 		alg_mac = 0;
1134 		alg_ssl = 0;
1135 		algo_strength = 0;
1136 
1137 		for (;;) {
1138 			ch = *l;
1139 			buf = l;
1140 			buflen = 0;
1141 			while (((ch >= 'A') && (ch <= 'Z')) ||
1142 			    ((ch >= '0') && (ch <= '9')) ||
1143 			    ((ch >= 'a') && (ch <= 'z')) ||
1144 			    (ch == '-') || (ch == '.')) {
1145 				ch = *(++l);
1146 				buflen++;
1147 			}
1148 
1149 			if (buflen == 0) {
1150 				/*
1151 				 * We hit something we cannot deal with,
1152 				 * it is no command or separator nor
1153 				 * alphanumeric, so we call this an error.
1154 				 */
1155 				SSLerrorx(SSL_R_INVALID_COMMAND);
1156 				retval = found = 0;
1157 				l++;
1158 				break;
1159 			}
1160 
1161 			if (rule == CIPHER_SPECIAL) {
1162 				 /* unused -- avoid compiler warning */
1163 				found = 0;
1164 				/* special treatment */
1165 				break;
1166 			}
1167 
1168 			/* check for multi-part specification */
1169 			if (ch == '+') {
1170 				multi = 1;
1171 				l++;
1172 			} else
1173 				multi = 0;
1174 
1175 			/*
1176 			 * Now search for the cipher alias in the ca_list.
1177 			 * Be careful with the strncmp, because the "buflen"
1178 			 * limitation will make the rule "ADH:SOME" and the
1179 			 * cipher "ADH-MY-CIPHER" look like a match for
1180 			 * buflen=3. So additionally check whether the cipher
1181 			 * name found has the correct length. We can save a
1182 			 * strlen() call: just checking for the '\0' at the
1183 			 * right place is sufficient, we have to strncmp()
1184 			 * anyway (we cannot use strcmp(), because buf is not
1185 			 * '\0' terminated.)
1186 			 */
1187 			j = found = 0;
1188 			cipher_id = 0;
1189 			while (ca_list[j]) {
1190 				if (!strncmp(buf, ca_list[j]->name, buflen) &&
1191 				    (ca_list[j]->name[buflen] == '\0')) {
1192 					found = 1;
1193 					break;
1194 				} else
1195 					j++;
1196 			}
1197 
1198 			if (!found)
1199 				break;	/* ignore this entry */
1200 
1201 			if (ca_list[j]->algorithm_mkey) {
1202 				if (alg_mkey) {
1203 					alg_mkey &= ca_list[j]->algorithm_mkey;
1204 					if (!alg_mkey) {
1205 						found = 0;
1206 						break;
1207 					}
1208 				} else
1209 					alg_mkey = ca_list[j]->algorithm_mkey;
1210 			}
1211 
1212 			if (ca_list[j]->algorithm_auth) {
1213 				if (alg_auth) {
1214 					alg_auth &= ca_list[j]->algorithm_auth;
1215 					if (!alg_auth) {
1216 						found = 0;
1217 						break;
1218 					}
1219 				} else
1220 					alg_auth = ca_list[j]->algorithm_auth;
1221 			}
1222 
1223 			if (ca_list[j]->algorithm_enc) {
1224 				if (alg_enc) {
1225 					alg_enc &= ca_list[j]->algorithm_enc;
1226 					if (!alg_enc) {
1227 						found = 0;
1228 						break;
1229 					}
1230 				} else
1231 					alg_enc = ca_list[j]->algorithm_enc;
1232 			}
1233 
1234 			if (ca_list[j]->algorithm_mac) {
1235 				if (alg_mac) {
1236 					alg_mac &= ca_list[j]->algorithm_mac;
1237 					if (!alg_mac) {
1238 						found = 0;
1239 						break;
1240 					}
1241 				} else
1242 					alg_mac = ca_list[j]->algorithm_mac;
1243 			}
1244 
1245 			if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1246 				if (algo_strength & SSL_STRONG_MASK) {
1247 					algo_strength &=
1248 					    (ca_list[j]->algo_strength &
1249 					    SSL_STRONG_MASK) | ~SSL_STRONG_MASK;
1250 					if (!(algo_strength &
1251 					    SSL_STRONG_MASK)) {
1252 						found = 0;
1253 						break;
1254 					}
1255 				} else
1256 					algo_strength |=
1257 					    ca_list[j]->algo_strength &
1258 					    SSL_STRONG_MASK;
1259 			}
1260 
1261 			if (ca_list[j]->valid) {
1262 				/*
1263 				 * explicit ciphersuite found; its protocol
1264 				 * version does not become part of the search
1265 				 * pattern!
1266 				 */
1267 				cipher_id = ca_list[j]->id;
1268 			} else {
1269 				/*
1270 				 * not an explicit ciphersuite; only in this
1271 				 * case, the protocol version is considered
1272 				 * part of the search pattern
1273 				 */
1274 				if (ca_list[j]->algorithm_ssl) {
1275 					if (alg_ssl) {
1276 						alg_ssl &=
1277 						    ca_list[j]->algorithm_ssl;
1278 						if (!alg_ssl) {
1279 							found = 0;
1280 							break;
1281 						}
1282 					} else
1283 						alg_ssl =
1284 						    ca_list[j]->algorithm_ssl;
1285 				}
1286 			}
1287 
1288 			if (!multi)
1289 				break;
1290 		}
1291 
1292 		/*
1293 		 * Ok, we have the rule, now apply it
1294 		 */
1295 		if (rule == CIPHER_SPECIAL) {
1296 			/* special command */
1297 			ok = 0;
1298 			if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8))
1299 				ok = ssl_cipher_strength_sort(head_p, tail_p);
1300 			else
1301 				SSLerrorx(SSL_R_INVALID_COMMAND);
1302 			if (ok == 0)
1303 				retval = 0;
1304 			/*
1305 			 * We do not support any "multi" options
1306 			 * together with "@", so throw away the
1307 			 * rest of the command, if any left, until
1308 			 * end or ':' is found.
1309 			 */
1310 			while ((*l != '\0') && !ITEM_SEP(*l))
1311 				l++;
1312 		} else if (found) {
1313 			ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth,
1314 			    alg_enc, alg_mac, alg_ssl, algo_strength, rule,
1315 			    -1, head_p, tail_p);
1316 		} else {
1317 			while ((*l != '\0') && !ITEM_SEP(*l))
1318 				l++;
1319 		}
1320 		if (*l == '\0')
1321 			break; /* done */
1322 	}
1323 
1324 	return (retval);
1325 }
1326 
1327 static inline int
1328 ssl_aes_is_accelerated(void)
1329 {
1330 #if defined(__i386__) || defined(__x86_64__)
1331 	return ((OPENSSL_cpu_caps() & (1ULL << 57)) != 0);
1332 #else
1333 	return (0);
1334 #endif
1335 }
1336 
1337 STACK_OF(SSL_CIPHER) *
1338 ssl_create_cipher_list(const SSL_METHOD *ssl_method,
1339     STACK_OF(SSL_CIPHER) **cipher_list,
1340     STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1341     const char *rule_str)
1342 {
1343 	int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
1344 	unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl;
1345 	STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
1346 	const char *rule_p;
1347 	CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1348 	const SSL_CIPHER **ca_list = NULL;
1349 
1350 	/*
1351 	 * Return with error if nothing to do.
1352 	 */
1353 	if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1354 		return NULL;
1355 
1356 	/*
1357 	 * To reduce the work to do we only want to process the compiled
1358 	 * in algorithms, so we first get the mask of disabled ciphers.
1359 	 */
1360 	ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &disabled_mac, &disabled_ssl);
1361 
1362 	/*
1363 	 * Now we have to collect the available ciphers from the compiled
1364 	 * in ciphers. We cannot get more than the number compiled in, so
1365 	 * it is used for allocation.
1366 	 */
1367 	num_of_ciphers = ssl_method->num_ciphers();
1368 	co_list = reallocarray(NULL, num_of_ciphers, sizeof(CIPHER_ORDER));
1369 	if (co_list == NULL) {
1370 		SSLerrorx(ERR_R_MALLOC_FAILURE);
1371 		return(NULL);	/* Failure */
1372 	}
1373 
1374 	ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1375 	disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl,
1376 	co_list, &head, &tail);
1377 
1378 
1379 	/* Now arrange all ciphers by preference: */
1380 
1381 	/* Everything else being equal, prefer ephemeral ECDH over other key exchange mechanisms */
1382 	ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1383 	ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1384 
1385 	if (ssl_aes_is_accelerated() == 1) {
1386 		/*
1387 		 * We have hardware assisted AES - prefer AES as a symmetric
1388 		 * cipher, with CHACHA20 second.
1389 		 */
1390 		ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0,
1391 		    CIPHER_ADD, -1, &head, &tail);
1392 		ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305,
1393 		    0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1394 	} else {
1395 		/*
1396 		 * CHACHA20 is fast and safe on all hardware and is thus our
1397 		 * preferred symmetric cipher, with AES second.
1398 		 */
1399 		ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305,
1400 		    0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1401 		ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0,
1402 		    CIPHER_ADD, -1, &head, &tail);
1403 	}
1404 
1405 	/* Temporarily enable everything else for sorting */
1406 	ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1407 
1408 	/* Low priority for MD5 */
1409 	ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head, &tail);
1410 
1411 	/* Move anonymous ciphers to the end.  Usually, these will remain disabled.
1412 	 * (For applications that allow them, they aren't too bad, but we prefer
1413 	 * authenticated ciphers.) */
1414 	ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
1415 
1416 	/* Move ciphers without forward secrecy to the end */
1417 	ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
1418 
1419 	/* RC4 is sort of broken - move it to the end */
1420 	ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head, &tail);
1421 
1422 	/* Now sort by symmetric encryption strength.  The above ordering remains
1423 	 * in force within each class */
1424 	if (!ssl_cipher_strength_sort(&head, &tail)) {
1425 		free(co_list);
1426 		return NULL;
1427 	}
1428 
1429 	/* Now disable everything (maintaining the ordering!) */
1430 	ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1431 
1432 
1433 	/*
1434 	 * We also need cipher aliases for selecting based on the rule_str.
1435 	 * There might be two types of entries in the rule_str: 1) names
1436 	 * of ciphers themselves 2) aliases for groups of ciphers.
1437 	 * For 1) we need the available ciphers and for 2) the cipher
1438 	 * groups of cipher_aliases added together in one list (otherwise
1439 	 * we would be happy with just the cipher_aliases table).
1440 	 */
1441 	num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
1442 	num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1443 	ca_list = reallocarray(NULL, num_of_alias_max, sizeof(SSL_CIPHER *));
1444 	if (ca_list == NULL) {
1445 		free(co_list);
1446 		SSLerrorx(ERR_R_MALLOC_FAILURE);
1447 		return(NULL);	/* Failure */
1448 	}
1449 	ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1450 	disabled_mkey, disabled_auth, disabled_enc,
1451 	disabled_mac, disabled_ssl, head);
1452 
1453 	/*
1454 	 * If the rule_string begins with DEFAULT, apply the default rule
1455 	 * before using the (possibly available) additional rules.
1456 	 */
1457 	ok = 1;
1458 	rule_p = rule_str;
1459 	if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1460 		ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
1461 		&head, &tail, ca_list);
1462 		rule_p += 7;
1463 		if (*rule_p == ':')
1464 			rule_p++;
1465 	}
1466 
1467 	if (ok && (strlen(rule_p) > 0))
1468 		ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list);
1469 
1470 	free((void *)ca_list);	/* Not needed anymore */
1471 
1472 	if (!ok) {
1473 		/* Rule processing failure */
1474 		free(co_list);
1475 		return (NULL);
1476 	}
1477 
1478 	/*
1479 	 * Allocate new "cipherstack" for the result, return with error
1480 	 * if we cannot get one.
1481 	 */
1482 	if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1483 		free(co_list);
1484 		return (NULL);
1485 	}
1486 
1487 	/*
1488 	 * The cipher selection for the list is done. The ciphers are added
1489 	 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1490 	 */
1491 	for (curr = head; curr != NULL; curr = curr->next) {
1492 		if (curr->active) {
1493 			sk_SSL_CIPHER_push(cipherstack, curr->cipher);
1494 		}
1495 	}
1496 	free(co_list);	/* Not needed any longer */
1497 
1498 	tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1499 	if (tmp_cipher_list == NULL) {
1500 		sk_SSL_CIPHER_free(cipherstack);
1501 		return NULL;
1502 	}
1503 	sk_SSL_CIPHER_free(*cipher_list);
1504 	*cipher_list = cipherstack;
1505 	sk_SSL_CIPHER_free(*cipher_list_by_id);
1506 	*cipher_list_by_id = tmp_cipher_list;
1507 	(void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,
1508 	    ssl_cipher_ptr_id_cmp);
1509 
1510 	sk_SSL_CIPHER_sort(*cipher_list_by_id);
1511 	return (cipherstack);
1512 }
1513 
1514 const SSL_CIPHER *
1515 SSL_CIPHER_get_by_id(unsigned int id)
1516 {
1517 	return ssl3_get_cipher_by_id(id);
1518 }
1519 
1520 const SSL_CIPHER *
1521 SSL_CIPHER_get_by_value(uint16_t value)
1522 {
1523 	return ssl3_get_cipher_by_value(value);
1524 }
1525 
1526 char *
1527 SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1528 {
1529 	unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, alg2;
1530 	const char *ver, *kx, *au, *enc, *mac;
1531 	char *ret;
1532 	int l;
1533 
1534 	alg_mkey = cipher->algorithm_mkey;
1535 	alg_auth = cipher->algorithm_auth;
1536 	alg_enc = cipher->algorithm_enc;
1537 	alg_mac = cipher->algorithm_mac;
1538 	alg_ssl = cipher->algorithm_ssl;
1539 
1540 	alg2 = cipher->algorithm2;
1541 
1542 	if (alg_ssl & SSL_SSLV3)
1543 		ver = "SSLv3";
1544 	else if (alg_ssl & SSL_TLSV1_2)
1545 		ver = "TLSv1.2";
1546 	else
1547 		ver = "unknown";
1548 
1549 	switch (alg_mkey) {
1550 	case SSL_kRSA:
1551 		kx = "RSA";
1552 		break;
1553 	case SSL_kDHE:
1554 		kx = "DH";
1555 		break;
1556 	case SSL_kECDHE:
1557 		kx = "ECDH";
1558 		break;
1559 	case SSL_kGOST:
1560 		kx = "GOST";
1561 		break;
1562 	default:
1563 		kx = "unknown";
1564 	}
1565 
1566 	switch (alg_auth) {
1567 	case SSL_aRSA:
1568 		au = "RSA";
1569 		break;
1570 	case SSL_aDSS:
1571 		au = "DSS";
1572 		break;
1573 	case SSL_aNULL:
1574 		au = "None";
1575 		break;
1576 	case SSL_aECDSA:
1577 		au = "ECDSA";
1578 		break;
1579 	case SSL_aGOST01:
1580 		au = "GOST01";
1581 		break;
1582 	default:
1583 		au = "unknown";
1584 		break;
1585 	}
1586 
1587 	switch (alg_enc) {
1588 	case SSL_DES:
1589 		enc = "DES(56)";
1590 		break;
1591 	case SSL_3DES:
1592 		enc = "3DES(168)";
1593 		break;
1594 	case SSL_RC4:
1595 		enc = alg2 & SSL2_CF_8_BYTE_ENC ? "RC4(64)" : "RC4(128)";
1596 		break;
1597 	case SSL_IDEA:
1598 		enc = "IDEA(128)";
1599 		break;
1600 	case SSL_eNULL:
1601 		enc = "None";
1602 		break;
1603 	case SSL_AES128:
1604 		enc = "AES(128)";
1605 		break;
1606 	case SSL_AES256:
1607 		enc = "AES(256)";
1608 		break;
1609 	case SSL_AES128GCM:
1610 		enc = "AESGCM(128)";
1611 		break;
1612 	case SSL_AES256GCM:
1613 		enc = "AESGCM(256)";
1614 		break;
1615 	case SSL_CAMELLIA128:
1616 		enc = "Camellia(128)";
1617 		break;
1618 	case SSL_CAMELLIA256:
1619 		enc = "Camellia(256)";
1620 		break;
1621 	case SSL_CHACHA20POLY1305:
1622 		enc = "ChaCha20-Poly1305";
1623 		break;
1624 	case SSL_eGOST2814789CNT:
1625 		enc = "GOST-28178-89-CNT";
1626 		break;
1627 	default:
1628 		enc = "unknown";
1629 		break;
1630 	}
1631 
1632 	switch (alg_mac) {
1633 	case SSL_MD5:
1634 		mac = "MD5";
1635 		break;
1636 	case SSL_SHA1:
1637 		mac = "SHA1";
1638 		break;
1639 	case SSL_SHA256:
1640 		mac = "SHA256";
1641 		break;
1642 	case SSL_SHA384:
1643 		mac = "SHA384";
1644 		break;
1645 	case SSL_AEAD:
1646 		mac = "AEAD";
1647 		break;
1648 	case SSL_GOST94:
1649 		mac = "GOST94";
1650 		break;
1651 	case SSL_GOST89MAC:
1652 		mac = "GOST89IMIT";
1653 		break;
1654 	case SSL_STREEBOG256:
1655 		mac = "STREEBOG256";
1656 		break;
1657 	default:
1658 		mac = "unknown";
1659 		break;
1660 	}
1661 
1662 	if (asprintf(&ret, "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
1663 	    cipher->name, ver, kx, au, enc, mac) == -1)
1664 		return "OPENSSL_malloc Error";
1665 
1666 	if (buf != NULL) {
1667 		l = strlcpy(buf, ret, len);
1668 		free(ret);
1669 		ret = buf;
1670 		if (l >= len)
1671 			ret = "Buffer too small";
1672 	}
1673 
1674 	return (ret);
1675 }
1676 
1677 const char *
1678 SSL_CIPHER_get_version(const SSL_CIPHER *c)
1679 {
1680 	if (c == NULL)
1681 		return("(NONE)");
1682 	if ((c->id >> 24) == 3)
1683 		return("TLSv1/SSLv3");
1684 	else
1685 		return("unknown");
1686 }
1687 
1688 /* return the actual cipher being used */
1689 const char *
1690 SSL_CIPHER_get_name(const SSL_CIPHER *c)
1691 {
1692 	if (c != NULL)
1693 		return (c->name);
1694 	return("(NONE)");
1695 }
1696 
1697 /* number of bits for symmetric cipher */
1698 int
1699 SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1700 {
1701 	int ret = 0;
1702 
1703 	if (c != NULL) {
1704 		if (alg_bits != NULL)
1705 			*alg_bits = c->alg_bits;
1706 		ret = c->strength_bits;
1707 	}
1708 	return (ret);
1709 }
1710 
1711 unsigned long
1712 SSL_CIPHER_get_id(const SSL_CIPHER *c)
1713 {
1714 	return c->id;
1715 }
1716 
1717 uint16_t
1718 SSL_CIPHER_get_value(const SSL_CIPHER *c)
1719 {
1720 	return ssl3_cipher_get_value(c);
1721 }
1722 
1723 int
1724 SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
1725 {
1726 	switch (c->algorithm_enc) {
1727 	case SSL_eNULL:
1728 		return NID_undef;
1729 	case SSL_3DES:
1730 		return NID_des_ede3_cbc;
1731 	case SSL_AES128:
1732 		return NID_aes_128_cbc;
1733 	case SSL_AES128GCM:
1734 		return NID_aes_128_gcm;
1735 	case SSL_AES256:
1736 		return NID_aes_256_cbc;
1737 	case SSL_AES256GCM:
1738 		return NID_aes_256_gcm;
1739 	case SSL_CAMELLIA128:
1740 		return NID_camellia_128_cbc;
1741 	case SSL_CAMELLIA256:
1742 		return NID_camellia_256_cbc;
1743 	case SSL_CHACHA20POLY1305:
1744 		return NID_chacha20_poly1305;
1745 	case SSL_DES:
1746 		return NID_des_cbc;
1747 	case SSL_RC4:
1748 		return NID_rc4;
1749 	case SSL_eGOST2814789CNT:
1750 		return NID_gost89_cnt;
1751 	default:
1752 		return NID_undef;
1753 	}
1754 }
1755 
1756 int
1757 SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
1758 {
1759 	switch (c->algorithm_mac) {
1760 	case SSL_AEAD:
1761 		return NID_undef;
1762 	case SSL_GOST89MAC:
1763 		return NID_id_Gost28147_89_MAC;
1764 	case SSL_GOST94:
1765 		return NID_id_GostR3411_94;
1766 	case SSL_MD5:
1767 		return NID_md5;
1768 	case SSL_SHA1:
1769 		return NID_sha1;
1770 	case SSL_SHA256:
1771 		return NID_sha256;
1772 	case SSL_SHA384:
1773 		return NID_sha384;
1774 	case SSL_STREEBOG256:
1775 		return NID_id_tc26_gost3411_2012_256;
1776 	default:
1777 		return NID_undef;
1778 	}
1779 }
1780 
1781 int
1782 SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
1783 {
1784 	switch (c->algorithm_mkey) {
1785 	case SSL_kDHE:
1786 		return NID_kx_dhe;
1787 	case SSL_kECDHE:
1788 		return NID_kx_ecdhe;
1789 	case SSL_kGOST:
1790 		return NID_kx_gost;
1791 	case SSL_kRSA:
1792 		return NID_kx_rsa;
1793 	default:
1794 		return NID_undef;
1795 	}
1796 }
1797 
1798 int
1799 SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
1800 {
1801 	switch (c->algorithm_auth) {
1802 	case SSL_aNULL:
1803 		return NID_auth_null;
1804 	case SSL_aECDSA:
1805 		return NID_auth_ecdsa;
1806 	case SSL_aGOST01:
1807 		return NID_auth_gost01;
1808 	case SSL_aRSA:
1809 		return NID_auth_rsa;
1810 	default:
1811 		return NID_undef;
1812 	}
1813 }
1814 
1815 int
1816 SSL_CIPHER_is_aead(const SSL_CIPHER *c)
1817 {
1818 	return (c->algorithm_mac & SSL_AEAD) == SSL_AEAD;
1819 }
1820 
1821 void *
1822 SSL_COMP_get_compression_methods(void)
1823 {
1824 	return NULL;
1825 }
1826 
1827 int
1828 SSL_COMP_add_compression_method(int id, void *cm)
1829 {
1830 	return 1;
1831 }
1832 
1833 const char *
1834 SSL_COMP_get_name(const void *comp)
1835 {
1836 	return NULL;
1837 }
1838